src/bdd/cas/casDec.c File Reference

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include "extra.h"
#include "cas.h"
Include dependency graph for casDec.c:

Go to the source code of this file.

Data Structures

struct  LUT

Defines

#define PRB(f)   printf( #f " = " ); Cudd_bddPrint(dd,f); printf( "\n" )
#define PRK(f, n)   Cudd_PrintKMap(stdout,dd,(f),Cudd_Not(f),(n),NULL,0); printf( "K-map for function" #f "\n\n" )
#define PRK2(f, g, n)   Cudd_PrintKMap(stdout,dd,(f),(g),(n),NULL,0); printf( "K-map for function <" #f ", " #g ">\n\n" )

Functions

void WriteLUTSintoBLIFfile (FILE *pFile, DdManager *dd, LUT **pLuts, int nLuts, DdNode **bCVars, char **pNames, int nNames, char *FileName)
void WriteDDintoBLIFfile (FILE *pFile, DdNode *Func, char *OutputName, char *Prefix, char **InputNames)
void WriteDDintoBLIFfileReorder (DdManager *dd, FILE *pFile, DdNode *Func, char *OutputName, char *Prefix, char **InputNames)
int CreateDecomposedNetwork (DdManager *dd, DdNode *aFunc, char **pNames, int nNames, char *FileName, int nLutSize, int fCheck, int fVerbose)

Variables

static int s_LutSize = 15
static int s_nFuncVars
long s_EncodingTime
long s_EncSearchTime
long s_EncComputeTime

Define Documentation

#define PRB (  )     printf( #f " = " ); Cudd_bddPrint(dd,f); printf( "\n" )

debugging macros ///

Definition at line 97 of file casDec.c.

#define PRK ( f,
 )     Cudd_PrintKMap(stdout,dd,(f),Cudd_Not(f),(n),NULL,0); printf( "K-map for function" #f "\n\n" )

Definition at line 98 of file casDec.c.

#define PRK2 ( f,
g,
 )     Cudd_PrintKMap(stdout,dd,(f),(g),(n),NULL,0); printf( "K-map for function <" #f ", " #g ">\n\n" )

Definition at line 99 of file casDec.c.


Function Documentation

int CreateDecomposedNetwork ( DdManager dd,
DdNode aFunc,
char **  pNames,
int  nNames,
char *  FileName,
int  nLutSize,
int  fCheck,
int  fVerbose 
)

EXTERNAL FUNCTIONS ///

Definition at line 106 of file casDec.c.

