src/cuBdd/cuddRead.c File Reference

#include "util.h"
#include "cuddInt.h"
Include dependency graph for cuddRead.c:

Go to the source code of this file.

Functions

int Cudd_addRead (FILE *fp, DdManager *dd, DdNode **E, DdNode ***x, DdNode ***y, DdNode ***xn, DdNode ***yn_, int *nx, int *ny, int *m, int *n, int bx, int sx, int by, int sy)
int Cudd_bddRead (FILE *fp, DdManager *dd, DdNode **E, DdNode ***x, DdNode ***y, int *nx, int *ny, int *m, int *n, int bx, int sx, int by, int sy)

Variables

static char rcsid[] DD_UNUSED = "$Id: cuddRead.c,v 1.6 2004/08/13 18:04:50 fabio Exp $"

Function Documentation

int Cudd_addRead ( FILE *  fp,
DdManager dd,
DdNode **  E,
DdNode ***  x,
DdNode ***  y,
DdNode ***  xn,
DdNode ***  yn_,
int *  nx,
int *  ny,
int *  m,
int *  n,
int  bx,
int  sx,
int  by,
int  sy 
)

AutomaticStart AutomaticEnd Function********************************************************************

Synopsis [Reads in a sparse matrix.]

Description [Reads in a sparse matrix specified in a simple format. The first line of the input contains the numbers of rows and columns. The remaining lines contain the elements of the matrix, one per line. Given a background value (specified by the background field of the manager), only the values different from it are explicitly listed. Each foreground element is described by two integers, i.e., the row and column number, and a real number, i.e., the value.

Cudd_addRead produces an ADD that depends on two sets of variables: x and y. The x variables (x\[0\] ... x\[nx-1\]) encode the row index and the y variables (y\[0\] ... y\[ny-1\]) encode the column index. x\[0\] and y\[0\] are the most significant bits in the indices. The variables may already exist or may be created by the function. The index of x\[i\] is bx+i*sx, and the index of y\[i\] is by+i*sy.

On input, nx and ny hold the numbers of row and column variables already in existence. On output, they hold the numbers of row and column variables actually used by the matrix. When Cudd_addRead creates the variable arrays, the index of x\[i\] is bx+i*sx, and the index of y\[i\] is by+i*sy. When some variables already exist Cudd_addRead expects the indices of the existing x variables to be bx+i*sx, and the indices of the existing y variables to be by+i*sy.

m and n are set to the numbers of rows and columns of the matrix. Their values on input are immaterial. The ADD for the sparse matrix is returned in E, and its reference count is > 0. Cudd_addRead returns 1 in case of success; 0 otherwise.]

SideEffects [nx and ny are set to the numbers of row and column variables. m and n are set to the numbers of rows and columns. x and y are possibly extended to represent the array of row and column variables. Similarly for xn and yn_, which hold on return from Cudd_addRead the complements of the row and column variables.]

SeeAlso [Cudd_addHarwell Cudd_bddRead]

Definition at line 142 of file cuddRead.c.

