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Abstract—With recent developments in the infrastructure of 160 160
smart meters and smart grid, more electric power data is 9
available and allows real time easy data access. Modeling-in
dividual home appliance loads is important for tasks such as
non-intrusive load disaggregation, load forecasting, anadglemand o
response support. Previous methods usually require sub-ntexing “ “
individual appliances in a home separately to determine the 20 20
appliance models, which may not be practical, since we may ° °
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only be able to observe aggregated real power signals for the ™% o o w0 o o w0
entire-home through smart meters deployed in the field. In tls b
paper, we propose a model, named Explicit-Duration Hidden (@) (b)

Markov Model with differential observations (EDHMM-diff) , for  Fig. 1: Signals shown in (a) and (b) are two signals with
detecting and estimating individual home appliance loadsrbm e same emission probabilities but different state domati
aggregated power signals collected by ordinary smart metet distributi X axis is ab ind ith it forui
Experiments on synthetic data and real data demonstrate thia 'St_r' utions. X axis Is a s_tract Index without unit foruss-
the EDHMM-diff model and the specialized forward-backward ~tration purpose. A conventional HMM model cannot capture
algorithm can effectively model major home appliance loads the difference between them since the state durations dre no
Index Terms—Load Modeling, Explicit Duraton HMM, — considered.
Forward-backward, Disaggregation.

. INTRODUCTION which include information such as time of use, on-and-off

As part of the smart grid deployment, smart meters cafurations and patterns, power demands, etc. Some sigsature
provide more energy consumption information than we coulflso encode thansient properties of the current and voltage
imagine before in a near real-time way. With increasingaRst signals of appliances when they are turned on or off, while
lations of smart meters in more countries, such as Australébme signatures mainly focus stable properties of the
Canada, Italy, Japan, United States, etc., massive amdéunp@wer signals. Most smart meters installed in the field measu

residential electric energy consumption data has beeeatell and transmit the real power signals of residential users at a

and stored. Although current advanced infrastructuresnafrs  relatively low frequency {H z « ﬁ H?z). Therefore, the low

grid could provide full potentials for advanced services, i sampling rate makes stable signature a more suitable choice
sightful analysis and modeling based on such big data iIs stdr home appliance load modeling. Most home appliances
in its early stage. Exploration of such valuable data en®rggork at one or several fixed power demands, which can be
as a popular research direction both in academia and iydusgharacterized by finite discrete states. In addition, oneepo
and conventional services, such as load disaggregatiol, (Libading at present is independent from early readings in the
load forecasting (LF) and demand response (DR) support, @&st. Therefore, Hidden Markov Model (HMM) [4] seems a
brought back to attention. Modeling the home appliancedoagood choice and is widely used to model home appliances to
plays an important role for these applications, since ithis t extract stable information.

first step for understanding the electric consumption data. powever, the conventional HMM can not model the du-
this paper, we focus on modeling home appliance loads undgfion of each state, which is important for estimating the

a general assumption, where origgregatedeal-time power gjectric energy consumption of a home appliance. The $tates
data is observed by ordinary smart meters already deployggrations and switching patterns are also crucial for deiscy

with alow data sampling rate. o appliances, and could help increase the accuracy of detecti
Starting from Hart [1], power consumption signatures [2nq estimation. In Fig. 1 we illustrate a confusion caused by

[3] are used to describe the behaviors of home appliancgs, |ack of duration modeling of conventional HMM on power
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Fig. 2: lllustration of the ‘detect and re-estimate’ appmtodor the EDHMM-diff model. Y axis is power in Watts, and X
axis is time in a unit of a half minute. From top to bottom: A f@ate is used to detect signal clips generated by a certain
AOI; Red boxes indicate rejected signal fragments and gbeses indicate accepted fragments. The accepted (greespox
fragments are concatenated for estimating the true modeg tise EDHMM-diff estimation algorithm in Table I, and a flna
estimation of the AOI is obtained.