00111 {
00112     static LUT * pLuts[MAXINPUTS];   // the LUT cascade
00113     static int Profile[MAXINPUTS];   // the profile filled in with the info about the BDD width
00114     static int Permute[MAXINPUTS];   // the array to store a temporary permutation of variables
00115 
00116     LUT * p;               // the current LUT
00117     int i, v;
00118 
00119     DdNode * bCVars[32];   // these are variables for the codes
00120 
00121     int nVarsRem;          // the number of remaining variables
00122     int PrevMulti;         // column multiplicity on the previous level
00123     int fLastLut;          // flag to signal the last LUT
00124     int nLuts;
00125     int nLutsTotal = 0;
00126     int nLutOutputs = 0;
00127     int nLutOutputsOrig = 0;
00128 
00129     long clk1;
00130 
00131     s_LutSize = nLutSize;
00132 
00133     s_nFuncVars = nNames;
00134 
00135     // get the profile
00136     clk1 = clock();
00137     Extra_ProfileWidth( dd, aFunc, Profile, -1 );
00138 
00139 
00140 //  for ( v = 0; v < nNames; v++ )
00141 //      printf( "Level = %2d, Width = %2d\n", v+1, Profile[v] );
00142 
00143 
00144 //printf( "\n" );
00145 
00146     // mark-up the LUTs
00147     // assuming that the manager has exactly nNames vars (new vars have not been introduced yet)
00148     nVarsRem  = nNames;     // the number of remaining variables
00149     PrevMulti = 0;          // column multiplicity on the previous level
00150     fLastLut  = 0;
00151     nLuts     = 0;
00152     do
00153     {
00154         p = (LUT*) malloc( sizeof(LUT) );
00155         memset( p, 0, sizeof(LUT) );
00156 
00157         if ( nVarsRem + PrevMulti <= s_LutSize ) // this is the last LUT
00158         {
00159             p->nIns   = nVarsRem + PrevMulti;
00160             p->nInsP  = PrevMulti;
00161             p->nCols  = 2;
00162             p->nMulti = 1;
00163             p->Level  = nNames-nVarsRem;
00164 
00165             nVarsRem  = 0;
00166             PrevMulti = 1;
00167 
00168             fLastLut  = 1;
00169         }
00170         else // this is not the last LUT
00171         {
00172             p->nIns   = s_LutSize;
00173             p->nInsP  = PrevMulti;
00174             p->nCols  = Profile[nNames-(nVarsRem-(s_LutSize-PrevMulti))];
00175             p->nMulti = Extra_Base2Log(p->nCols);
00176             p->Level  = nNames-nVarsRem;
00177 
00178             nVarsRem  = nVarsRem-(s_LutSize-PrevMulti);
00179             PrevMulti = p->nMulti;
00180         }
00181         
00182         if ( p->nMulti >= s_LutSize )
00183         {
00184             printf( "The LUT size is too small\n" );
00185             return 0;
00186         }
00187 
00188         nLutOutputsOrig += p->nMulti;
00189 
00190 
00191 //if ( fVerbose )
00192 //printf( "Stage %2d: In = %3d, InP = %3d, Cols = %5d, Multi = %2d, Level = %2d\n", 
00193 //       nLuts+1, p->nIns, p->nInsP, p->nCols, p->nMulti, p->Level );
00194 
00195 
00196         // there should be as many columns, codes, and nodes, as there are columns on this level
00197         p->pbCols  = (DdNode **) malloc( p->nCols * sizeof(DdNode *) );