00158 {
00159     DdNode *one, *zero;
00160     DdNode *w, *neW;
00161     DdNode *minterm1;
00162     int u, v, err, i, nv;
00163     int lnx, lny;
00164     CUDD_VALUE_TYPE val;
00165     DdNode **lx, **ly, **lxn, **lyn;
00166 
00167     one = DD_ONE(dd);
00168     zero = DD_ZERO(dd);
00169 
00170     err = fscanf(fp, "%d %d", &u, &v);
00171     if (err == EOF) {
00172         return(0);
00173     } else if (err != 2) {
00174         return(0);
00175     }
00176 
00177     *m = u;
00178     /* Compute the number of x variables. */
00179     lx = *x; lxn = *xn;
00180     u--;        /* row and column numbers start from 0 */
00181     for (lnx=0; u > 0; lnx++) {
00182         u >>= 1;
00183     }
00184     /* Here we rely on the fact that REALLOC of a null pointer is
00185     ** translates to an ALLOC.
00186     */
00187     if (lnx > *nx) {
00188         *x = lx = REALLOC(DdNode *, *x, lnx);
00189         if (lx == NULL) {
00190             dd->errorCode = CUDD_MEMORY_OUT;
00191             return(0);
00192         }
00193         *xn = lxn =  REALLOC(DdNode *, *xn, lnx);
00194         if (lxn == NULL) {
00195             dd->errorCode = CUDD_MEMORY_OUT;
00196             return(0);
00197         }
00198     }
00199 
00200     *n = v;
00201     /* Compute the number of y variables. */
00202     ly = *y; lyn = *yn_;
00203     v--;        /* row and column numbers start from 0 */
00204     for (lny=0; v > 0; lny++) {
00205         v >>= 1;
00206     }
00207     /* Here we rely on the fact that REALLOC of a null pointer is
00208     ** translates to an ALLOC.
00209     */
00210     if (lny > *ny) {
00211         *y = ly = REALLOC(DdNode *, *y, lny);
00212         if (ly == NULL) {
00213             dd->errorCode = CUDD_MEMORY_OUT;
00214             return(0);
00215         }
00216         *yn_ = lyn =  REALLOC(DdNode *, *yn_, lny);
00217         if (lyn == NULL) {
00218             dd->errorCode = CUDD_MEMORY_OUT;
00219             return(0);
00220         }
00221     }
00222 
00223     /* Create all new variables. */
00224     for (i = *nx, nv = bx + (*nx) * sx; i < lnx; i++, nv += sx) {
00225         do {
00226             dd->reordered = 0;
00227             lx[i] = cuddUniqueInter(dd, nv, one, zero);
00228         } while (dd->reordered == 1);
00229         if (lx[i] == NULL) return(0);
00230         cuddRef(lx[i]);
00231         do {
00232             dd->reordered = 0;
00233             lxn[i] = cuddUniqueInter(dd, nv, zero, one);
00234         } while (dd->reordered == 1);
00235         if (lxn[i] == NULL) return(0);
00236         cuddRef(lxn[i]);
00237     }
00238     for (i = *ny, nv = by + (*ny) * sy; i < lny; i++, nv += sy) {
00239         do {
00240             dd->reordered = 0;
00241             ly[i] = cuddUniqueInter(dd, nv, one, zero);
00242         } while (dd->reordered == 1);
00243         if (ly[i] == NULL) return(0);
00244         cuddRef(ly[i]);
00245         do {
00246             dd->reordered = 0;
00247             lyn[i] = cuddUniqueInter(dd, nv, zero, one);
00248         } while (dd->reordered == 1);
00249         if (lyn[i] == NULL) return(0);
00250         cuddRef(lyn[i]);
00251     }
00252     *nx = lnx;
00253     *ny = lny;
00254 
00255     *E = dd->background; /* this call will never cause reordering */
00256     cuddRef(*E);
00257 
00258     while (! feof(fp)) {
00259         err = fscanf(fp, "%d %d %lf", &u, &v, &val);
00260         if (err == EOF) {
00261             break;
00262         } else if (err != 3) {
00263             return(0);
00264         } else if (u >= *m || v >= *n || u < 0 || v < 0) {
00265             return(0);
00266         }
00267  
00268         minterm1 = one; cuddRef(minterm1);
00269 
00270         /* Build minterm1 corresponding to this arc */
00271         for (i = lnx - 1; i>=0; i--) {
00272             if (u & 1) {
00273                 w = Cudd_addApply(dd, Cudd_addTimes, minterm1, lx[i]);
00274             } else {
00275                 w = Cudd_addApply(dd, Cudd_addTimes, minterm1, lxn[i]);
00276             }
00277             if (w == NULL) {
00278                 Cudd_RecursiveDeref(dd, minterm1);
00279                 return(0);
00280             }
00281             cuddRef(w);
00282             Cudd_RecursiveDeref(dd, minterm1);
00283             minterm1 = w;
00284             u >>= 1;
00285         }
00286         for (i = lny - 1; i>=0; i--) {
00287             if (v & 1) {
00288                 w = Cudd_addApply(dd, Cudd_addTimes, minterm1, ly[i]);
00289             } else {
00290                 w = Cudd_addApply(dd, Cudd_addTimes, minterm1, lyn[i]);
00291             }
00292             if (w == NULL) {
00293                 Cudd_RecursiveDeref(dd, minterm1);
00294                 return(0);
00295             }
00296             cuddRef(w);
00297             Cudd_RecursiveDeref(dd, minterm1);
00298             minterm1 = w;
00299             v >>= 1;
00300         }
00301         /* Create new constant node if necessary.
00302         ** This call will never cause reordering.
00303         */
00304         neW = cuddUniqueConst(dd, val);
00305         if (neW == NULL) {
00306             Cudd_RecursiveDeref(dd, minterm1);
00307             return(0);
00308         }
00309         cuddRef(neW);
00310 
00311         w = Cudd_addIte(dd, minterm1, neW, *E);
00312         if (w == NULL) {
00313             Cudd_RecursiveDeref(dd, minterm1);
00314             Cudd_RecursiveDeref(dd, neW);
00315             return(0);
00316         }
00317         cuddRef(w);
00318         Cudd_RecursiveDeref(dd, minterm1);
00319         Cudd_RecursiveDeref(dd, neW);
00320         Cudd_RecursiveDeref(dd, *E);
00321         *E = w;
00322     }
00323     return(1);
00324 
00325 } /* end of Cudd_addRead */

