Manuals >Nonlinear Device Models Volume 1 >BSIM4 Characterization
Print version of this Book (PDF file)
prevnext

SPICE Model Parameters for BSIM4.5.0

The model parameters of the BSIM4 model can be divided into several groups. The main model parameters are used to model the key physical effects in the DC and CV behavior of submicron MOS devices at room temperature. Here they are grouped into subsections related to the physical effects of the MOS transistor. The second group of parameters are the process related parameters. They should only be changed if a detailed knowledge of a certain MOS production process is given. The third group of parameters are the temperature modeling parameters. The following two groups are used to model the AC and noise behavior of the MOS transistor. Finally the last group contains flags to select certain modes of operations and user definable model parameters. For more details about these operation modes, refer to the BSIM4 manual [1].

Main Model Parameters

Table 50 Main Model Parameters 
Parameter
Description
Default Value
Unit
 
Process related Parameters
 
 
EPSROX
relative gate dielectric constant
3.9 (SiO2)
-
TOXE
Electrical gate equivalent oxide thickness
3E-9
m
TOXP
Physical gate equivalent oxide thickness
TOXE
-
TOXM
Gate oxide thickness at which parameters are extracted
TOXE
-
DTOX
defined as TOXE-TOXP
0.0
m
XJ
Source / Drain junction depth
150E-9
m
GAMMA1
Body-effect coefficient near the surface



V1/2


GAMMA2
Body-effect coefficient in the substrate



V1/2


NGATE
Poly Si-gate doping concentration
0.0
cm-3
NDEP
Channel doping concentration at depletion edge for zero body bias
If NDEP is not given but GAMMA1 is given:

If both are not given: NDEP=1E17






cm-3

NSUB
Substrate doping concentration
6E16
cm-3
NSD
Source / Drain doping concentration
1e20
cm-3
XT
Doping depth
1.55E-7
V
VBX
Vbs at which depletion region equals XT

V
RSH
Sheet resistance
0.0

RSHG
Gate electrode sheet resistance
0.1

 
 
 
 
 
Threshold Voltage
 
 
VFB
Flatband voltage
-1.0
V
VTH0
Long channel threshold voltage at Vbs = 0
NMOS: 0.7
PMOS: -0.7
V
DELVTO
Zero bias threshold voltage variation
0
V
PHIN
Non-uniform vertical doping effect on surface potential
0.0
V
K1
First-order body effect coefficient
0.5
V0.5
K2
Second-order body effect coefficient
0.0
-
K3
Narrow width coefficient
80.0
-
K3B
Body effect coefficient of K3
0.0
1/V
W0
Narrow width parameter
2.5E-6
m
LPE0
Lateral non-uniform doping parameter at Vbs = 0
1.74e-7
m
LPEB
Lateral non-uniform doping effect on K1
0.0
m
VBM
Maximum applied body bias in VTH0 calculation.
-3.0
V
DVT0
First coefficient of short-channel effect on VTH
2.2
-
DVT1
Second coefficient of short-channel effect on VTH
0.53
-
DVT2
Body-bias coefficient of short-channel effect on VTH
-0.032
1/V
DVTP0
First coefficient of drain-induced Vth shift for long-channel pocket devices
0.0
m
DVTP1
Second coefficient of drain-induced Vth shift for long-channel pocket devices
0.0
V
DVT0W
First coefficient of narrow-width effect on VTH for small channel length
0.0
-
DVT1W
Second coefficient of narrow-width effect on VTH for small channel length
5.3E6
1/m
DVT2W
Body-bias coefficient of narrow-width effect on VTH for small channel length
-0.032
1/V
ETA0
DIBL coefficient in the subthreshold region
0.08
-
ETAB
Body-bias for the subthreshold DIBL effect
-0.07
1/V
DSUB
DIBL coefficient exponent in subthreshold region
DROUT
-
 
 
 
 
 