00198         p->pbCodes = (DdNode **) malloc( p->nCols * sizeof(DdNode *) );
00199         p->paNodes = (DdNode **) malloc( p->nCols * sizeof(DdNode *) );
00200 
00201         pLuts[nLuts] = p;
00202         nLuts++;
00203     }
00204     while ( !fLastLut );
00205 
00206 
00207 //if ( fVerbose )
00208 //printf( "The number of cascades = %d\n", nLuts );
00209 
00210 
00211 //fprintf( pTable, "%d ", nLuts );
00212 
00213 
00214     // add the new variables at the bottom
00215     for ( i = 0; i < s_LutSize; i++ )
00216         bCVars[i] = Cudd_bddNewVar(dd);
00217 
00218     // for each LUT - assign the LUT and encode the columns
00219     s_EncodingTime = 0;
00220     for ( i = 0; i < nLuts; i++ )
00221     {
00222         int RetValue;
00223         DdNode * bVars[32];    
00224         int nVars;
00225         DdNode * bVarsInCube;
00226         DdNode * bVarsCCube;
00227         DdNode * bVarsCube;
00228         int CutLevel;
00229 
00230         p = pLuts[i];
00231 
00232         // compute the columns of this LUT starting from the given set of nodes with the given codes
00233         // (these codes have been remapped to depend on the topmost variables in the manager)
00234         // for the first LUT, start with the constant 1 BDD
00235         CutLevel = p->Level + p->nIns - p->nInsP;
00236         if ( i == 0 )
00237             RetValue = Extra_bddNodePathsUnderCutArray( 
00238                             dd, &aFunc, &(b1), 1, 
00239                             p->paNodes, p->pbCols, CutLevel );
00240         else
00241             RetValue = Extra_bddNodePathsUnderCutArray( 
00242                             dd, pLuts[i-1]->paNodes, pLuts[i-1]->pbCodes, pLuts[i-1]->nCols, 
00243                             p->paNodes, p->pbCols, CutLevel );
00244         assert( RetValue == p->nCols );
00245         // at this point, we have filled out p->paNodes[] and p->pbCols[] of this LUT
00246         // pLuts[i-1]->paNodes depended on normal vars
00247         // pLuts[i-1]->pbCodes depended on the topmost variables 
00248         // the resulting p->paNodes depend on normal ADD nodes
00249         // the resulting p->pbCols depend on normal vars and topmost variables in the manager
00250 
00251         // perform the encoding
00252 
00253         // create the cube of these variables
00254         // collect the topmost variables of the manager
00255         nVars = p->nInsP;
00256         for ( v = 0; v < nVars; v++ )
00257             bVars[v] = dd->vars[ dd->invperm[v] ];
00258         bVarsCCube  = Extra_bddBitsToCube( dd, (1<<nVars)-1, nVars, bVars, 1 );    Cudd_Ref( bVarsCCube );
00259 
00260         // collect the primary input variables involved in this LUT
00261         nVars = p->nIns - p->nInsP;
00262         for ( v = 0; v < nVars; v++ )
00263             bVars[v] = dd->vars[ dd->invperm[p->Level+v] ];
00264         bVarsInCube = Extra_bddBitsToCube( dd, (1<<nVars)-1, nVars, bVars, 1 );    Cudd_Ref( bVarsInCube );
00265 
00266         // get the cube