of other appliances that are turned on during the same tiree. Wid data analysis, which aims to figure out what appliances
call such phenomenon as “aggregating effect”. In Fig. 2, a@me used in a home as well as their individual energy con-
aggregated power signal is shown as the “original observedmptions, by only observing the aggregated electric con-
signal”, where the green boxes indicate real power signagmption data for the entire-home. Factorial Hidden Markov
generated by the same refrigerator in the house. Althouljtode(FHMM) based modeling [5]-[7] is one recent promising
these underlying “refrigerator signals” are generated Hy tdirection for LD research, which shows satisfiable disaggre
same appliance, the power signals observed in these baxesgation results on real data. However, all previous FHMM
somehow different due to the “aggregating effect”. Sinae thmethods require correctly estimated models of individual
emission probabilities used in conventional HMM are modeleHMM chains, where manually efforts are unavoidable [5], [7]
directly on the observations, the conventional HMM canndts one example, our proposed method could be used as an
handle the “aggregating effect”, which generates differeautomatic step of estimation of individual HMMs for other
observations even for the same state of the same device. FHMM based methods. In addition, our proposed method
To overcome the problems mentioned above, in this papisr,a general approach for situations where individual devic
we propose an Explicit Duration Hidden Markov Model witimodels are required. For instance, our method could be used
differential observations (EDHMM-diff), along with a spak  to estimate the power efficiency of the refrigerator used in a
ized forward-backward algorithm for the inference and-estinonitored house, to remind the user to replace the refrigera
mation of EDHMM-diff model. In addition to the information with a more efficient ones to save money. The rest of the paper
that can be learned in the conventional HMM, EDHMM-diffis organized as following, in Section II, we will formulatieet
can estimate the model of individual appliances based on tt@search problem and propose the EDHMM-diff algorithm as
aggregated power signal with state durations. Furthermogesolution. We will conduct experiments both on syntheti@da
in most cases, only a few appliances are of interest to thed real data in Section Ill. At last, we conclude the paper in
utilities or users, which we refer to as “Appliance of Intgte SectionlV.
(AOI). Accordingly, we propose a “detect and re-estimate”
approach, which uses a predefined template to detect the
best fragments for estimating one AOI, and then re-estisnate
the template model using these detected fragments. In real
world applications, given the AOI's, we could “detect and
re-estimate” them separately. The framework of the progose In this section, we will describe the EDHMM-diff model
method is shown in Fig. 2. for appliance load modeling, and propose a corresponding
LD is one of the most important applications of smargpecialized algorithm for inference and estimation.

Il. PROPOSEDMETHOD
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A. Explicit-Duration Hidden Markov Model with Differentia

Lo

Observations (EDHMM-diff) [ )
) Q-1 i Q41

Under the current implementation of smart meters, the
observation is a sequence of aggregated real power readings
which can be denoted as= (01, 02, ..., 04, ..., o). Suppose
there are N appliances in the home, then the power signal
generated by théth appliance at time is denoted ascfl},
therefore we have, = Zfilxt{l}. In previous works [5]-

[7], a conventional HMM is used to model each individual
appliance. Each appliance is assumed to work at finite déscre Yt Y Y

states, i.e. two (on and off) states for a light; and cookingig. 3: A graphical illustration of the proposed EDHMM-diff
warming, and off 3 states for a cooker. For appliafcéthe model, wherey; = o — 0;_1, z is the hidden state at time

Ith HMM, HM M1, can be described as, andd is the duration of the hidden state.
w POy Ty
Plg,” =jla;h =1 = Ay @ appliancel. Now suppose fromt; to t,, is the ROI of

3 {l 1 1
Ii{ }|‘Jt{ F=k ~ N(H;{g y, (C’/E })2)’ appliance, then(yi,, ..., yt,,,) = (5:ct{1l}, ...,5:ct{fj), since only
appliancel changes state during this period. Therefore, we
. . - propose addressing the “aggregating effect” by modelirg th
t, wh|cB}tgkes a discrete valge fr?’r_“, a finite $e,t_2’ {{\}/[l} differential observations in ROIls instead. By adding dorat
And " is the corresponding initial _prObab'l'.tyfij 'S modeling and differential observations to the conventiona
the corresponding entry in the transition matri", and MM, we propose the Explicit Duration Hidden Markov