Mobility
 
 
U0
Low-field mobility
NMOS: 670
PMOS: 250
cm2/(Vs)
UA
First-order mobility degradation coefficient due to vertical field
MOBMOD=0 and 1: 1E-9
MOBMOD=2: 1E-15
m/V
UB
Second-order mobility degradation coefficient
1E-19
(m/V)2
UC
Coefficient of the body-bias effect of mobility degradation
MOBMOD=1: -0.0465


MOBMOD=0 and 2: 0.0465E-9
1/V


m/V2
UD
Mobility coulomb scattering coefficient
1E14
1/m2
UP
Mobility channel length coefficient
0
1/m2
LP
Mobility channel length exponential coefficient
1E-8
m
EU
Exponent for mobility degradation of MOBMOD = 2
NMOS: 1.67
PMOS: 1.0
-
 
 
 
 
 
Drain current
 
 
VSAT
Saturation velocity
8.0E4
m/s
A0
Bulk charge effect coefficient
1.0
-
A1
First non-saturation effect factor
0.0
1/V
A2
Second non-saturation effect factor
1.0
-
AGS
Coefficient of Vgs dependence of bulk charge effect
0.0
1/V
B0
Bulk charge effect coeff. for channel width
0.0
m
B1
Bulk charge effect width offset
0.0
m
KETA
Body-bias coefficient of the bulk charge effect
-0.047
1/V
 
 
 
 
 
Subthreshold region
 
 
VOFF
Offset voltage in subthreshold region for large W and L
-0.08
V
VOFFL
Channel length dependence of VOFF
0.0
mV
MINV
Vgsteff fitting parameter for moderate inversion condition
0.0
-
NFACTOR
Subthreshold swing factor
1.0
-
CIT
Interface trap capacitance
0.0
F/m2
CDSC
Drain-Source to channel coupling capacitance
2.4E-4
F/m2
CDSCB
Body-bias coefficient of CDSC
0.0
F/Vm2
CDSCD
Drain-bias coefficient of CDSC
0.0
F/Vm2
 
 
 
 
 
Drain-Source resistance
 
 
RDSW
Zero bias LDD resistance per unit width for RDSMOD = 0
200
(µm)WR
RDSWMIN
LDD resistance per unit width at high Vgs and zero Vbs for RDSMOD = 0
0.0
(µm)WR
RDW
Zero bias LDD drain resistance per unit width for RDSMOD = 1
100
(µm)WR
RDWMIN
Zero bias LDD drain resistance per unit width at high Vgs and zero Vbs for RDSMOD = 1
0.0
(µm)WR
RSW
Zero bias LDD source resistance per unit width for RDSMOD = 1
100
(µm)WR
RSWMIN
Zero bias LDD resistance per unit width at high Vgs and zero Vbs for RDSMOD = 1
0.0
(µm)WR
WR
Channel width dependence parameter of LDD resistance
1.0
-
PRWB
Body bias coefficient of LDD resistance
0.0
V-0.5
PRWG
Gate bias dependence of LDD resistance
1.0
1/V
NRS
Number of source diffusion squares
1.0
-
NRD
Number of drain diffusion squares
1.0
-
 
 
 
 
 