00267         bVarsCube   = Cudd_bddAnd( dd, bVarsInCube, bVarsCCube );              Cudd_Ref( bVarsCube );
00268         Cudd_RecursiveDeref( dd, bVarsInCube );
00269         Cudd_RecursiveDeref( dd, bVarsCCube );
00270 
00271         // get the encoding relation
00272         if ( i == nLuts -1 )
00273         {
00274             DdNode * bVar;
00275             assert( p->nMulti == 1 );
00276             assert( p->nCols == 2 );
00277             assert( Cudd_IsConstant( p->paNodes[0] ) );
00278             assert( Cudd_IsConstant( p->paNodes[1] ) );
00279 
00280             bVar = ( p->paNodes[0] == a1 )? bCVars[0]: Cudd_Not( bCVars[0] );
00281             p->bRelation = Cudd_bddIte( dd, bVar, p->pbCols[0], p->pbCols[1] );  Cudd_Ref( p->bRelation );
00282         }
00283         else
00284         {
00285             long clk2 = clock();
00286 //          p->bRelation = PerformTheEncoding( dd, p->pbCols, p->nCols, bVarsCube, bCVars, p->nMulti, &p->nSimple );  Cudd_Ref( p->bRelation );
00287             p->bRelation = Extra_bddEncodingNonStrict( dd, p->pbCols, p->nCols, bVarsCube, bCVars, p->nMulti, &p->nSimple );  Cudd_Ref( p->bRelation );
00288             s_EncodingTime += clock() - clk2;
00289         }
00290 
00291         // update the number of LUT outputs
00292         nLutOutputs += (p->nMulti - p->nSimple);
00293         nLutsTotal += p->nMulti;
00294 
00295 //if ( fVerbose )
00296 //printf( "Stage %2d: Simple = %d\n", i+1, p->nSimple );
00297 
00298 if ( fVerbose )
00299 printf( "Stage %3d: In = %3d  InP = %3d  Cols = %5d  Multi = %2d  Simple = %2d  Level = %3d\n", 
00300        i+1, p->nIns, p->nInsP, p->nCols, p->nMulti, p->nSimple, p->Level );
00301 
00302         // get the codes from the relation (these are not necessarily cubes)
00303         {
00304             int c;
00305             for ( c = 0; c < p->nCols; c++ )
00306             {
00307                 p->pbCodes[c] = Cudd_bddAndAbstract( dd, p->bRelation, p->pbCols[c], bVarsCube ); Cudd_Ref( p->pbCodes[c] );
00308             }
00309         }
00310 
00311         Cudd_RecursiveDeref( dd, bVarsCube );
00312 
00313         // remap the codes to depend on the topmost varibles of the manager
00314         // useful as a preparation for the next step
00315         {
00316             DdNode ** pbTemp;
00317             int k, v;
00318 
00319             pbTemp = (DdNode **) malloc( p->nCols * sizeof(DdNode *) );
00320 
00321             // create the identical permutation
00322             for ( v = 0; v < dd->size; v++ )
00323                 Permute[v] = v;
00324 
00325             // use the topmost variables of the manager 
00326             // to represent the previous level codes
00327             for ( v = 0; v < p->nMulti; v++ )
00328                 Permute[bCVars[v]->index] = dd->invperm[v];
00329 
00330             Extra_bddPermuteArray( dd, p->pbCodes, pbTemp, p->nCols, Permute );
00331             // the array pbTemp comes already referenced
00332 
00333             // deref the old codes and assign the new ones
00334             for ( k = 0; k < p->nCols; k++ )
00335             {