l l . .
M}E} and U/E} are the parameters for the Gaussian emissi@fiodel with Differential observations (EDHMM-diff), which
probability density for theth HMM at statek. We denote the can be described by

set of parameters of theh HMM as ©1!}, and the set of all

whereqt{l} is the hidden state variable for tith HMM at time

parameters of all HMMs foiV appliances ago{!}}/Y . bij(we) = Plyla—1 =1i,q=7),

In this paper, we focus on how to estimate so@&}’s Pi(d) = P(r=dlg=7j), 3)
from {©1}}N |, corresponding to certain AOI's, based on Aij = Pl =J_|qt—1 =1),
the aggregated observatioas As we pointed out in Section ™ = Plg =1),

l, a conventional HMM cannot capture the information ofhere we omit the{i} notation and use it as a general model
the durations of individual states, which are important toy 4 particular appliancey ;(y;) is the emission probability
identify individual appliances and to estimate their e§amN- ¢ the gifferential observation given two adjacent hidderes

sgmptiops. To solve this problem, we intro.duce a probe;{bili;hi1 and ¢. Other variables retain the same meanings as
distribution over the duration of each state in the conwerai previous. A graphical illustration is shown in Fig. 3. Althgh

z . .
HM M, which can be described as it seems that the only difference between our model and Ex-

P.{l}(d) = P = qlg® = ) ) plicit Duration model [9] is that we use differential sigaas
I ’ observations, our contribution is not trivial, since theprsed
wherer{!} is the duration of state!"} staying atj. EDHMM-diff model is a second order model(observation

In addition, the “aggregating effect” described in Sectioflepends on two states) and a specialized forward-backward
| also causes a big trouble for evaluating and estimati@dgorithm needs to be invented for inference and estimation
the emission probability. As shown in Fig. 2, when th&hich is presented in Section II-B. A practical solution for
power signal of a refrigerator is “lifted” by a light's powerinference and estimation plays an important role in any HMM
signal by 500W, the resulting refrigerator power at the -‘offoased non-parametric methods.
state’ becomes 500W and becomes 750W at the ‘on-state’|n our implementation, we assume Gaussian distributions
which leads to a small probability when fitting the data witlfior the emission probability and the duration, which are
the emission distribution of that refrigerator. To deal hwit . . 9
this concern, we ada i ich i vilae =Jrqer =1~ N(ops;, (00i;)),

, pt an reasonable assumption, which is da=k ~ N, (doy)?) 4)
widely accepted in the load modeling and load disaggregatio 4 Hier \ETk)™)s
research area [5]-[8], that the probability for more thae orwheredp;; = p; — p;, anddo;; = o; + 0. And duy, anddoy,
appliance to change state is very low within a short perind. &re the mean and variance of the duration of a state staying at
another word, we assume that at most one appliance changem the practical implementation, we actually use a digcret
state within a short period. Therefore, we could find segmerGaussian distribution (sampled from a continuous Gaugsian
of signals where only thé&h appliance changes state, whiclior the duration. However we still use the same notations in
is defined as Regions of Interest (ROIs) for appliarice the rest of the paper for consistency.
Lety = (y1,y2, ..., 4 -..,yr) denote the differential signal For convenience of expression, we call the set of parameters
of the original o, wherey; = o; — 0,1 with oy = 0. of an EDHMM-diff as©, which containgu, 6o, P(d), A, 7}.
Let §xt{l} = xt{l} - :v;{l_}l denote the differential signal of Among these parameteré;, and P(d) are the two we are
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particularly interested in for home appliance load modglinTo compute this backward variable recursively, we define
In following sections, we will present a practical algonttior another two auxiliary variables as:
estimating®.