Channel geometry
 
 
WINT
Channel width offset parameter
0.0
m
WL
Coeff. of length dependence for width offset
0.0
mWLN
WLN
Power of length dependence for width offset
1.0
-
WW
Coeff. of width dependence for width offset
0.0
mWWN
WWN
Power of width dependence for width offset
1.0
-
WWL
Coeff. of length and width cross term for width offset
0.0
mWLN+WWN
LINT
Channel length offset parameter
0.0
m
LL
Coeff. of length dependence for length offset
0.0
mLLN
LLN
Power of length dependence for length offset
1.0
-
LW
Coeff. of width dependence for length offset
0.0
mLWN
LWN
Power of width dependence for length offset
1.0
-
LWL
Coeff. of length and width cross term for length offset
0.0
mLWN+LLN
LLC
Coefficient of length dependence for CV channel length offset
LL
-
LWC
Coefficient of width dependence for CV channel length offset
LW
-
LWLC
Coefficient of length and width cross term dependence for CV channel length offset
LWL
-
WLC
Coefficient of length dependence for CV channel width offset
WL
-
WWC
Coefficient of width dependence for CV channel width offset
WW
-
WWLC
Coefficient of length and width cross term dependence for CV channel width offset
WWL
-
LMIN
Minimum channel length
0.0
m
LMAX
Maximum channel length
1.0
m
WMIN
Minimum channel width
0.0
m
WMAX
Maximum channel width
1.0
m
DWG
Coefficient of gate bias dependence of Weff
0.0
m/V
DWB
Coefficient of substrate bias dependence of Weff
0.0
m/V0.5
 
 
 
 
 
Output resistance
 
 
PCLM
Channel length modulation parameter
1.3
-
PDIBL1
First output resistance DIBL effect parameter
0.39
-
PDIBL2
Second output resistance DIBL effect parameter
8.6m
-
PDIBLB
Body bias coefficient of output resistance DIBL effect
0.0
1/V
DROUT
Channel-length dependence coefficient of the DIBL effect on output resistance
0.56
-
PSCBE1
First substrate current induced body-effect parameter
4.24E8
V/m
PSCBE2
Second substrate current induced body-effect coefficient
1.0E-5
m/V
PVAG
Gate-bias dependence of Early voltage
0.0
-
FPROUT
Effect of pocket implant on Rout degradation
0.0
V/m0.5
PDITS
Impact of drain-induced Vth shift on Rout
0.0
V-1
PDITSL
Channel-length dependence of drain-induced Vth shift on Rout
0.0
m-1
PDITSD
Vds dependence of drain-induced Vth shift on Rout
0.0
V-1
ALPHA0
First impact ionization parameter
0.0
Am/V
ALPHA1
Length dependent substrate current parameter
0.0
A/V
BETA0
First VDS dependent parameter of impact ionization current
0
1/V
BETA1
Second VDS dependent parameter of impact ionization current
0


BETA2
Third VDS dependent parameter of impact ionization current
0.1
V
VDSATII0
Nominal drain saturation voltage at threshold for impact ionization current
0.9
V
TII
Temperature dependent parameter for impact ionization current
0


LII
Channel length dependent parameter at threshold for impact ionization current
0


ESATII
Saturation channel electric field for impact ionization current
1E7
1/m
SII0
First VGS dependent parameter for impact ionization current
0.5
1/V
SII1
Second VGS dependent parameter for impact ionization current
0.1
1/V
SII2
Third VGS dependent parameter for impact ionization current
0


SIID
VDS dependent parameter of drain saturation voltage for impact ionization current
0
1/V
 
Unified Current Saturation
 
 
LAMBDA
Velocity overshoot coefficient
If not given or , velocity overshoot will be turned off!
2.0E-5
m/s
VTL
Thermal velocity
If not given or , source end thermal velocity limit will be turned off!
2.0E-5
m/s
LC
Velocity back scattering coefficient
(~5E-9m at room temperature)
0.0
m
XN
Second velocity back scattering coefficient
3.0
 
 
 
 
 
 
Gate-Induced Drain Leakage model
 
 
AGIDL
Pre-exponential coefficient for GIDL
0.0
mho
(1/Ohm)
BGIDL
Exponential coefficient for GIDL
2.3e9
V/m
CGIDL
Parameter for body-bias effect on GIDL
0.5

EGIDL
Fitting parameter for band bending for GIDL
0.8
V
 
Gate Dielectric Tunneling Current
 
 
AIGBACC
Parameter for Igb in accumulation
0.43

BIGBACC
Parameter for Igb in accumulation
0.054

CIGBACC
Parameter for Igb in accumulation
0.075
1/V
NIGBACC
Parameter for Igb in accumulation
1.0
-
AIGBINV
Parameter for Igb in inversion
0.35

