Manuals >Nonlinear Device Models Volume 1 >Bipolar Transistor Characterization
Print version of this Book (PDF file)
prevnext

Model Parameters

Model parameter extractions are based on the concept that, under steady-state conditions, specific sets of parameters uniquely simulate device performance. This allows extractions to be performed over isolated regions of the device's electrical response.

Forward and reverse DC bias extractions and junction capacitance characteristics are virtually independent of each other. Series resistance and small-signal high-frequency extractions depend on DC and capacitance parameters.

Model parameter extractions produce parameters that are referenced to a temperature of 27°C. To perform extractions at other temperatures, change the system variable TEMP to the correct value.

The following table provides definitions and SPICE default values of the bipolar model parameters, which fall into four primary categories: DC, capacitance, AC, and temperature effects. DC parameters are divided into three categories: DC forward, DC reverse, and series resistance. The parameter values are displayed in the Model Parameters folder.

Table 82 lists setup attributes.

Table 81 UCB Bipolar Transistor Parameters
Name
Description
Default
DC Large Signal Forward Bias
BF
Ideal Maximum Forward Beta.    Basic parameter for Ebers-Moll and Gummel-Poon models.
100
IKF
Knee Current for Forward Beta High Current Roll-off.    Models variation in forward Beta at high collector currents. Use if device is to be used with high collector currents.
Amp
IS
Transport Saturation Current.    Basic parameter for Ebers-Moll and Gummel-Poon models.
1×10-16 Amp
ISE
Base Emitter Leakage Saturation Current.    Models variation in forward Beta at low base currents. Use if device is to be used with low base emitter voltage.
0 Amp
NE
Base Emitter Leakage Emission Coefficient.    Models variation in forward Beta at low base currents. Use if device is to be used with low base emitter voltage.
1.5
NF
Forward Current Emission Coefficient.    Used to model deviation of emitter base diode from ideal (usually approximately 1).
1.0
VAF
Forward Early Voltage.    Models base collector bias effects. Used to model base collector bias on forward Beta and IS.
volt
DC Large Signal Reverse Bias
BR
Ideal Maximum Reverse Beta.    The basic parameter for both Ebers-Moll and Gummel-Poon models. Use when the transistor is saturated or operating in reverse mode.
1.0
IKR
Knee Current for Reverse Beta High Current Roll-off.    Specifies variation in reverse Beta at high emitter currents. Needed only if transistor is operated in reverse mode.
Amp
ISC
Base Collector Leakage Saturation Current.    Specifies variation in reverse Beta at low base currents. Models base current at low base collector voltage. Use only if transistor is operated in reverse mode.
0 Amp
NC
Base Collector Leakage Emission Coefficient.    Specifies variation in reverse Beta at low currents. Models base current at low base collector voltage. Use only if transistor is operated in reverse mode.
2.0
NR
Reverse Current Emission Coefficient.    Used to model deviation of base collector diode from the ideal (usually about 1).
1.0
VAR
Reverse Early Voltage.    Models emitter base bias effects. Use to model emitter base bias on reverse Beta and IS.
Volt
Series Resistance
IRB
Base Resistance Roll-off Current.    Models the base current at which the base resistance is halfway between minimum and maximum.
Amp
RB
Zero Bias Base Resistance.    Maximum value of parasitic resistance in base.
0 Ohm
RBM
Minimum Base Resistance.    The minimum value of base resistance at high current levels. Models the way base resistance varies as base current varies.
RB Ohm
RC
Collector Resistance.    Parasitic resistance in the collector. Important in high current and high frequency applications.
0 Ohm
RE
Emitter Resistance.    Parasitic resistance in the emitter. Important in small signal applications.
0 Ohm
Capacitance
CJC
Base Collector Zero Bias Capacitance.    Helps model switching time and high frequency effects.
0 Farad
CJE
Base Emitter Zero Bias Capacitance.    Helps model switching time and high frequency effects.
0 Farad
CJS
Zero Bias Substrate Capacitance.    Helps model switching time and high frequency effects.
0 Farad
MJC
Base Collector Junction Grading Coefficient.    Models the way junction capacitance varies with bias.
0.33
MJE
Base Emitter Junction Grading Coefficient.    Models the way junction capacitance varies with bias.
0.33
MJS
Substrate Junction Grading Coefficient.    Models the way junction capacitance varies with bias.
0.33
VJC
Base Collector Built-in Potential.    Models the way junction capacitance varies with bias.
0.75 Volt
VJE
Base Emitter Built-in Potential.    Models the way junction capacitance varies with bias.
0.75 Volt
VJS
Substrate Junction Built-in Potential.    Models the way junction capacitance varies with bias.
0.75 Volt
XCJC
Fraction of Base Collector.    Capacitance that connects to the internal base node. Important in high frequency applications.
1.0
FC
Coefficient for Forward Bias Capacitance Formula.    Provides continuity between capacitance equations for forward and reverse bias.
0.5
AC Small-Signal
ITF
High Current Parameter for Effect on TF.    Models decline of TF with high collector current.
Amp
PTF
Excess Phase at FT.    Models excess phase at FT.
0 Degree
TF
Ideal Forward Transit Time.    Models finite bandwidth of device in forward mode.
0 Sec
TR
Ideal Reverse Transit Time.    Models finite bandwidth of device in reverse mode.
0 Sec
VTF
Voltage Describing TF Dependence on Base-Collector Voltage.    Models base-collector voltage bias effects on TF.
Volt
XTF
Coefficient for Bias Dependence on TF.    Models minimum value of TF at low collector-emitter voltage and high collector current.
0
Temperature Effects
EG
Energy Gap for Modeling Temperature.    Effect on IS, ISE, and ISC. Used to calculate the temperature variation of saturation currents in the collector, and base-emitter and collector base diodes.
1.11EV
XTB
Forward and Reverse Beta Temperature Exponent.    Models the way Beta varies with temperature.
0
XTI
Temperature Exponent for Modeling.    Temperature Variation of IS. Models the way saturation current varies with temperature.
3.0
TNOM
This global variable can be assigned temperature values in degrees C, for use by extractions and simulations.
27°C