. def  PWYir|qi_o=i,qi_1=j,mi_1=1)
* p t:T|qt—2=%4qt—1=7,Tt—1
St (Z,]) - P(Yi.7|Y2:6—1) ’

. . (20)
B. Estimation def  P(Yerlgr_s=isqi=j,ri_1=1)

E;Sk(la.]) - P(Yer[Y2it—1)

To apply EDHMM-diff in a real world application for a
given signalYy, .., = {Ys, Yt,+1,---»Yto },» W Need to com- so far we have defined necessary variables for the forward-
pute the likelihoodP (Y, .+,|0), and efficiently estimate the backward induction. We now give details about the recursive
parameters by maximizing the likelihood. Similar to the corforward-backwardalgorithm.
ventional HMM, straightforwardly calculating the likebod  2) Forward-backward InductionSince the above auxiliary
is computationally infeasible and suffers from the floatingsariables are defined in a recursive fashion, we need to
point “underflow” problem. To provide efficient estimationda initialize these variables at the beginning. The forward an
inference for EDHMM-diff, here we propose a specializeBackward variables are initialized as follows:
forward-backward procedure, inspired by [6] and [9], [10].

The pseudo code is given in Table I. g (i, J,d) = mAiPj(d), (12)

1) Definitions of Variables:In addition to the variables Br(i,j,d) = bi;(yr). (12)
defined in Eq. (3), we also define some auxiliary variables
for the forward-backward algorithm. Aorward variable is Then the forward variable and corresponding auxiliary -vari

defined as ables can be updated as:
- def [ . Si—1(4,7) P (d), if i # 4,
an(i,7,d) = Plgr=i,q = j, 7 =d|Ys), ) B a) = J2-1ba)E
tl)\( 5d) (@ e=am RELY ae-1(6,d) Stk g d+1)b5 i (ye—1), ifi=4,
where A can bet — 1,¢t or T, which corresponds to the (13)

“predicted”, “filtered”, or “smoothed” probability of theiplet
(¢t-1,q:, 7). The calculation of the auxiliary variable is

usually a iterative process involving multiplication of arde e(i, ) = agp—1(i, 7, )07 ;(ye), (14)
number of probability va!ues (small positive numbers |&sst Si(i,j) = Zat(k,i)Aij, (15)
1), so that the result will be a very small float number that k

cannot be handled by a computer. Such problem is called 1 .
“arithmetic underflow”, or “underflow” for short. To overcam T = Z o1 (i, 3> d)bij (2)- (16)
the “underflow” problem caused by multiplications of a large b

number of small probability values, we normalize the emissi  The backward variable and corresponding auxiliary vari-

probability at everyt as ables are updated as:

* dif bi i (ye) % N .

bii(ye) = Wi—l)’ ©6) Bu(i,j,d) = {S’f“(l’j)bi’j(yt)’ !f ¢=1 (17)
which approaches 1 when the fit of the observation to the P13, d = 1)b;(ye), 1 d>1,
model increases, and reaches 1 when the observation fits ¢} (i,5) = Zﬂt(z‘,j, d)P;(d), (18)
the model exactly. Such normalization can successfullydavo d
“underflow” and maintain other conditions required in the SE(i,§) = Zaf(j’ k)Aq;. (19)
inference. For convenience, we denote the denominator prob A
ability as

y def 7 So we have given the details for the forward-backward induc-
v = PlylYeu1), () tion for the EDHMM-diff. We now present the re-estimation

which can be computed recursively. To clearly demonstratiEP N the next section.

the recursion, we define several other auxiliary variables, 3) Parameter Re-estimationAfter computing and storing
these variables, we can calculate the likelihood and uptiate

Si(i,5) Pl =i, g = j,m = 1[Vay), parameters of the EDHMM-diff model. The likelihood of the
@® model Mcan be computed by

.. def . .
ei(i,j) = Pla-1=1i,q =j,m=1|Y2u). P(Yar|M) = ngg P(ye|Yau_1)
= Ht:S 715_1'

To update parameters of the EDHMM-diff model, we first
efine the following auxiliary variables:

(20)

To calculate the smoothed probabilities, we defirteaak-
ward variable which is a standard smoothed probabili'%l
normalized by the predicted one as:

Tor(i,j) = Plg-1=1i,7-1=1,¢ = j|[Yar) 21)

.. def b t—1=1,qt=],Tt= .. ..
ﬂt(lv.]ad) _j POt a1 0=, d)' (9) = Etfl(laj)er(laj)

- P(Ye.r|Y2:0-1)
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sliding the window along the observations we accept the

Dyr(i,j,d) = P(g—1 =14, =j,7e—1 = 1|Ya:41) windows whose likelihoods are above the threshold as trgini
P(r = d|g; = j)P(}Q:qeq,lzi,qt:j,rt:d) data for re-.estlmatlon. During the detgchoq stage, @t@ps
,. ~ P(Yer[Yau-1) 1, 2 and6 in Table | are run for each iteration.