BIGBINV
Parameter for Igb in inversion
0.03

CIGBINV
Parameter for Igb in inversion
0.006
1/V
EIGBINV
Parameter for Igb in inversion
1.1
V
NIGBINV
Parameter for Igb in inversion
3.0
-
AIGC
Parameter for Igcs and Igcd
NMOS: 0.054
PMOS: 0.31

BIGC
Parameter for Igcs and Igcd
NMOS: 0.054
PMOS: 0.024

CIGC
Parameter for Igcs and Igcd
NMOS: 0.075
PMOS: 0.03

V
AIGSD
Parameter for Igs and Igd
NMOS: 0.43
PMOS: 0.31

BIGSD
Parameter for Igs and Igd
NMOS: 0.054
PMOS: 0.024

CIGSD
Parameter for Igs and Igd
NMOS: 0.075
PMOS: 0.03

V
DLCIG
Source/Drain overlap length for Igs and Igd
LINT
-
NIGC
Parameter for Igcs, Igcd, Igs and Igd
1.0
-
POXEDGE
Factor for gate oxide thickness in source/drain overlap regions
1.0
-
PIGCD
Vgs dependence of Igcs and Igcd
1.0
-
NTOX
Exponent for the gate oxide ratio
1.0
-
TOXREF
Nominal gate oxide thickness for gate direct tunneling model
3E-9
m
VFBSDOFF
Flatband Voltage Offset Parameter
0
V
 
 
 
 
 
Diode Characteristics
 
 
IJTHSREV

IJTHDREV

(Source)
Limiting current in reverse bias region
(Drain)

IJTHSREV =0.1

IJTHDREV =IJTHSREV

A
IJTHSFWD

IJTHDFWD

(Source)
Limiting current in forward bias region
(Drain)

IJTHSFWD =0.1

IJTHDFWD =IJTHSFWD

A
XJBVS

XJBVD

(Source)
Fitting parameter for diode breakdown
(Drain)

XJBVS=1.0

XJBVD =XJBVS

-
BVS

BVD

(Source)
Breakdown voltage
(Drain)

BVS=10.0

BVD=BVS

V
JSS

JSD

(Source)
Bottom junction reverse saturation current density
(Drain)

JSS=1.0e-4

JSD=JSS

A/m²
JSWS
JSWD

Isolation-edge sidewall reverse saturation current density
JSWS =0.0
JSWD =JSWS

A/m
JSWGS
JSWGD

Gate-edge sidewall reverse saturation current density


JSWGS=0.0
JSWGD=JSWGS

A/m
CJS
CJD

Bottom junction capacitance per unit area at zero bias
CJS=5.0e-4
CJD=CJS

F/m²
MJS
MJD

Bottom junction capacitance grating coefficient
MJS=0.5
MJD=MJS

-
MJSWS
MJSWD

Isolation-edge sidewall junction capacitance grading coefficient
MJSWS =0.33
MJSWD =MJSWS

-
CJSWS
CJSWD

Isolation-edge sidewall junction capacitance per unit area
CJSWS= 5.0e-10
CJSWD=CJSWS

F/m
CJSWGS
CJSWGD

Gate-edge sidewall junction capacitance per unit length
CJSWGS =CJSWS
CJSWGD =CJSWS

-
MJSWGS
MJSWGD

Gate-edge sidewall junction capacitance grading coefficient
MJSWGS=MJSWS
MJSWGD=MJSWS

-
PBS
Source bottom junction built-in potential
PBS=1.0
V
PBD
Drain bottom junction built-in potential
PBD=PBS
V
PBSWS
Isolation-edge sidewall junction built-in potential of source junction
PBSWS =1.0
V
PBSWD
Isolation-edge sidewall junction built-in potential of drain junction
PBSWD=PBSWS
V
PBSWGS
Gate-edge sidewall junction built-in potential of source junction
PBSWGS =PBSWS
V
PBSWGD
Gate-edge sidewall junction built-in potential of drain junction
PBSWGD=PBSWS
V