00336                 Cudd_RecursiveDeref( dd, p->pbCodes[k] );
00337                 p->pbCodes[k] = pbTemp[k];
00338             }
00339             free( pbTemp );
00340         }
00341     } 
00342     if ( fVerbose )
00343     printf( "LUTs: Total = %5d. Final = %5d. Simple = %5d. (%6.2f %%)  ", 
00344         nLutsTotal, nLutOutputs, nLutsTotal-nLutOutputs, 100.0*(nLutsTotal-nLutOutputs)/nLutsTotal );
00345     if ( fVerbose )
00346     printf( "Memory = %6.2f Mb\n", 1.0*nLutOutputs*(1<<nLutSize)/(1<<20) );
00347 //  printf( "\n" );
00348 
00349 //fprintf( pTable, "%d ", nLutOutputsOrig );
00350 //fprintf( pTable, "%d ", nLutOutputs );
00351 
00352     if ( fVerbose )
00353     {
00354     printf( "Pure decomposition time   = %.2f sec\n", (float)(clock() - clk1 - s_EncodingTime)/(float)(CLOCKS_PER_SEC) );
00355     printf( "Encoding time             = %.2f sec\n", (float)(s_EncodingTime)/(float)(CLOCKS_PER_SEC) );
00356 //  printf( "Encoding search time      = %.2f sec\n", (float)(s_EncSearchTime)/(float)(CLOCKS_PER_SEC) );
00357 //  printf( "Encoding compute time     = %.2f sec\n", (float)(s_EncComputeTime)/(float)(CLOCKS_PER_SEC) );
00358     }
00359 
00360 
00361 //fprintf( pTable, "%.2f ", (float)(s_ReadingTime)/(float)(CLOCKS_PER_SEC) );
00362 //fprintf( pTable, "%.2f ", (float)(clock() - clk1 - s_EncodingTime)/(float)(CLOCKS_PER_SEC) );
00363 //fprintf( pTable, "%.2f ", (float)(s_EncodingTime)/(float)(CLOCKS_PER_SEC) );
00364 //fprintf( pTable, "%.2f ", (float)(s_RemappingTime)/(float)(CLOCKS_PER_SEC) );
00365 
00366 
00367     // write LUTs into the BLIF file
00368     clk1 = clock();
00369     if ( fCheck )
00370     {
00371         FILE * pFile;
00372         // start the file
00373         pFile = fopen( FileName, "w" );
00374         fprintf( pFile, ".model %s\n", FileName );
00375 
00376         fprintf( pFile, ".inputs" );
00377         for ( i = 0; i < nNames; i++ )
00378             fprintf( pFile, " %s", pNames[i] );
00379         fprintf( pFile, "\n" );
00380         fprintf( pFile, ".outputs F" );
00381         fprintf( pFile, "\n" );
00382 
00383         // write the DD into the file
00384         WriteLUTSintoBLIFfile( pFile, dd, pLuts, nLuts, bCVars, pNames, nNames, FileName );
00385 
00386         fprintf( pFile, ".end\n" );
00387         fclose( pFile );
00388         if ( fVerbose )
00389         printf( "Output file writing time  = %.2f sec\n", (float)(clock() - clk1)/(float)(CLOCKS_PER_SEC) );
00390     }
00391 
00392 
00393     // updo the LUT cascade
00394     for ( i = 0; i < nLuts; i++ )
00395     {
00396         p = pLuts[i];
00397         for ( v = 0; v < p->nCols; v++ )
00398         {
00399             Cudd_RecursiveDeref( dd, p->pbCols[v] );
00400             Cudd_RecursiveDeref( dd, p->pbCodes[v] );
00401             Cudd_RecursiveDeref( dd, p->paNodes[v] );
00402         }
00403         Cudd_RecursiveDeref( dd, p->bRelation );
00404 
00405         free( p->pbCols );
00406         free( p->pbCodes );
00407         free( p->paNodes );
00408         free( p );
00409     }
00410 
00411     return 1;
00412 }