= Se-1(i,J) P (d)Be (i, J, d). After detecting the valid training data for each AOI, we

22) update the template model according to the algorithm inélabl
| to get the final appliance model. The procedure described
in this section is named “detect and re-estimate”, which is

Dyr(j.d) = Y _ Dyr(i,j,d). (23) illustrated in Fig.2.
Yoot J) = P(gi—1 = i,q: = j|Your) Il EXPERIMENT

(24) In this section, we describe the experiments on both syn-

- zd: Qje=1(0 5, )P (i, 5, d). thetic data and real data by applying the proposed method. On

. the synthetic data, we will estimate the EDHMM-diff model
Then the model parameters can be updated at each iteratigi, the proposed forward-backward algorithm and report

as. the estimation results. On the real data, we will apply the
R T proposed “detect and re-estimate” procedure to learn rsodel
Ay = Tir(i,5)/Na. (25)  for individual appliances. The data used in Sectionlll-B1 i
t;3 from the REDD data set proposed by [8].
F;(d) ;DW(% /Ny (26) A. Simulation Study
T To measure the inference and estimation effectiveness of
Ofiij = Z%wyt/Na#- (27) the proposed forward-backward algorithm for the EDHMM-
t=3 diff model, we conduct two sets of experiments.
NP RETACY) 08 In the first set of experiments two time series with 500
= N, ' (28) data points are generated, which are shown in Fig. 4. The

where N,. N,. Ns,, and N, are normalization constants toParameters to generate these two signals are listed in Table
as = 'py o ™ H “ H ”
make the resulting variables statistically valid. The fards !l TO Simulate the “aggregating effect’, we add a random DC

backward algorithm is summarized in Table I. Since we walflueé(With zero mean Gaussian noise) to each of these two
to manually control the flexibility of the EDHMM-diff model signals. We use Gaussian distributions for both the enissio

for both detection and estimation purpose, we don’t updute t_probability and duration distribution for these _two signdk _
covarianceo of emission probability function. In practice, the'S réasonable to assume that most home appliances work with
s is fixed to a number depending on the task. 0 power demand at the “off” state (although sometime a small

value of power can be consumed if there is a standby mode).
) o We assume this assumption for all the experiments conducted
C. Detection and Re-estimation in this paper.

As discussed in Sectionll-A, before estimating an appkanc We perform the estimation on Signal-a and Signal-b with
model through the EDHMM-diff, we need to detect the ROIthe conventional HMM [4], EDHMM [10], and the proposed
for this particular appliance. For thidetection purpose, a EDHMM-diff. In Table Il, 1 represents the true mean vector of
prior model can be used as a template for this particultre emission probability function that generates the djgral
appliance. Although home appliances vary in terms of brandgs represents the true mean vector of the state durations. And
and models, the same type of appliances still share certaimnddyu are the estimated values respectively. The estimated
common characteristics in their power signals. For examplé(d)’s for each state duration for Signal-a and Signal-b are
refrigerators usually work at a power demand of 78¥200W, plotted in Fig. 6. For the EDHMM-diff model, we initialize ¢h
with roughly a 20-minute duration for each of the on/offnodel withy = (0,150) anddu = (50, 50) for Signal-a;u =
states. Such consistent patterns are observed for appsian©, 100,200) and du = (50,50, 50) for Signal-b. From the
such as refrigerator, cloth dryer, cloth washer, dish washeesults we can see that the proposed EDHMM-diff model can
oven, etc., which are common AOI's for load disaggregatisuccessfully estimate the power demands and state dwsation
and forecasting. Therefore, the pattern of a certain AOI céor multi-state power signals. The convergence of the psedo
be encoded as prior knowledge into a template EDHMMerward-backward algorithm is illustrated in Fig. 5 by shog
diff model, which can be further used to detect ROIs for thithe likelihood as a function of iteration index. It is clehat
particular appliance. the proposed algorithm converges fast under both situation