Asymmetric Source/Drain Junction Diode Model




JTSS
JTSD
Bottom trap-assisted saturation current density
(Source side / Drain side)
0.0
=JTSS
A/m


JTSSWS
JTSSWD
STI sidewall trap-assisted saturation current density
(Source side / Drain side)
0.0
JTSSWS
A/m
JTSSWGS
JTSSWGD
Gate sidewall trap-assisted saturation current density
(Source side / Drain side)
0.0
JTSSWGS
A/m
NJTS
Non-ideality factor for JTSS, JTSD
20


NJTSSW
Non-ideality factor for JTSSWS, JTSSWD
20


NJTSSWG
Non-ideality factor for JTSSWGS, JTSSWGD
20


XTSS
XTSD
Power dependence of JTSS, JTSD on temperature
(Source side / Drain side)
0.02


XTSSWS
XTSSWD
Power dependence of JTSSWS, JTSSWD on temperature
(Source side / Drain side)
0.02


XTSSWGS
XTSSWGD
Power dependence of JTSSWGS, JTSSWGD on temperature
(Source side / Drain side)
0.02


VTSS
VTSD
Bottom trap-assisted voltage dependent parameter
(Source side / Drain side)
10
=VTSS
V
VTSSWS
VTSSWD
STI sidewall trap-assisted voltage dependent parameter
(Source side / Drain side)
10
VTSSWS
V
VTSSWGS
VTSSWGD
STI sidewall trap-assisted voltage dependent parameter
(Source side / Drain side)
10
VTSSWGS
V
TNJTS
Temperature coefficient for NJTS
0


TNJTSSW
Temperature coefficient for NJTSSW
0


TNJTSSWG
Temperature coefficient for NJTSSWG
0


 
 
 
 
 
Capacitance
 
 
XPART
Charge partitioning parameter
0.0
-
CGSO
Non LDD region gate-source overlap capacitance per unit W
calculated, see Overlap Capacitance Model
F/m
CGDO
Non LDD region gate-drain overlap capacitance per unit W
calculated, see Overlap Capacitance Model
F/m
CGBO
Gate-bulk overlap capacitance per unit L
0.0
F/m
CGSL
Light doped gate-source region overlap capacitance
0.0
F/m
CGDL
Light doped gate-drain region overlap capacitance
0.0
F/m
CKAPPAS
Coefficient of bias-dependent overlap capacitance on source side
0.6
V
CKAPPAD
Coefficient of bias-dependent overlap capacitance on drain side
CKAPPAS
V
CF
Fringing field capacitance

F/m
CLC
Constant term for the short channel model
0.1E-7
m
CLE
Exponential term for the short channel model
0.6
-
DLC
Length offset fitting parameter for CV model
LINT
m
DWC
Width offset fitting parameter for CV model
WINT
m
VFBCV
Flatband voltage parameter for CAPMOD = 0
-1.0
V
NOFF
CV parameter in Vgsteff,CV for weak to strong inversion
1.0
-
VOFFCV
CV parameter in Vgsteff,CV for weak to strong inversion
0.0
V
ACDE
Exponential coefficient for charge thickness in accumulation and depletion regions in CAPMOD=2
1.0
m/V
MOIN
Coefficient for the gate-bias dependent surface potential
15.0
-

