ReduceL1¶
Versioned name : ReduceL1-4
Category : Reduction
Short description : ReduceL1 operation performs the reduction with finding the L1 norm (sum of absolute values) on a given input data along dimensions specified by axes input.
Detailed Description
ReduceL1 operation performs the reduction with finding the L1 norm (sum of absolute values) on a given input data along dimensions specified by axes input. Each element in the output is calculated as follows:
output[i0, i1, ..., iN] = L1[j0, ..., jN](x[j0, ..., jN]))
where indices i0, …, iN run through all valid indices for input data, and finding the L1 norm L1[j0, ..., jN] has jk = ik for those dimensions k that are not in the set of indices specified by axes input.
Particular cases:
- If - axesis an empty list, ReduceL1 corresponds to the identity operation.
- If - axescontains all dimensions of input- data, a single reduction value is calculated for the entire input tensor.
Attributes
- keep_dims - Description : If set to - true, it holds axes that are used for the reduction. For each such axis, the output dimension is equal to 1.
- Range of values : - trueor- false
- Type : - boolean
- Default value : - false
- Required : no 
 
Inputs
- 1 : - data- A tensor of type T and arbitrary shape. Required.
- 2 : - axes- Axis indices of- datainput tensor, along which the reduction is performed. A scalar or 1D tensor of unique elements and type T_IND. The range of elements is- [-r, r-1], where- ris the rank of- datainput tensor. Required.
Outputs
- 1 : The result of ReduceL1 function applied to - datainput tensor. A tensor of type T and- shape[i] = shapeOf(data)[i]for all- idimensions not in- axesinput tensor. For dimensions in- axes,- shape[i] == 1if- keep_dims == true; otherwise, the- i-th dimension is removed from the output.
Types
- T : any supported numeric type. 
- T_IND : any supported integer type. 
Examples
<layer id="1" type="ReduceL1" ...>
    <data keep_dims="true" />
    <input>
        <port id="0">
            <dim>6</dim>
            <dim>12</dim>
            <dim>10</dim>
            <dim>24</dim>
        </port>
        <port id="1">
            <dim>2</dim>         <!-- value is [2, 3] that means independent reduction in each channel and batch -->
        </port>
    </input>
    <output>
        <port id="2">
            <dim>6</dim>
            <dim>12</dim>
            <dim>1</dim>
            <dim>1</dim>
        </port>
    </output>
</layer><layer id="1" type="ReduceL1" ...>
    <data keep_dims="false" />
    <input>
        <port id="0">
            <dim>6</dim>
            <dim>12</dim>
            <dim>10</dim>
            <dim>24</dim>
        </port>
        <port id="1">
            <dim>2</dim>         <!-- value is [2, 3] that means independent reduction in each channel and batch -->
        </port>
    </input>
    <output>
        <port id="2">
            <dim>6</dim>
            <dim>12</dim>
        </port>
    </output>
</layer><layer id="1" type="ReduceL1" ...>
    <data keep_dims="false" />
    <input>
        <port id="0">
            <dim>6</dim>
            <dim>12</dim>
            <dim>10</dim>
            <dim>24</dim>
        </port>
        <port id="1">
            <dim>1</dim>         <!-- value is [1] that means independent reduction in each channel and spatial dimensions -->
        </port>
    </input>
    <output>
        <port id="2">
            <dim>6</dim>
            <dim>10</dim>
            <dim>24</dim>
        </port>
    </output>
</layer><layer id="1" type="ReduceL1" ...>
    <data keep_dims="false" />
    <input>
        <port id="0">
            <dim>6</dim>
            <dim>12</dim>
            <dim>10</dim>
            <dim>24</dim>
        </port>
        <port id="1">
            <dim>1</dim>         <!-- value is [-2] that means independent reduction in each channel, batch and second spatial dimension -->
        </port>
    </input>
    <output>
        <port id="2">
            <dim>6</dim>
            <dim>12</dim>
            <dim>24</dim>
        </port>
    </output>
</layer>