Let o = (01,09,...,0,...,0r) denote the observations. We also can see that the conventional HMM and EDHMM
Definewindow:, .., (O) as the sequend@y, , ot, +1,-.-,01,), @ do a good job on estimating the “apparent” emission means.
window of signals from time; to ¢,. Given a template model However, both of them cannot deal with the “aggregating
M., the likelihood of M given the window of signals can beeffect”, which is critical for estimating appliance load®rh
computed by using Eq.(20), denoted &&vindow,,.+,). By aggregated power signals. In this set of experiments, since
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Algorithm 1 The Forward-backward Algorithm for the EDHMM-diff
Setiter = 1, lkhprev = 0.
While iter < maxlter and Alkh < threshold
1: Initialize a4, att = 2 according to Eq.(11).
2: Forward Induction: fort =3,...,T
Compute and storey|;_; using Eq.(13)g: using Eq.(14),S; using Eq.(15), andyt‘1 using Eq.(16).
3: Initialize B: att = T according to Eq.(12).
4: Backward Induction: fort =T —1,...,2
Computeg; in Eq.(17),e; in Eq.(18), andS} in Eq.(19).
Compute and stor§r in EQ.(21), Dy jr in EQ.(23), andyy 7 in Eq.(24).
5: Update the parameters:
A;; in Eq.(25), P;(d) in EQ.(26), andi;,; in Eq.(27).
6: Compute the likelihood:
lkhcurr In EQ.(20), Alkh = |lkhcurr — lkhpreo|.
7: Setiter = iter + 1, lkhprev = lkhcurr.
end While

TABLE I: The proposed forward-backward algorithm for the HRM-diff model.

Signal-b with 3 states

Signal-a with 2 states 5.4 Diration Distribution for Signal-a

Duration Distribution for Signal-b

150, — state-1 300, 0.5
\Lale—zl ——state-1|
-~ -state-2)
100 03 200 0.4 I state-3
g aof 203
. H oo = Zo.
g 50 gO-Z all 2 100 K]
s & i i”\ e o2
v
0 01 I 0 0.1]
A 1
%100 0 300 400 500 % 20 40 60 80 100 0% 100 ] 400 500 % 20 40 60 80 100
Time Duration Time Duration
(a) Signal-a (b) P(d) for Signal-a (c) Signal-b (d) P(d) for Signal-b

Fig. 4: We show the signals and the state duration distobstiof the synthetic signals used the first set of experimants
Section IlI-A. Abstract indices are used for both axis withanits.

| Signal | Method | u | i I du | du |
EDHMM-Gifft || (0, 100.00) 0, 100.37) 30, 20) 30, 20)
Signal-a [ THMM (0, 100.00) (108.18, 207.95) (30, 20) -
EDHVIM (0, 100.00) | (107.96, 206.99) (30, 20) GL, 20)
EDHMM-Giff || (0, 70, 250)| (0, 70.66, 249.67) || (30, 20, 30)| (28, 20, 32)
Signal-b | HMM (0, 70, 250) | (83.98, 153.94, 334.15)| (30, 20, 30) —
EDAVM (0. 70, 250) | (83.99, 154.08. 330.57]| (30, 20. 30)| (31, 18, 30)

TABLE II: Estimation results of HMM, EDHMM, and the propos&DHMM-diff on the synthetic data.

the DC value added to Signal-a is generated randomly, the
conventional HMM and EDHMM will give different (and
incorrect) estimates for the same underlying load signalksnw
different DC values are added.

