VPR-6.0
|
00001 #include <stdio.h> 00002 #include "util.h" 00003 #include "vpr_types.h" 00004 #include "globals.h" 00005 #include "mst.h" 00006 #include "route_export.h" 00007 #include "route_common.h" 00008 #include "route_breadth_first.h" 00009 00010 00011 /********************* Subroutines local to this module *********************/ 00012 00013 static boolean breadth_first_route_net(int inet, 00014 float bend_cost); 00015 00016 static void breadth_first_expand_trace_segment(struct s_trace *start_ptr, 00017 int 00018 remaining_connections_to_sink); 00019 00020 static void breadth_first_expand_neighbours(int inode, 00021 float pcost, 00022 int inet, 00023 float bend_cost); 00024 00025 static void breadth_first_add_source_to_heap(int inet); 00026 00027 00028 /************************ Subroutine definitions ****************************/ 00029 00030 /** Iterated maze router ala Pathfinder Negotiated Congestion algorithm, 00031 * (FPGA 95 p. 111). Returns TRUE if it can route this FPGA, FALSE if 00032 * it can't. 00033 */ 00034 boolean 00035 try_breadth_first_route(struct s_router_opts router_opts, 00036 t_ivec ** clb_opins_used_locally, 00037 int width_fac) 00038 { 00039 00040 float pres_fac; 00041 boolean success, is_routable, rip_up_local_opins; 00042 int itry, inet; 00043 00044 /* Usually the first iteration uses a very small (or 0) pres_fac to find * 00045 * the shortest path and get a congestion map. For fast compiles, I set * 00046 * pres_fac high even for the first iteration. */ 00047 00048 pres_fac = router_opts.first_iter_pres_fac; 00049 00050 for(itry = 1; itry <= router_opts.max_router_iterations; itry++) 00051 { 00052 00053 for(inet = 0; inet < num_nets; inet++) 00054 { 00055 if(clb_net[inet].is_global == FALSE) 00056 { /* Skip global nets. */ 00057 00058 pathfinder_update_one_cost(trace_head[inet], -1, 00059 pres_fac); 00060 00061 is_routable = 00062 breadth_first_route_net(inet, 00063 router_opts. 00064 bend_cost); 00065 00066 /* Impossible to route? (disconnected rr_graph) */ 00067 00068 if(!is_routable) 00069 { 00070 printf("Routing failed.\n"); 00071 return (FALSE); 00072 } 00073 00074 pathfinder_update_one_cost(trace_head[inet], 1, 00075 pres_fac); 00076 00077 } 00078 } 00079 00080 00081 /* Make sure any CLB OPINs used up by subblocks being hooked directly * 00082 * to them are reserved for that purpose. */ 00083 00084 if(itry == 1) 00085 rip_up_local_opins = FALSE; 00086 else 00087 rip_up_local_opins = TRUE; 00088 00089 reserve_locally_used_opins(pres_fac, rip_up_local_opins, 00090 clb_opins_used_locally); 00091 00092 success = feasible_routing(); 00093 if(success) 00094 { 00095 printf 00096 ("Successfully routed after %d routing iterations.\n", 00097 itry); 00098 return (TRUE); 00099 } 00100 00101 if(itry == 1) 00102 pres_fac = router_opts.initial_pres_fac; 00103 else 00104 pres_fac *= router_opts.pres_fac_mult; 00105 00106 pres_fac = min (pres_fac, HUGE_FLOAT / 1e5); 00107 00108 pathfinder_update_cost(pres_fac, router_opts.acc_fac); 00109 } 00110 00111 printf("Routing failed.\n"); 00112 return (FALSE); 00113 } 00114 00115 /** Uses a maze routing (Dijkstra's) algorithm to route a net. The net 00116 * begins at the net output, and expands outward until it hits a target 00117 * pin. The algorithm is then restarted with the entire first wire segment 00118 * included as part of the source this time. For an n-pin net, the maze 00119 * router is invoked n-1 times to complete all the connections. Inet is 00120 * the index of the net to be routed. Bends are penalized by bend_cost 00121 * (which is typically zero for detailed routing and nonzero only for global 00122 * routing), since global routes with lots of bends are tougher to detailed 00123 * route (using a detailed router like SEGA). 