Temperature Modeling Parameters

Table 51 Temperature Modeling Parameters 
Parameter
Description
Default Value
Unit
TNOM
Parameter extraction temperature
27
°C
UTE
Mobility temperature coefficient
-1.5
-
KT1
Threshold voltage temperature coefficient
-0.11
V
KT1L
Channel length dependence of KT1
0.0
Vm
KT2
Threshold voltage temperature coefficient
0.022
-
UA1
Temperature coefficient for UA
1E-9
m/V
UB1
Temperature coefficient for UB
-1E-18
(m/V)2
UC1
Temperature coefficient for UC
MOBMOD=1: 0.056
MOBMOD=0 and 2: 0.056E-9
1/V
m/V2
UD1
Temperature coefficient for UD
0
(1/m)²
PRT
Temperature coefficient for RDSW
0.0
m
AT
Saturation velocity temperature coefficient
3.3E4
m/s
NJS
Emission coefficient for Source junction
1.0
-
NJD
Emission coefficient for Drain junction
NJS
-
XTIS
Junction current temperature exponent coefficient of source body junction
3.0
-
XTID
Junction current temperature exponent coefficient of drain body junction
XTIS
-
TPB
Temperature coefficient for PB
0.0
V/K
TPBSW
Temperature coefficient for PBSW
0.0
V/K
TPBSWG
Temperature coefficient for PBSWG
0.0
V/K
TCJ
Temperature coefficient for CJ
0.0
1/K
TCJSW
Temperature coefficient for CJSW
0.0
1/K
TCJSWG
Temperature coefficient for CJSWG
0.0
1/K
TVOFF
Temperature coefficient of VOFF
0
1/K
TVFBSDOFF
Temperature coefficient of VFBSDOFF
0
1/K

Flicker Noise Model Parameters

Table 52 Flicker Noise Model Parameters
Parameter
Description
Default Value
Unit
NOIA
Flicker noise parameter A
NMOS: 6.25e41
PMOS: 6.188e40
(eV)-1 s1-EFm-3
NOIB
Flicker noise parameter B
NMOS: 3.125e26
PMOS: 1.5e25
(eV)-1 s1-EFm-1
NOIC
Flicker noise parameter C
8.75
(eV)-1 s1-EFm
EM
Saturation field
4.1e7
V/m
AF
Flicker noise exponent
1.0
-
EF
Flicker noise frequency exponent
1.0
-
KF
Flicker noise coefficient
0.0
A2-EF s1-EFF
LINTNOI
Length Reduction Parameter Offset
0
m
NTNOI
Noise factor for short-channel devices for TNOIMOD=0 only
1.0
-
TNOIA
Coefficient of channel-length dependence of total channel thermal noise
1.5
-
TNOIB
Channel-length dependence parameter for channel thermal noise partitioning
3.5
-


Holistic Thermal Noise
 
 
RNOIA
Thermal noise coefficient
0.577
 
RNOIB
Thermal noise coefficient
0.37
 

Stress Effect Modeling

Table 53 Stress Effect Model Parameters 
Parameter
Description
Default Value
Unit
SA
Instance parameter: Distance between OD edge to poly Si from one side, see Figure 60
If not given or , stress effect will be turned off!
0.0
m
SB
Instance parameter: Distance between OD edge to poly Si from the other side, see Figure 60
If not given or , stress effect will be turned off!
0.0
m
SD
Instance parameter: Distance between neighboring fingers, see Figure 60
For NF > 1: if not given or , stress effect will be turned off!
0.0
m
SAREF
Reference distance between OD edge to poly Si from one side
1E-6
m
SBREF
Reference distance between OD edge to poly Si from the other side
1E-6
m
WLOD
Width parameter for stress effect
0.0
m
KU0
stress effect mobility degradation/enhancement coefficient
0.0
1/m
KVSAT
Stress effect saturation velocity degradation/enhancement parameter
0.0
 
