yolo-v3-tiny-onnx¶
Use Case and High-Level Description¶
Tiny YOLO v3 is a smaller version of real-time object detection YOLO v3 model in ONNX* format from the repository which is converted from Keras* model repository using keras2onnx converter. This model was pre-trained on Common Objects in Context (COCO) dataset with 80 classes.
Specification¶
Metric |
Value |
|---|---|
Type |
Detection |
GFLOPs |
5.582 |
MParams |
8.8509 |
Source framework |
ONNX* |
Accuracy¶
Accuracy metrics obtained on Common Objects in Context (COCO) validation dataset for converted model.
Metric |
Value |
|---|---|
mAP |
17.07% |
13.64% |
Input¶
Original model¶
Image, name -
input_1, shape -1, 3, 416, 416, format isB, C, H, W, where:B- batch sizeC- channelH- heightW- width
Channel order is
RGB. Scale value - 255.Information of input image size, name:
image_shape, shape:1, 2, format:B, C, where:B- batch sizeC- vector of 2 values in formatH, W, whereHis an image height,Wis an image width.
Converted model¶
Image, name -
input_1, shape -1, 3, 416, 416, format isB, C, H, W, where:B- batch sizeC- channelH- heightW- width
Channel order is
BGR.Information of input image size, name:
image_shape, shape:1, 2, format:B, C, where:B- batch sizeC- vector of 2 values in formatH, W, whereHis an image height,Wis an image width.
Output¶
Original model¶
Boxes coordinates, name -
yolonms_layer_1, shape -1, 2535, 4, format -B, N, 4, where:B- batch sizeN- number of candidates
Scores of boxes per class, name -
yolonms_layer_1:1, shape -1, 80, 2535, format -B, 80, N, where:B- batch sizeN- number of candidates
Selected indices from the boxes tensor, name -
yolonms_layer_1:2, shape -1, 1600, 3, format -B, N, 3, where:B- batch sizeN- number of detection boxes
Each index has format [b_idx, cls_idx, box_idx], where:
b_idx- batch indexcls_idx- class_indexbox_idx- box_index
The model was trained on Common Objects in Context (COCO) dataset version with 80 categories of object. Mapping to class names provided in <omz_dir>/data/dataset_classes/coco_80cl.txt file.
Converted model¶
Boxes coordinates, name -
yolonms_layer_1, shape -1, 2535, 4, format -B, N, 4, where:B- batch sizeN- number of candidates
Scores of boxes per class, name -
yolonms_layer_1:1, shape -1, 80, 2535, format -B, 80, N, where:B- batch sizeN- number of candidates
Selected indices from the boxes tensor, name -
yolonms_layer_1:2, shape -1, 1600, 3, format -B, N, 3, where:B- batch sizeN- number of detection boxes
Each index has format [b_idx, cls_idx, box_idx], where:
b_idx- batch indexcls_idx- class_indexbox_idx- box_index
The model was trained on Common Objects in Context (COCO) dataset version with 80 categories of object. Mapping to class names provided in <omz_dir>/data/dataset_classes/coco_80cl.txt file.
Download a Model and Convert it into OpenVINO™ IR Format¶
You can download models and if necessary convert them into OpenVINO™ IR format using the Model Downloader and other automation tools as shown in the examples below.
An example of using the Model Downloader:
omz_downloader --name <model_name>An example of using the Model Converter:
omz_converter --name <model_name>Demo usage¶
The model can be used in the following demos provided by the Open Model Zoo to show its capabilities:
Legal Information¶
The original model is distributed under the Apache License, Version 2.0. A copy of the license is provided in <omz_dir>/models/public/licenses/APACHE-2.0.txt.