void WriteDDintoBLIFfile ( FILE *  pFile,
DdNode Func,
char *  OutputName,
char *  Prefix,
char **  InputNames 
)

BLIF WRITING FUNCTIONS ///

Function*************************************************************

Synopsis []

Description []

SideEffects []

SeeAlso []

Definition at line 815 of file casCore.c.

00822 {
00823     int i;
00824     st_table * visited;
00825     st_generator * gen = NULL;
00826     long refAddr, diff, mask;
00827     DdNode * Node, * Else, * ElseR, * Then;
00828 
00829     /* Initialize symbol table for visited nodes. */
00830     visited = st_init_table( st_ptrcmp, st_ptrhash );
00831 
00832     /* Collect all the nodes of this DD in the symbol table. */
00833     cuddCollectNodes( Cudd_Regular(Func), visited );
00834 
00835     /* Find how many most significant hex digits are identical
00836        ** in the addresses of all the nodes. Build a mask based
00837        ** on this knowledge, so that digits that carry no information
00838        ** will not be printed. This is done in two steps.
00839        **  1. We scan the symbol table to find the bits that differ
00840        **     in at least 2 addresses.
00841        **  2. We choose one of the possible masks. There are 8 possible
00842        **     masks for 32-bit integer, and 16 possible masks for 64-bit
00843        **     integers.
00844      */
00845 
00846     /* Find the bits that are different. */
00847     refAddr = ( long )Cudd_Regular(Func);
00848     diff = 0;
00849     gen = st_init_gen( visited );
00850     while ( st_gen( gen, ( char ** ) &Node, NULL ) )
00851     {
00852         diff |= refAddr ^ ( long ) Node;
00853     }
00854     st_free_gen( gen );
00855     gen = NULL;
00856 
00857     /* Choose the mask. */
00858     for ( i = 0; ( unsigned ) i < 8 * sizeof( long ); i += 4 )
00859     {
00860         mask = ( 1 << i ) - 1;
00861         if ( diff <= mask )
00862             break;
00863     }
00864 
00865 
00866     // write the buffer for the output
00867     fprintf( pFile, ".names %s%lx %s\n", Prefix, ( mask & (long)Cudd_Regular(Func) ) / sizeof(DdNode), OutputName ); 
00868     fprintf( pFile, "%s 1\n", (Cudd_IsComplement(Func))? "0": "1" );
00869 
00870 
00871     gen = st_init_gen( visited );
00872     while ( st_gen( gen, ( char ** ) &Node, NULL ) )
00873     {
00874         if ( Node->index == CUDD_MAXINDEX )
00875         {
00876             // write the terminal node
00877             fprintf( pFile, ".names %s%lx\n", Prefix, ( mask & (long)Node ) / sizeof(DdNode) );
00878             fprintf( pFile, " %s\n", (cuddV(Node) == 0.0)? "0": "1" );
00879             continue;
00880         }
00881 
00882         Else  = cuddE(Node);
00883         ElseR = Cudd_Regular(Else);
00884         Then  = cuddT(Node);
00885 
00886         assert( InputNames[Node->index] );
00887         if ( Else == ElseR )
00888         { // no inverter
00889             fprintf( pFile, ".names %s %s%lx %s%lx %s%lx\n", InputNames[Node->index],                           
00890                               Prefix, ( mask & (long)ElseR ) / sizeof(DdNode),
00891                               Prefix, ( mask & (long)Then  ) / sizeof(DdNode),
00892                               Prefix, ( mask & (long)Node  ) / sizeof(DdNode)   );
00893             fprintf( pFile, "01- 1\n" );
00894             fprintf( pFile, "1-1 1\n" );
00895         }
00896         else
00897         { // inverter
00898             int * pSlot;
00899             fprintf( pFile, ".names %s %s%lx_i %s%lx %s%lx\n", InputNames[Node->index],                         
00900                               Prefix, ( mask & (long)ElseR ) / sizeof(DdNode),
00901                               Prefix, ( mask & (long)Then  ) / sizeof(DdNode),
00902                               Prefix, ( mask & (long)Node  ) / sizeof(DdNode)   );
00903             fprintf( pFile, "01- 1\n" );
00904             fprintf( pFile, "1-1 1\n" );
00905 
00906             // if the inverter is written, skip
00907             if ( !st_find( visited, (char *)ElseR, (char ***)&pSlot ) )
00908                 assert( 0 );
00909             if ( *pSlot )
00910                 continue;
00911             *pSlot = 1;
00912 
00913             fprintf( pFile, ".names %s%lx %s%lx_i\n",  
00914                               Prefix, ( mask & (long)ElseR  ) / sizeof(DdNode),
00915                               Prefix, ( mask & (long)ElseR  ) / sizeof(DdNode)   );
00916             fprintf( pFile, "0 1\n" );
00917         }
00918     }
00919     st_free_gen( gen );
00920     gen = NULL;
00921     st_free_table( visited );
00922 }

