
An Adaptive Descriptor Design for Object Recognition in theWild

Zhenyu Guo, Z. Jane Wang
Dept. of ECE, University of British Columbia

2332 Main Mall
Vancouver, BC Canada V6T 1Z4
{zhenyug, zjanew}@ece.ubc.ca

Abstract

Digital images nowadays show large appearance vari-
abilities on picture styles, in terms of color tone, contrast,
vignetting, and etc. These ‘picture styles’ are directly re-
lated to the scene radiance, image pipeline of the camera,
and post processing functions (e.g., photography effect fil-
ters). Due to the complexity and nonlinearity of these fac-
tors, popular gradient-based image descriptors generally
are not invariant to different picture styles, which could de-
grade the performance for object recognition. Given that
images shared online or created by individual users are
taken with a wide range of devices and may be processed
by various post processing functions, to find a robust ob-
ject recognition system is useful and challenging. In this
paper, we investigate the influence of picture styles on ob-
ject recognition by making a connection between image de-
scriptors and a pixel mapping functiong, and accordingly
propose an adaptive approach based on ag-incorporated
kernel descriptor and multiple kernel learning, without es-
timating or specifying the image styles used in training and
testing. We conduct experiments on the Domain Adaptation
data set, the Oxford Flower data set, and several variants
of the Flower data set by introducing popular photography
effects through post-processing. The results demonstrate
that the proposed method consistently yields recognition im-
provements over standard descriptors in all studied cases.

1. Introduction

Digital images can be different in terms of color tones,
contrast, clarity, vignetting, and etc. Here we refer such
characteristics of digital images aspicture styles. With the
popularity of photo editing and sharing services such as In-
stagram, Facebook and Flickr that are available on mobile
devices, many digital images generated by users nowadays
are captured by a wide range of devices (e.g., smart phones
and digital slrs) and processed using different photography
effect filters (e.g., “lomo-fi” and “lord-kelvin” availablein

(a) (b)

(c) (d)

(e) (f)
Figure 1. We show 3 pairs of images about the same objects with
different picture styles. The differences between (a) and (b) are
mainly due to different scene radiances (illumination condition).
(c) and (d) are of the same object and taken under the same condi-
tion by a digital SLR and a webcam respectively, representing two
different image pipelines. (f) is an image obtained by applying
InstaramTM lomo-fi effect filter as a post-processing step to image
(e), representing one specific photography effect.

Instagram) to get distinct picture styles with strong personal
artistic expressions. Recall that the goal of object recogni-
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Figure 2. In the upper left is an original image from the Oxford Flower data set. In the lower left is thelomo-fi version of the image.
We select two regions at the same location from the two images(indicated by red boxes), and show the pixel patch, gradient, and SIFT
descriptor for each of them. We then plot the difference between two descriptors in the right.

tion is to recognize natural scenes [14], daily objects [5],
or fine-grained species [18, 23] based on digital images, it
is natural to extend the scope of object recognition from
standard laboratory images to photos in the wild for daily
use. Although there are a large number of picture styles,
their contributing factors can be separated into 3 major cat-
egories: (1) scene radiance, (2) image pipeline, and (3) post
processing. In Fig. 1, we show three pairs of images of the
same objects to illustrate different picture styles.

To illustrate the connection between image descriptors
with picture styles, we take an image from the Oxford
Flower data set and process it with a popularInstagramef-
fect filter: lomo-fi. We select two patches at the same lo-
cations for these two images respectively, and compute the
gradients and SIFT descriptors of the patches, which are
shown in Fig. 2. Although these two image patches are
almost the same except the color tones, we note that the re-
sulting SIFT descriptors differ with each other about 33% in
terms ofl2 norm, which probably will make them be quan-
tized into two dictionary words in the bag-of-word model.
Since the difference is significant for two images that are
almost identical in content, it is reasonable to assume that
the difference could be more significant for two content-
different images with different picture styles within one ob-
ject class. Therefore, when images used for training and
testing don’t have similar picture styles, the accuracy of ob-
ject recognition will degrade. Among the previous related
literature, onlyDomain Adaptation(DA) considers the sit-
uation [19] where some images are taken by a Digital SLR
and the rest are taken by a webcam under similar conditions
(e.g. (c) and (d) in Fig. 1), and images used in training and
in testing are taken by different devices.