00124 * If this routine finds that a net *cannot* be connected (due to a complete 00125 * lack of potential paths, rather than congestion), it returns FALSE, as 00126 * routing is impossible on this architecture. Otherwise it returns TRUE. 00127 */ 00128 static boolean 00129 breadth_first_route_net(int inet, 00130 float bend_cost) 00131 { 00132 00133 int i, inode, prev_node, remaining_connections_to_sink; 00134 float pcost, new_pcost; 00135 struct s_heap *current; 00136 struct s_trace *tptr; 00137 00138 free_traceback(inet); 00139 breadth_first_add_source_to_heap(inet); 00140 mark_ends(inet); 00141 00142 tptr = NULL; 00143 remaining_connections_to_sink = 0; 00144 00145 for(i = 1; i <= clb_net[inet].num_sinks; i++) 00146 { /* Need n-1 wires to connect n pins */ 00147 breadth_first_expand_trace_segment(tptr, 00148 remaining_connections_to_sink); 00149 current = get_heap_head(); 00150 00151 if(current == NULL) 00152 { /* Infeasible routing. No possible path for net. */ 00153 reset_path_costs(); /* Clean up before leaving. */ 00154 return (FALSE); 00155 } 00156 00157 inode = current->index; 00158 00159 while(rr_node_route_inf[inode].target_flag == 0) 00160 { 00161 pcost = rr_node_route_inf[inode].path_cost; 00162 new_pcost = current->cost; 00163 if(pcost > new_pcost) 00164 { /* New path is lowest cost. */ 00165 rr_node_route_inf[inode].path_cost = new_pcost; 00166 prev_node = current->u.prev_node; 00167 rr_node_route_inf[inode].prev_node = prev_node; 00168 rr_node_route_inf[inode].prev_edge = 00169 current->prev_edge; 00170 00171 if(pcost > 0.99 * HUGE_FLOAT) /* First time touched. */ 00172 add_to_mod_list(&rr_node_route_inf[inode]. 00173 path_cost); 00174 00175 breadth_first_expand_neighbours(inode, new_pcost, 00176 inet, bend_cost); 00177 } 00178 00179 free_heap_data(current); 00180 current = get_heap_head(); 00181 00182 if(current == NULL) 00183 { /* Impossible routing. No path for net. */ 00184 reset_path_costs(); 00185 return (FALSE); 00186 } 00187 00188 inode = current->index; 00189 } 00190 00191 rr_node_route_inf[inode].target_flag--; /* Connected to this SINK. */ 00192 remaining_connections_to_sink = 00193 rr_node_route_inf[inode].target_flag; 00194 tptr = update_traceback(current, inet); 00195 free_heap_data(current); 00196 } 00197 00198 empty_heap(); 00199 reset_path_costs(); 00200 return (TRUE); 00201 } 00202 00203 /** Adds all the rr_nodes in the traceback segment starting at tptr (and 00204 * continuing to the end of the traceback) to the heap with a cost of zero. 00205 * This allows expansion to begin from the existing wiring. The 00206 * remaining_connections_to_sink value is 0 if the route segment ending 00207 * at this location is the last one to connect to the SINK ending the route 00208 * segment. This is the usual case. If it is not the last connection this 00209 * net must make to this SINK, I have a hack to ensure the next connection 00210 * to this SINK goes through a different IPIN. Without this hack, the 00211 * router would always put all the connections from this net to this SINK 00212 * through the same IPIN. With LUTs or cluster-based logic blocks, you 00213 * should never have a net connecting to two logically-equivalent pins on 00214 * the same logic block, so the hack will never execute. If your logic 00215 * block is an and-gate, however, nets might connect to two and-inputs on 00216 * the same logic block, and since the and-inputs are logically-equivalent, 00217 * this means two connections to the same SINK. 00218 */ 00219 static void 00220 breadth_first_expand_trace_segment(struct s_trace *start_ptr, 00221 int remaining_connections_to_sink) 00222 { 00223 00224 struct s_trace *tptr, *next_ptr; 00225 int inode, sink_node, last_ipin_node; 00226 00227 tptr = start_ptr; 00228 00229 if(remaining_connections_to_sink == 0) 00230 { /* Usual case. */ 00231 while(tptr != NULL) 00232 { 00233 node_to_heap(tptr->index, 0., NO_PREVIOUS, NO_PREVIOUS, 