Table 82 UCB Bipolar Model Setup Attributes 
DUT/
Setup

Inputs
Outputs
Transform
Function
Extractions
dc/
fearly
vb, vc, ve, vs
ic
none
none
VAF (from rearly setup)
dc/
rearly
vb, vc, ve, vs
ie
evextract
BJTDC_vaf_var
VAF, VAR
dc/
fgummel
vb, vc, ve, vs
ib, ic
beta
equation: ic/ib
none
isextract
BJTDC_is_nf
IS, NF
fgextract
BJTDC_fwd_gummel
BF, IKF, ISE, NE
optim1
Optimize
IS, NF
optim2
Optimize
BF, IKF, ISE, NE
dc/
rgummel
vb, vc, ve, vs
ib, ie
beta
equation: ie/ib
none
nrextract
BJTDC_nr
NR
rgextract
BJTDC_rev_gummel
BR, IKR, ISC, NC
optimize
Optimize
BR, IKR, ISC, NC
cbe/
cj
vbe
cbe
extract
Optimize
CJE, VJE, MJE
cjfunc
PNCAPsimu
none: simulates c vs v
set_CJ
Program
initial zero bias CJE
cbc/
cj
vbc
cbc
extract
Optimize
CJC, VJC, MJC
cjfunc
PNCAPsimu
none: simulates c vs v
set_CJ
Program
initial zero bias CJC
ccs/
cj
vcs
ccs
extract
Optimize
CJS, VJS, MJS
cjfunc
PNCAPsimu
none: simulates c vs v
set_CJ
Program
initial zero bias CJS
prdc/
reflyback
ib, ic, ve, is
vc
extract
BJTDC_re
RE
prdc/
rcsat
vb, vc, ve, vs
ic
extract
BJTDC_rc
RC (saturation)
prdc/
rcactive
vb, vc, ve, vs
ib,ic
RC_active
Program
RC (active)
prdc/
rbbib
vb, vc, ve, vs
ib
rbb
RBBcalc
none: calc rb vs ib
ac/
rbbac
vb, vc, ve, vs, freq
h
extract
BJTAC_rb_rbm_irb
RB, RBM, IRB
h11corr
H11corr
corrects H11 for Zout
htos
TwoPort
none: h-par to s-par
ac/
h21vsvbe
vb, vc, ve, vs, freq
h
acextract
BJTAC_high_freq
TF, ITF, XTF, VTF, PTF
scale_params
Program
none: scales AC parameters
ac/
h21vsvbc
vb, vc, ve, vs, freq
h
extract_TR
Optimize
TR


prevnext