int Cudd_bddRead ( FILE *  fp,
DdManager dd,
DdNode **  E,
DdNode ***  x,
DdNode ***  y,
int *  nx,
int *  ny,
int *  m,
int *  n,
int  bx,
int  sx,
int  by,
int  sy 
)

Function********************************************************************

Synopsis [Reads in a graph (without labels) given as a list of arcs.]

Description [Reads in a graph (without labels) given as an adjacency matrix. The first line of the input contains the numbers of rows and columns of the adjacency matrix. The remaining lines contain the arcs of the graph, one per line. Each arc is described by two integers, i.e., the row and column number, or the indices of the two endpoints. Cudd_bddRead produces a BDD that depends on two sets of variables: x and y. The x variables (x\[0\] ... x\[nx-1\]) encode the row index and the y variables (y\[0\] ... y\[ny-1\]) encode the column index. x\[0\] and y\[0\] are the most significant bits in the indices. The variables may already exist or may be created by the function. The index of x\[i\] is bx+i*sx, and the index of y\[i\] is by+i*sy.

On input, nx and ny hold the numbers of row and column variables already in existence. On output, they hold the numbers of row and column variables actually used by the matrix. When Cudd_bddRead creates the variable arrays, the index of x\[i\] is bx+i*sx, and the index of y\[i\] is by+i*sy. When some variables already exist, Cudd_bddRead expects the indices of the existing x variables to be bx+i*sx, and the indices of the existing y variables to be by+i*sy.

m and n are set to the numbers of rows and columns of the matrix. Their values on input are immaterial. The BDD for the graph is returned in E, and its reference count is > 0. Cudd_bddRead returns 1 in case of success; 0 otherwise.]

SideEffects [nx and ny are set to the numbers of row and column variables. m and n are set to the numbers of rows and columns. x and y are possibly extended to represent the array of row and column variables.]

SeeAlso [Cudd_addHarwell Cudd_addRead]

Definition at line 365 of file cuddRead.c.