void WriteDDintoBLIFfileReorder ( DdManager dd,
FILE *  pFile,
DdNode Func,
char *  OutputName,
char *  Prefix,
char **  InputNames 
)

Function*************************************************************

Synopsis []

Description []

SideEffects []

SeeAlso []

Definition at line 940 of file casCore.c.

00947 {
00948     int i;
00949     st_table * visited;
00950     st_generator * gen = NULL;
00951     long refAddr, diff, mask;
00952     DdNode * Node, * Else, * ElseR, * Then;
00953 
00954 
00956     DdNode * bFmin;
00957     int clk1;
00958 
00959     if ( s_ddmin == NULL )
00960         s_ddmin = Cudd_Init( dd->size, 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0);
00961 
00962     clk1 = clock();
00963     bFmin = Cudd_bddTransfer( dd, s_ddmin, Func );  Cudd_Ref( bFmin );
00964 
00965     // reorder
00966     printf( "Nodes before = %d.   ", Cudd_DagSize(bFmin) ); 
00967     Cudd_ReduceHeap(s_ddmin,CUDD_REORDER_SYMM_SIFT,1);
00968 //  Cudd_ReduceHeap(s_ddmin,CUDD_REORDER_SYMM_SIFT_CONV,1);
00969     printf( "Nodes after  = %d.  \n", Cudd_DagSize(bFmin) ); 
00971 
00972 
00973 
00974     /* Initialize symbol table for visited nodes. */
00975     visited = st_init_table( st_ptrcmp, st_ptrhash );
00976 
00977     /* Collect all the nodes of this DD in the symbol table. */
00978     cuddCollectNodes( Cudd_Regular(bFmin), visited );
00979 
00980     /* Find how many most significant hex digits are identical
00981        ** in the addresses of all the nodes. Build a mask based
00982        ** on this knowledge, so that digits that carry no information
00983        ** will not be printed. This is done in two steps.
00984        **  1. We scan the symbol table to find the bits that differ
00985        **     in at least 2 addresses.
00986        **  2. We choose one of the possible masks. There are 8 possible
00987        **     masks for 32-bit integer, and 16 possible masks for 64-bit
00988        **     integers.
00989      */
00990 
00991     /* Find the bits that are different. */
00992     refAddr = ( long )Cudd_Regular(bFmin);
00993     diff = 0;
00994     gen = st_init_gen( visited );
00995     while ( st_gen( gen, ( char ** ) &Node, NULL ) )
00996     {
00997         diff |= refAddr ^ ( long ) Node;
00998     }
00999     st_free_gen( gen );
01000     gen = NULL;
01001 
01002     /* Choose the mask. */
01003     for ( i = 0; ( unsigned ) i < 8 * sizeof( long ); i += 4 )
01004     {
01005         mask = ( 1 << i ) - 1;
01006         if ( diff <= mask )
01007             break;
01008     }
01009 
01010 
01011     // write the buffer for the output
01012     fprintf( pFile, ".names %s%lx %s\n", Prefix, ( mask & (long)Cudd_Regular(bFmin) ) / sizeof(DdNode), OutputName ); 
01013     fprintf( pFile, "%s 1\n", (Cudd_IsComplement(bFmin))? "0": "1" );
01014 
01015 
01016     gen = st_init_gen( visited );
01017     while ( st_gen( gen, ( char ** ) &Node, NULL ) )
01018     {
01019         if ( Node->index == CUDD_MAXINDEX )
01020         {
01021             // write the terminal node
01022             fprintf( pFile, ".names %s%lx\n", Prefix, ( mask & (long)Node ) / sizeof(DdNode) );
01023             fprintf( pFile, " %s\n", (cuddV(Node) == 0.0)? "0": "1" );
01024             continue;
01025         }
01026 
01027         Else  = cuddE(Node);
01028         ElseR = Cudd_Regular(Else);
01029         Then  = cuddT(Node);
01030 
01031         assert( InputNames[Node->index] );
01032         if ( Else == ElseR )
01033         { // no inverter
01034             fprintf( pFile, ".names %s %s%lx %s%lx %s%lx\n", InputNames[Node->index],                           
01035                               Prefix, ( mask & (long)ElseR ) / sizeof(DdNode),
01036                               Prefix, ( mask & (long)Then  ) / sizeof(DdNode),
01037                               Prefix, ( mask & (long)Node  ) / sizeof(DdNode)   );
01038             fprintf( pFile, "01- 1\n" );
01039             fprintf( pFile, "1-1 1\n" );
01040         }
01041         else
01042         { // inverter
01043             fprintf( pFile, ".names %s %s%lx_i %s%lx %s%lx\n", InputNames[Node->index],                         
01044                               Prefix, ( mask & (long)ElseR ) / sizeof(DdNode),
01045                               Prefix, ( mask & (long)Then  ) / sizeof(DdNode),
01046                               Prefix, ( mask & (long)Node  ) / sizeof(DdNode)   );
01047             fprintf( pFile, "01- 1\n" );
01048             fprintf( pFile, "1-1 1\n" );
01049 
01050             fprintf( pFile, ".names %s%lx %s%lx_i\n",  
01051                               Prefix, ( mask & (long)ElseR  ) / sizeof(DdNode),
01052                               Prefix, ( mask & (long)ElseR  ) / sizeof(DdNode)   );
01053             fprintf( pFile, "0 1\n" );
01054         }
01055     }
01056     st_free_gen( gen );
01057     gen = NULL;
01058     st_free_table( visited );
01059 
01060 
01062     Cudd_RecursiveDeref( s_ddmin, bFmin );
01064 }

void WriteLUTSintoBLIFfile ( FILE *  pFile,
DdManager dd,
LUT **  pLuts,
int  nLuts,
DdNode **  bCVars,
char **  pNames,
int  nNames,
char *  FileName 
)

static functions ///

Definition at line 414 of file casDec.c.