Although the DA touches the picture style issue by con-
sidering two sets of images from different devices as two

domains, in their algorithms the domain lable of an image
has to be specified. However, in real world applications, im-
ages collected from Internet have no “domain labels”, and
the training /testing sets are always mixtures of images with
various picture styles. Furthermore, more picture styles can
be created by users through post-processing (e.g. Instagram
users or iphone camera app users) besides the ones due to
different cameras. Therefore, with a more general setting
than DA, developing robust object recognition algorithms
becomes useful and challenging, which should overcome
the difficulties introduced by different picture styles with-
out knowing the style information.

In this paper, we study this general object recognition
problem with a focus on picture-style-considered descriptor
design. Existing approaches usually ignore the differences
of picture styles when computing the standard descriptors,
and then try to reduce the influences of picture styles in the
corresponding feature spaces. Such indirect methods are
limited by the feature spaces and always require the style
information of the images (e.g. the domain labels in DA).
In this paper, we tackle the problem in a direct way. Sup-
pose a set of images is denoted byA. For an imageI ∈ A,
we define a pixel mapping functiong : [0, 255] → [0, 255]
that can be applied to all the pixels inI and obtain a new im-
ageg(I). LetB denote the set of images such that∀I ∈ A,
g(I) ∈ B. For convenience, we denoteB = g(A). From
our observation, we assume that the pixel mapping func-
tiong would influence the object recognition accuracy when
the images used in training and testing are processed byg
(which is confirmed later by experimental results in Section
4.2). Therefore, we propose searching an optimalg∗ that
can achieve the best recognition accuracy when all images
used are processed byg∗. The searching ofg∗ could be dif-
ficult since there is no clear connections between a general
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functiong and the empirical risk of the classifier used in ob-
ject recognition. However, by definingg based on a convex
combination of several basis functions, in this paper, we in-
corporate the pixel mapping functiong into image descrip-
tors, and we propose an adaptive descriptor design based on
kernel learning. Though we derive the method based on ker-
nel descriptors [2], it is worth mentioning that the proposed
approach can be extended to existing standard descriptors
as a general framework. In the following, we discuss some
related works in Section 1.1. Then we revisit the kernel de-
scriptors in Section 2. We present the proposed method in
Section 3 and report the experiments in Section4.

1.1. Related Works

Domain Adaptation is probably the most related area to
our problem. In the data set introduced in [19], images from
dslr and webcamare different in picture styles, which is
similar to the focus of this paper. Metric learning based
methods [13,19], Grassmann manifold based methods [7,8],
and output kenrel space based method [10] were proposed.
As we stated, these DA methods cannot solve our problem
in general situations where the domain label information is
unknown and hard to specify for images in the wild. Works
in [9,12,26] estimate the model of image pipelines, but such
estimations are difficult and have no clear relationships with
the descriptor and recognition accuracy. In the area of key
point matching, several robust descriptors were proposed,
such as DAISY [21], GIH [15] and DaLI [17]. Descriptor
learning methods [20, 24, 25] were also developed to de-
termine the parameters of the descriptors through optimiza-
tion. All these methods are designed for key point matching
between image pairs. The different goal leads to descriptors
that are not suitable for object recognition, since they are
too discriminative to tolerate the within-class variancesof
object categories.

2. Kernel Descriptor Revisit

The kernel descriptor (KDES) is proposed by Bo et. al.
in [2], which gives a unified framework and parametric form
for local image descriptors. Letz denote a pixel at coor-
dinatez, m(z) denote the magnitude of image gradient at
pixel z, andθ(z) denote the orientation of image gradient.
And m(z) andθ(z) are normalized by the average values
of one patch containingz into m̃(z) andθ̃(z) respectively.
The gradient match kernel between two image patchesP
andQ can be described as

kgrad(P,Q) =
∑

z∈P

∑

z′∈Q

m̃(z)m̃(z′)ko(θ̃(z), θ̃(z
′))kp(z, z

′),

(1)
where kp(z, z

′) = exp(−γp||z − z′||2) is a Gaussian
position kernel andko(θ̃(z), θ̃(z′)) = exp(−γo||θ̃(z) −
θ̃(z′)||2 is a Gaussian kernel over gradient orientations.

And m̃(z) = m(z)/
√
∑

z∈P m(z)2 + ǫg, where ǫg is
a small value. Orientation is normalized as̃θ(z) =
[sin(θ(z))cos(θ(z))]. To build compact feature vectors
from these kernels for efficient computation, [2] presenteda
sufficient finite-dimensional approximation to obtain finite-
dimensioned feature vectors and to reduce the dimension
by kernel principal component analysis, which provides a
closed form for the descriptor vectorFgrad(P ) of patchP
such thatkgrad(P,Q) = Fgrad(P )TFgrad(Q). And Bo
et. al. [2] also showed that gradient based descriptor like
SIFT [16], SURF [1], and HoG [4] are special cases under
this kernel view framework.