TKU0
KU0 temperature coefficient
0.0
 
LKU0
KU0 length dependence
0.0
 
WKU0
KU0 width dependence
0.0
 
PKU0
KU0 cross-term dependence
0.0
 
LLODKU0
Length parameter for U0 stress effect (>0)
0.0
 
WLODKU0
width parameter for U0 stress effect (>0)
0.0
 
KVTH0
stress effect threshold shift parameter
0.0
 
LKVTH0
KVTH0 length dependence
0.0
 
WKVTH0
KVTH0 width dependence
0.0
 
PKVTH0
KVTH0 cross-term dependence
0.0
 
LLODVTH
VTH stress effect length parameter (>0)
0.0
 
WLODVTH
VTH stress effect width parameter (>0)
0.0
 
STK2
Shift factor for K2 with changing VTH0
0.0
 
LODK2
K2 shift modification factor for stress effect (>0)
1.0
 
STETA0
Shift factor for ETA0, related to change of VTH0
0.0
 
LODETA0
ETA0 shift modification factor for stress effect (>0)
1.0
 

Well-Proximity Modeling

Table 54 Well-Proximity Effect Model Parameters
Parameter
Description
Default Value
Unit
SCA
Integral of the first distribution function for scattered well dopant
0
 
SCB
Integral of the second distribution function for scattered well dopant
0
 
SCC
Integral of the third distribution function for scattered well dopant
0
 
SC
Distance to a single well edge
0
m
WEB
Coefficient for SCB
0
 
WEC
Coefficient for SCC
0
 
KVTH0WE
Threshold shift factor for well proximity effect
0
 
K2WE
K2 shift factor for well proximity effect
0
 
KU0WE
Mobility degradation factor for well proximity effect
0
 
SCREF
Reference distance to calculate SCA, SCB, and SCC
1E-6
m

High-Speed / RF Model Parameters

Table 55 High-Speed/RF Model Parameters 
Parameter
Description
Default Value
Unit
XRCRG1
Parameter for distributed channel resistance effect for both intrinsic input resistance and charge-deficit NQS models
12.0
-
XRCRG2
Parameter to account for the excess channel diffusion resistance for both intrinsic input resistance and charge-deficit NQS models
1.0
-
RBPB
Resistance connected between bNodePrime and bNode
50.0
Ohm
RBPD
Resistance connected between bNodePrime and dbNode
50.0
Ohm
RBPS
Resistance connected between bNodePrime and sbNode
50.0
Ohm
RBDB
Resistance connected between dbNode and bNode
50.0
Ohm
RBSB
Resistance connected between sbNode and bNode
50.0
Ohm
GBMIN
Conductance in parallel with each of the five substrate resistances to avoid potential numerical instability due to unreasonably too large a substrate resistance
1.0e-12
mho
RBPS0
Scaling prefactor for RBPS
50.0
Ohm
RBPSL
Length scaling parameter for RBPS
0.0
Ohm
RBPSW
Width scaling parameter for RBPS
0.0
Ohm
RBPSNF
Number of fingers scaling parameter for RBPS
0.0
Ohm
RBPD0
Scaling prefactor for RBPD
50.0
Ohm
RBPDL
Length scaling parameter for RBPD
0.0


RBPDW
Width scaling parameter for RBPD
0.0


RBPDNF
Number of fingers scaling parameter for RBPD
0.0


RBPBX0
Scaling prefactor for RBPBX
100.0
Ohm
RBPBXL
Length scaling parameter for RBPBX
0


RBPBXW
Width scaling parameter for RBPBX
0


RBPBXNF
Number of fingers scaling parameter for RBPBX
0


RBPBY0
Scaling prefactor for RBPBY
100.0
0hm
RBPBYL
Length scaling parameter for RBPBY
0


RBPBYW
Width scaling parameter for RBPBY
0


RBPBYNF
Number of fingers scaling parameter for RBPBY
0


RBSBX0
Scaling prefactor for RBSBX
100.0
0hm
RBSBY0
Scaling prefactor for RBSBY
100.0
0hm
RBDBX0
Scaling prefactor for RBDBX
100.0
0hm
RBDBY0
Scaling prefactor for RBDBY
100.0
0hm
RBSDBXL
Length scaling parameter for RBSBX and RBDBX
0