00234 OPEN, OPEN); 00235 tptr = tptr->next; 00236 } 00237 } 00238 00239 else 00240 { /* This case never executes for most logic blocks. */ 00241 00242 /* Weird case. Lots of hacks. The cleanest way to do this would be to empty * 00243 * the heap, update the congestion due to the partially-completed route, put * 00244 * the whole route so far (excluding IPINs and SINKs) on the heap with cost * 00245 * 0., and expand till you hit the next SINK. That would be slow, so I * 00246 * do some hacks to enable incremental wavefront expansion instead. */ 00247 00248 if(tptr == NULL) 00249 return; /* No route yet */ 00250 00251 next_ptr = tptr->next; 00252 last_ipin_node = OPEN; /* Stops compiler from complaining. */ 00253 00254 /* Can't put last SINK on heap with NO_PREVIOUS, etc, since that won't let * 00255 * us reach it again. Instead, leave the last traceback element (SINK) off * 00256 * the heap. */ 00257 00258 while(next_ptr != NULL) 00259 { 00260 inode = tptr->index; 00261 node_to_heap(inode, 0., NO_PREVIOUS, NO_PREVIOUS, OPEN, 00262 OPEN); 00263 00264 if(rr_node[inode].type == IPIN) 00265 last_ipin_node = inode; 00266 00267 tptr = next_ptr; 00268 next_ptr = tptr->next; 00269 } 00270 00271 /* This will stop the IPIN node used to get to this SINK from being * 00272 * reexpanded for the remainder of this net's routing. This will make us * 00273 * hook up more IPINs to this SINK (which is what we want). If IPIN * 00274 * doglegs are allowed in the graph, we won't be able to use this IPIN to * 00275 * do a dogleg, since it won't be re-expanded. Shouldn't be a big problem. */ 00276 00277 rr_node_route_inf[last_ipin_node].path_cost = -HUGE_FLOAT; 00278 00279 /* Also need to mark the SINK as having high cost, so another connection can * 00280 * be made to it. */ 00281 00282 sink_node = tptr->index; 00283 rr_node_route_inf[sink_node].path_cost = HUGE_FLOAT; 00284 00285 /* Finally, I need to remove any pending connections to this SINK via the * 00286 * IPIN I just used (since they would result in congestion). Scan through * 00287 * the heap to do this. */ 00288 00289 invalidate_heap_entries(sink_node, last_ipin_node); 00290 } 00291 } 00292 00293 /** Puts all the rr_nodes adjacent to inode on the heap. rr_nodes outside 00294 * the expanded bounding box specified in route_bb are not added to the 00295 * heap. pcost is the path_cost to get to inode. 00296 */ 00297 static void 00298 breadth_first_expand_neighbours(int inode, 00299 float pcost, 00300 int inet, 00301 float bend_cost) 00302 { 00303 00304 int iconn, to_node, num_edges; 00305 t_rr_type from_type, to_type; 00306 float tot_cost; 00307 00308 num_edges = rr_node[inode].num_edges; 00309 for(iconn = 0; iconn < num_edges; iconn++) 00310 { 00311 to_node = rr_node[inode].edges[iconn]; 00312 00313 if(rr_node[to_node].xhigh < route_bb[inet].xmin || 00314 rr_node[to_node].xlow > route_bb[inet].xmax || 00315 rr_node[to_node].yhigh < route_bb[inet].ymin || 00316 rr_node[to_node].ylow > route_bb[inet].ymax) 00317 continue; /* Node is outside (expanded) bounding box. */ 00318 00319 tot_cost = pcost + get_rr_cong_cost(to_node); 00320 00321 if(bend_cost != 0.) 00322 { 00323 from_type = rr_node[inode].type; 00324 to_type = rr_node[to_node].type; 00325 if((from_type == CHANX && to_type == CHANY) || 00326 (from_type == CHANY && to_type == CHANX)) 00327 tot_cost += bend_cost; 00328 } 00329 00330 node_to_heap(to_node, tot_cost, inode, iconn, OPEN, OPEN); 00331 } 00332 } 00333 00334 00335 /** Adds the SOURCE of this net to the heap. Used to start a net's routing. */ 00336 static void 00337 breadth_first_add_source_to_heap(int inet) 00338 { 00339 int inode; 00340 float cost; 00341 00342 inode = net_rr_terminals[inet][0]; /* SOURCE */ 00343 cost = get_rr_cong_cost(inode); 00344 00345 node_to_heap(inode, cost, NO_PREVIOUS, NO_PREVIOUS, OPEN, OPEN); 00346 }