00415 {
00416     int i, v, o;
00417     static char * pNamesLocalIn[MAXINPUTS];
00418     static char * pNamesLocalOut[MAXINPUTS];
00419     static char Buffer[100];
00420     DdNode * bCube, * bCof, * bFunc;
00421     LUT * p;
00422 
00423     // go through all the LUTs
00424     for ( i = 0; i < nLuts; i++ )
00425     {
00426         // get the pointer to the LUT
00427         p = pLuts[i];
00428 
00429         if ( i == nLuts -1 )
00430         {
00431             assert( p->nMulti == 1 );
00432         }
00433 
00434 
00435         fprintf( pFile, "#----------------- LUT #%d ----------------------\n", i );
00436 
00437 
00438         // fill in the names for the current LUT
00439 
00440         // write the outputs of the previous LUT
00441         if ( i != 0 )
00442         for ( v = 0; v < p->nInsP; v++ )
00443         {
00444             sprintf( Buffer, "LUT%02d_%02d", i-1, v );
00445             pNamesLocalIn[dd->invperm[v]] = Extra_UtilStrsav( Buffer );
00446         }
00447         // write the primary inputs of the current LUT
00448         for ( v = 0; v < p->nIns - p->nInsP; v++ )
00449             pNamesLocalIn[dd->invperm[p->Level+v]] = Extra_UtilStrsav( pNames[dd->invperm[p->Level+v]] );
00450         // write the outputs of the current LUT
00451         for ( v = 0; v < p->nMulti; v++ )
00452         {
00453             sprintf( Buffer, "LUT%02d_%02d", i, v );
00454             if ( i != nLuts - 1 )
00455                 pNamesLocalOut[v] = Extra_UtilStrsav( Buffer );
00456             else 
00457                 pNamesLocalOut[v] = Extra_UtilStrsav( "F" );
00458         }
00459 
00460 
00461         // write LUT outputs
00462 
00463         // get the prefix
00464         sprintf( Buffer, "L%02d_", i );
00465 
00466         // get the cube of encoding variables
00467         bCube = Extra_bddBitsToCube( dd, (1<<p->nMulti)-1, p->nMulti, bCVars, 1 );   Cudd_Ref( bCube );
00468 
00469         // write each output of the LUT
00470         for ( o = 0; o < p->nMulti; o++ )
00471         {
00472             // get the cofactor of this output
00473             bCof = Cudd_Cofactor( dd, p->bRelation, bCVars[o] );  Cudd_Ref( bCof );
00474             // quantify the remaining variables to get the function
00475             bFunc = Cudd_bddExistAbstract( dd, bCof, bCube );     Cudd_Ref( bFunc );
00476             Cudd_RecursiveDeref( dd, bCof );
00477             
00478             // write BLIF
00479             sprintf( Buffer, "L%02d_%02d_", i, o );
00480 
00481 //          WriteDDintoBLIFfileReorder( dd, pFile, bFunc, pNamesLocalOut[o], Buffer, pNamesLocalIn );
00482             // does not work well; the advantage is marginal (30%), the run time is huge...
00483 
00484             WriteDDintoBLIFfile( pFile, bFunc, pNamesLocalOut[o], Buffer, pNamesLocalIn );
00485             Cudd_RecursiveDeref( dd, bFunc );
00486         }
00487         Cudd_RecursiveDeref( dd, bCube );
00488 
00489         // clean up the previous local names
00490         for ( v = 0; v < dd->size; v++ )
00491         {
00492             if ( pNamesLocalIn[v] )
00493                 free( pNamesLocalIn[v] );
00494             pNamesLocalIn[v] = NULL;
00495         }
00496         for ( v = 0; v < p->nMulti; v++ )
00497             free( pNamesLocalOut[v] );
00498     }
00499 }


Variable Documentation

Definition at line 84 of file casDec.c.

Definition at line 81 of file casDec.c.

Definition at line 83 of file casDec.c.

int s_LutSize = 15 [static]

static varibles ///

Definition at line 78 of file casDec.c.

int s_nFuncVars [static]

Definition at line 79 of file casDec.c.


Generated on Tue Jan 5 12:18:51 2010 for abc70930 by  doxygen 1.6.1