RBSDBXW
Width scaling parameter for RBSBX and RBDBX
0


RBSDBXNF
Number of fingers scaling parameter for RBSBX and RBDBX
0


RBSDBYL
Length scaling parameter for RBSBY and RBDBY
0


RBSDBYW
Width scaling parameter for RBSBY and RBDBY
0


RBSDBYNF
Number of fingers scaling parameter for RBSBY and RBDBY
0


Layout-Dependent Parasitics Model Parameters

Table 56 Layout-Dependent Parasitics Model Parameters
Parameter
Description
Default Value
Unit
DMCG
Distance from S/D contact center to the gate edge
0.0
m
DMCI
Distance from S/D contact center to the isolation edge in the channel length direction
DMCG
-
DMDG
Same as DMCG but for merged device only
0.0
m
DMCGT
DMCG of test structures
0.0
m
NF
Number of device fingers
1.0
-
DWJ
Offset of the S/D junction width (in CV model)
DWC
-
MIN
Whether to minimize the number of drain or source diffusions for even number fingered devices
0.0
-
XGW
Distance from the gate contact to the channel edge
0.0
m
XGL
Offset of the gate length due to variations in patterning
0.0
m
XL
Channel length offset due to mask/etch effect
0.0
m
XW
Channel width offset due to mask/etch effect
0.0
m
NGCON
Number of gate contacts
1.0
-

Model Selection Flags

Table 57 Model Selection Flags 
Parameter
Values
Type of Model
LEVEL
14
BSIM4 model selector (in UCB SPICE3)
VERSION
4.5.0
Model version number
BINUNIT
0,1
Binning unit selector
PARAMCHK
0, 1
Switch for Parameter value check (Parameters checked)
MOBMOD
0, 1, 2
Mobility model (same as in BSIM3v3.2)
RDSMOD
0, 1
Bias-dependent source/drain resistance model selector (internal Rds(V))
IGCMOD
0, 1
Gate-to-channel tunneling current model selector (Igc, Igs, Igd are off)
IGBMOD
0, 1
Gate-to-substrate tunneling current model selector (Igb is off)
CAPMOD
0, 1, 2
Capacitance model selector (single-equation and charge-thickness model)
RGATEMOD
0, 1, 2, 3
Gate resistance model selector (no gate resistance)
RBODYMOD
0, 1
Substrate resistance network model selector (network off)
TRNQSMOD
0, 1
Charge-deficit transient non quasi static model selector (charge-deficit model off)
ACNQSMOD
0, 1
Charge-deficit AC small signal non quasi static model selector (charge-deficit model off)
FNOIMOD
0, 1
Flicker noise model selector (unified physical flicker noise model is used)
TEMPMOD
0, 1
Temperature mode selector
TEMPMOD=0: original temperature model
TEMPMOD=1: BSIM4.3.0 temperature model
TEMPMOD=2: BSIM4.5.0 enhanced temperature model
TNOIMOD
0, 1
Thermal noise model selector (charge-based thermal noise model)
DIOMOD
0, 1, 2
Asymmetric source/drain junction diode IV model selector (Junction diodes are modeled breakdown-free)
PERMOD
0, 1
PS / PD parameters include gate-edge perimeter (including the gate-edge perimeter)
GEOMOD
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Geometry-dependent parasitics model selector - specify how the end S/D-diffusions are connected (isolated)
RGEOMOD
0, 1, 2, 3, 4, 5, 6, 7, 8
S/D diffusion resistance and contact model selector: specifying the end S/D contact type (point, wide or merged) and how S/D parasitic resistance is computed (no S/D diffusion resistance)
WPEMOD
0, 1
Well Proximity Effect Model (no well proximity)


Note


Underlined values in bold italics are defaults, underlined comments in italics (in brackets) are valid for default model selector values.



prevnext