-400

-500

-600

=700 g

In the second set of experimentswe demonstrate how to -800
use the proposed EDHMM-diff model to perform detection,
given a specific appliance template. We would want our model
to give higher log-likelihood scores for signal fragmentseh

are similar to the template, and lower log-likelihood seoia
signal fragments that are distinct from the template. It dstiv

noting that, random DC values are added to the generated o . -
signals to simulate the “aggregating effect’. The templafe'g- 5:_The Iog—hkehhooq values as a functu_)n 01_‘ the iteoat
model M, used here is withu = (0, 150) anddy = (50, 50), index in the EDHMM-diff model when estimating Signal-a
which is similar to Signal-a. The log-likelihood scores oftnd Signal-b.

the template given different signals are shown in Table Il

along with the parameters of the signals. From the table, we

can see that Siganl-a, Signal-a3, and Signal-a4 get highsodel. And we can also see that the EDHMM-diff model
log-likelihood scores due to their similarity to the tentpla takes both power demands and state duration distributions

Log Likelihood

-900

-1000

—&-Signal-a| |
—%— Signal-b

-1100

-1200
0 2 4 6 8 10

Iteration
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Estimated Duration Distribution for Signal-a  Estimated Duration Distribution for Signal-h

04 — 08 — a number of AOI's and then average the models; (2) set
o ' s o T state2 the parameters in the template manually, according to the
z " z specifications reported by agencies such as Electric Power
§°-2 f §0-4 Research Institute (EPRI). We take the second approactrin ou
s I Yl experiments due to its simplicity. To demonstrate the reébus
a il ness of the proposed method, we use the same template models
TTTH w % & 1o K R T R for the same devices across all the houses. The template-for
(a) EstimatedP(d) for (b) EstimatedP(d) for frigerator is » = (0,150), 0 = (10,10),du = (50,50), do =
Signal-a. Signal-b. .(5, 5),A=10,1;1,0],7 = [1,0]. And the template fodryer
. is 12(0,1000),0 = (50,100),dy = (1,1),do = (5,5), A =
Fig. 6: EstimatedP(d) for Signal-a and Signal-b. 0,1;1,0], 7 = [1,0].
| % | di [ LogTkelihood | We set the_ length of the sliding windo_w to be 5Q min-
Mo (O, 150) | (50, 50) | = | ut_es (100 points at the_current granl_JIarlty), and sllc_je the
Sarar 5 windows for every 25 minutes (50 points correspondingly).
gnal-a | (0, 100) [ (30, 20) 1.46 . o
Signalal| (0, 100) | 3, 2) 1517 After cc_)r_nputmg.the likelihood scores of the ter_‘nplate quel
Signal-a2 | (0, 100) | (50, 60) 083 for individual windows, we select the top windows with
Signal-a3 | (0, 500) | (30, 20) -25.32 likelihood scores above a threshold as training signalster
Signal-a4 | (0, 200) | (30, 20) -2.20 re-estimation purpose.

We apply the “ detect and re-estimate” procedure for
refrigerator andcloth dryeron the signals from 6 houses in the
REDD data set. The estimation results are reported in Table
IV. It is worth noting that, since we model the state duration
distribution as a discrete Gaussian function, for somes;ase
obtain Gaussian mixtures fdf(d) with multiple centers. We
report all these centers of mixtures in Table IV. The Gaumssia
mixtures actually give better estimations of the state tiloma
than a single Gaussian density function, since some states o
certain appliance might have different durations. In addit
except housel and house3, there are no valid cloth dryer
B. Experiments on Real Data signals in other houses.

The main motivation of the proposed EDHMM-diff model As mentioned above, there is no reliable ground truth for
is to estimate individual home appliance loads from the @ggithe REDD data set, so that we manually calculated the means
gated power signals. In this section, we test on aggregat#d Iof power demands for all the devices as ground truth. Since
power signals collected from real houses. We dggerator it js hard to manually determine the duration distributions
and dryer as AOI examples in the following experimentswe didn’t report ground truth in the table. To verify the
and the EDHMM-diff can be generalized to other appliancgferformance of the proposed method, we plot the detected
if needed. Both Reference Energy Disaggregation Data S@jnals of the refrigerators and cloth dryers from indidtiu
(REDD) and our own data collected by nedffsystem from houses, along with the estimated state duration distdbati
the Energy Aware Technology Iricare investigated. in Fig.8. By manually examining the signals, we can see that