00379 {
00380     DdNode *one, *zero;
00381     DdNode *w;
00382     DdNode *minterm1;
00383     int u, v, err, i, nv;
00384     int lnx, lny;
00385     DdNode **lx, **ly;
00386 
00387     one = DD_ONE(dd);
00388     zero = Cudd_Not(one);
00389 
00390     err = fscanf(fp, "%d %d", &u, &v);
00391     if (err == EOF) {
00392         return(0);
00393     } else if (err != 2) {
00394         return(0);
00395     }
00396 
00397     *m = u;
00398     /* Compute the number of x variables. */
00399     lx = *x;
00400     u--;        /* row and column numbers start from 0 */
00401     for (lnx=0; u > 0; lnx++) {
00402         u >>= 1;
00403     }
00404     if (lnx > *nx) {
00405         *x = lx = REALLOC(DdNode *, *x, lnx);
00406         if (lx == NULL) {
00407             dd->errorCode = CUDD_MEMORY_OUT;
00408             return(0);
00409         }
00410     }
00411 
00412     *n = v;
00413     /* Compute the number of y variables. */
00414     ly = *y;
00415     v--;        /* row and column numbers start from 0 */
00416     for (lny=0; v > 0; lny++) {
00417         v >>= 1;
00418     }
00419     if (lny > *ny) {
00420         *y = ly = REALLOC(DdNode *, *y, lny);
00421         if (ly == NULL) {
00422             dd->errorCode = CUDD_MEMORY_OUT;
00423             return(0);
00424         }
00425     }
00426 
00427     /* Create all new variables. */
00428     for (i = *nx, nv = bx + (*nx) * sx; i < lnx; i++, nv += sx) {
00429         do {
00430             dd->reordered = 0;
00431             lx[i] = cuddUniqueInter(dd, nv, one, zero);
00432         } while (dd->reordered == 1);
00433         if (lx[i] == NULL) return(0);
00434         cuddRef(lx[i]);
00435     }
00436     for (i = *ny, nv = by + (*ny) * sy; i < lny; i++, nv += sy) {
00437         do {
00438             dd->reordered = 0;
00439             ly[i] = cuddUniqueInter(dd, nv, one, zero);
00440         } while (dd->reordered == 1);
00441         if (ly[i] == NULL) return(0);
00442         cuddRef(ly[i]);
00443     }
00444     *nx = lnx;
00445     *ny = lny;
00446 
00447     *E = zero; /* this call will never cause reordering */
00448     cuddRef(*E);
00449 
00450     while (! feof(fp)) {
00451         err = fscanf(fp, "%d %d", &u, &v);
00452         if (err == EOF) {
00453             break;
00454         } else if (err != 2) {
00455             return(0);
00456         } else if (u >= *m || v >= *n || u < 0 || v < 0) {
00457             return(0);
00458         }
00459  
00460         minterm1 = one; cuddRef(minterm1);
00461 
00462         /* Build minterm1 corresponding to this arc. */
00463         for (i = lnx - 1; i>=0; i--) {
00464             if (u & 1) {
00465                 w = Cudd_bddAnd(dd, minterm1, lx[i]);
00466             } else {
00467                 w = Cudd_bddAnd(dd, minterm1, Cudd_Not(lx[i]));
00468             }
00469             if (w == NULL) {
00470                 Cudd_RecursiveDeref(dd, minterm1);
00471                 return(0);
00472             }
00473             cuddRef(w);
00474             Cudd_RecursiveDeref(dd,minterm1);
00475             minterm1 = w;
00476             u >>= 1;
00477         }
00478         for (i = lny - 1; i>=0; i--) {
00479             if (v & 1) {
00480                 w = Cudd_bddAnd(dd, minterm1, ly[i]);
00481             } else {
00482                 w = Cudd_bddAnd(dd, minterm1, Cudd_Not(ly[i]));
00483             }
00484             if (w == NULL) {
00485                 Cudd_RecursiveDeref(dd, minterm1);
00486                 return(0);
00487             }
00488             cuddRef(w);
00489             Cudd_RecursiveDeref(dd, minterm1);
00490             minterm1 = w;
00491             v >>= 1;
00492         }
00493 
00494         w = Cudd_bddAnd(dd, Cudd_Not(minterm1), Cudd_Not(*E));
00495         if (w == NULL) {
00496             Cudd_RecursiveDeref(dd, minterm1);
00497             return(0);
00498         }
00499         w = Cudd_Not(w);
00500         cuddRef(w);
00501         Cudd_RecursiveDeref(dd, minterm1);
00502         Cudd_RecursiveDeref(dd, *E);
00503         *E = w;
00504     }
00505     return(1);
00506 
00507 } /* end of Cudd_bddRead */


Variable Documentation

char rcsid [] DD_UNUSED = "$Id: cuddRead.c,v 1.6 2004/08/13 18:04:50 fabio Exp $" [static]

CFile***********************************************************************

FileName [cuddRead.c]

PackageName [cudd]

Synopsis [Functions to read in a matrix]

Description [External procedures included in this module:

]

SeeAlso [cudd_addHarwell.c]

Author [Fabio Somenzi]

Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of the University of Colorado nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.]

Definition at line 77 of file cuddRead.c.


Generated on Tue Jan 12 13:57:20 2010 for glu-2.2 by  doxygen 1.6.1