ReduceSum¶
Versioned name : ReduceSum-1
Category : Reduction
Short description : ReduceSum operation performs the reduction with addition on a given input data along dimensions specified by axes input.
Detailed Description
ReduceSum operation performs the reduction with addition on a given input data along dimensions specified by axes input. Each element in the output is calculated as follows:
output[i0, i1, ..., iN] = sum[j0, ..., jN](x[j0, ..., jN]))
where indices i0, …, iN run through all valid indices for input data, and summation sum[j0, ..., jN] has jk = ik for those dimensions k that are not in the set of indices specified by axes input.
Particular cases:
If
axesis an empty list, ReduceSum corresponds to the identity operation.If
axescontains all dimensions of inputdata, a single reduction value is calculated for the entire input tensor.
Attributes
keep_dims
Description : If set to
true, it holds axes that are used for the reduction. For each such axis, the output dimension is equal to 1.Range of values :
trueorfalseType :
booleanDefault value :
falseRequired : no
Inputs
1 :
data- A tensor of type T and arbitrary shape. Required.2 :
axes- Axis indices ofdatainput tensor, along which the reduction is performed. A scalar or 1D tensor of unique elements and type T_IND. The range of elements is[-r, r-1], whereris the rank ofdatainput tensor. Required.
Outputs
1 : The result of ReduceSum function applied to
datainput tensor. A tensor of type T andshape[i] = shapeOf(data)[i]for allidimensions not inaxesinput tensor. For dimensions inaxes,shape[i] == 1ifkeep_dims == true; otherwise, thei-th dimension is removed from the output.
Types
T : any supported numeric type.
T_IND : any supported integer type.
Examples
<layer id="1" type="ReduceSum" ...>
<data keep_dims="true" />
<input>
<port id="0">
<dim>6</dim>
<dim>12</dim>
<dim>10</dim>
<dim>24</dim>
</port>
<port id="1">
<dim>2</dim> <!-- value is [2, 3] that means independent reduction in each channel and batch -->
</port>
</input>
<output>
<port id="2">
<dim>6</dim>
<dim>12</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer><layer id="1" type="ReduceSum" ...>
<data keep_dims="false" />
<input>
<port id="0">
<dim>6</dim>
<dim>12</dim>
<dim>10</dim>
<dim>24</dim>
</port>
<port id="1">
<dim>2</dim> <!-- value is [2, 3] that means independent reduction in each channel and batch -->
</port>
</input>
<output>
<port id="2">
<dim>6</dim>
<dim>12</dim>
</port>
</output>
</layer><layer id="1" type="ReduceSum" ...>
<data keep_dims="false" />
<input>
<port id="0">
<dim>6</dim>
<dim>12</dim>
<dim>10</dim>
<dim>24</dim>
</port>
<port id="1">
<dim>1</dim> <!-- value is [1] that means independent reduction in each channel and spatial dimensions -->
</port>
</input>
<output>
<port id="2">
<dim>6</dim>
<dim>10</dim>
<dim>24</dim>
</port>
</output>
</layer><layer id="1" type="ReduceSum" ...>
<data keep_dims="false" />
<input>
<port id="0">
<dim>6</dim>
<dim>12</dim>
<dim>10</dim>
<dim>24</dim>
</port>
<port id="1">
<dim>1</dim> <!-- value is [-2] that means independent reduction in each channel, batch and second spatial dimension -->
</port>
</input>
<output>
<port id="2">
<dim>6</dim>
<dim>12</dim>
<dim>24</dim>
</port>
</output>
</layer>