1) Experiments on Reference Energy Disaggregation Dafige estimation results listed in Table IV are reasonabléHer
Set (REDD): The REDD data set is proposed by [8], whicthome appliance load modeling purpose.
contains both whole-home and circuit/device specific elect
consumptions for a number of real houses over several months2) Experiments on the Energy Aware Datdhe Energy
To simulate the low frequency real power signals that we cAware data is collected by the neHtsystem monitoring
usually access through smart meters, here we only use @it apartment in Vancouver. There are around 10 appliances
aggregated whole-home real power signal and down-samp#&ning in the apartment and several major appliances &re su
it to % Hz (1 reading per 30 seconds) in our experiment8letered. To simulate the low frequency real power signals
Although they claimed the breakdown signals were providedfat we can usually access through smart meters, here we
those are actually circuit level signals and have corrmgtior Only use the aggregated whole-home real power signal and
most of the devices, which results in no ground truth for ofown-sample it tog; Hz (1 reading per 30 seconds) in
estimations. our experiments. We follow the same experiment protocol

As discussed in Sectionll-C, a template model is requiré$ in the previous section, and perform “detection and re-
for the detection purpose before we can extract the AORSstimation” for the refrigerator and the dryer as AOI's. Fue
from aggregated signals. There are two ways to construct figéfigerator, the estimated = (0,114.73), and for the dryer

templates: (1) estimate models from real signals by mangor the estimatedi = (0,3786.7). The detected signals of the
refrigerator and the dryer and their corresponding es#rdhat

Lhttps:/Avww.neur.io/ duration distributions are shown in Fig. 7.

TABLE IlI: The log-likelihood scores for different signalsed
in the second set of experiments in Section IlI-A

into consideration. For example, Signal-al has similasut
distinctdu, and Signal-a3 has similai but distincty, while
both get lower log-likelihood scores. Therefore, we canthse
log-likelihood score estimated by the template model tectet
similar signal fragments from aggregated power signals.
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Fig. 7: Detected signals and corresponding estimated idardistributions for Energy Aware data. Y axis is power int&a

and X axis is time in a unit of a half minute.

House ID Eiefrigerator 7]
B P dp
1 (0, 187.90) | (0, 180.56) (17,739, 57), 19)
2 (0, 243.26) | (0, 243.08) | ((56, 64, 68, 100), 38) 18]
3 (0, 122.23) | (0, 114.26) | ((37, 50), (25, 28, 34))
4 (0, 113.67) | (0, 111.40) ((80, 84), 44)
5 (0, 137.29) | (0, 138.72) ((76, 95), 33) [0
6 (0,153.26) | (0, 151.17) | ((29, 35, 39, 45), 37)
Cloth Dryer
B P dp [10]
1 (0, 1646.51)| (0, 1511.96) ((1,10), 2)
3 (0, 2229.74)| (0, 2240.87) 2,3)

TABLE |V: Estimation results on the REDD data sat.
denotes the ground truth of the mean of power demand, and
i denotes the estimated value. Add denotes the estimated
mean of duration distribution.

IV. CONCLUSION

In this paper, we tackle the appliance load modeling prob-
lem from aggregated smart metered data by propose a Explicit
Duration Hidden Markov Model with Differential observati®
model and a specialized forward-backward inference and
estimation algorithm. The proposed method can succegsfull
model the state durations and overcome the problem caused
by “aggregating effect”. We demonstrate the effectiveradss
the proposed method on synthetic data. The estimationtsesul
on real data, the REDD data set, show that the proposed
EDHMM-diff model can be a promising solution for home
appliance load modeling when only observing aggregatdd rea
power signals.
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Fig. 8: The REDD data set: Detected signal fragments ancesponding estimated state duration distributions forediifit
appliances, where houskrefrigerator. (a)(b), housel dryer. (c)(d), house2 refrigerator. (e)(f), house3 refrigerator. (g)(h),
house3 dryer. (i)(j), house 4 refrigerator. (k)(I), house5 refrigerator. (m)(n), and houseb refrigerator. (0)(p). Y axis is
power in Watts, and X axis is time in a unit of a half minute.