For the image-level descriptors, Bo and Sminchisescu
[3] presented Efficient Match Kernels (EMK) which pro-
vide a general kernel view of matching between two images
as two sets of local descriptors. And they demonstrated that
the Bag-of-Word (BoW) model and Spatial Pyramid Match-
ing are two special cases under this framework. LetX and
Y denote the set of local descriptors for imagesIx andIy
respectively.x ∈ X is a descriptor vector computed from
patchPx in imageIx. When applying EMK on top ofkgrad,
we can have the image-level kernel as

Kemk(Ix, Iy) =
1

|X ||Y |

∑

x∈X

∑

y∈Y

kgrad(Px, Py), (2)

where | · | is the cardinality of a set. [3] provides a
closed-form approximation of the feature vector such that
Kemk(Ix, Iy) = Φ(Ix)

TΦ(Iy), which makes the match
kernel can be used in real applications with efficient com-
putation and storage.

3. Proposed Method

3.1.g-incorporated Kernel Descriptor

As stated in Introduction, we want to apply a pixel map-
ping functiong to images used for object recognition. In
this section, we will give the relationship between pix-
els and descriptors under the functiong. Since a gen-
eral function is hard to learn, we define a functiong =
∑N

i=1 aigi, ai ≥ 0, which is a convex combination of basis
functions. For the convenience of presentation, let’s look
at an simple example that contains only two basis functions
g1 andg2, whereg1(u(z)) = u(z) andg2(u(z)) = u(z)2.
Theng(u(z)) = a1u(z) + a2u(z)

2, wherea1, a2 are non-
negative,z is the position of a pixel from image patchP ,
andu(z) is the pixel value atz. Let g(P ) denote the new
patch after applyingg on the pixels ofP . Now the image
gradient atz of g(P ) becomes

▽g(u(z)) = g′|u(z)▽u(z)
= (a1 + 2a2u(z))▽u(z),

(3)

wherea1 + 2a2u(z) is a non-negative real number and
▽u(z) is a vector. Letmg(z) andθg(z) be the magnitude
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and orientation of▽g(u(z)), andm(z) andθ(z) be corre-
sponding values of▽u(z). It is clear thatθg(z) = θ(z),
thereforeθ̃(z) = θ̃g(z), which means the orientation is in-
variant to the pixel mapping functiong applied to the image
patch. Under the assumption thata1, a2 ≥ 0, we have

mg(z) = ||▽g(u(z))||
= ||(a1 + 2a2u(z))▽u(z)||
= a1||▽u(z)||+ a2||▽u(z)

2||
= a1||▽g1(u(z))||+ a2||▽g2(u(z))||.

(4)

Notice that the magnitudes used inkgrad are normalized
based on local patches, which is important to make the con-
textual information comparable for different patches. Let
m1(z) andm2(z) denote||▽g1(u(z))|| and ||▽g2(u(z))||
respectively. To retain the simple convex combination form
of mg(z), we propose a new local normalization

m̂g(z) = a1m̃1(z) + a2m̃2(z), (5)

where m̂g(z) denotes the new normalized magnitude of
mg(z), andm̃1(z) andm̃2(z) are normalized byl2 norm as
mentioned in Section 2. It is clear thatm̂g(z) is also locally
normalized and still comparable for different patches. Since
the goal of this paper is object recognition, any appropriate
local normalization method is acceptable.

Now given two image patchesg(P ) and g(Q), which
are obtained by applying the functiong to patchesP andQ
respectively, we derive the gradient match kernel between
them as following

k̂grad(g(P ), g(Q))

=
∑

z∈g(P )

∑

z′∈g(Q) m̂g(z)m̂g(z
′)ko(θ̃g(z), θ̃g(z

′))kp(z, z
′)

=
∑

z∈P

∑

z′∈Q(a1m̃1(z) + a2m̃2(z))(a1m̃1(z
′) + a2m̃2(z

′))

ko(θ̃(z), θ̃(z
′))kp(z, z

′)

= a1a1
∑

z∈P

∑

z′∈Q m̃1(z)m̃1(z
′)ko(θ̃(z), θ̃(z

′))kp(z, z
′)

+a1a2
∑

z∈P

∑

z′∈Q m̃1(z)m̃2(z
′)ko(θ̃(z), θ̃(z

′))kp(z, z
′)

+a2a1
∑

z∈P

∑

z′∈Q m̃2(z)m̃1(z
′)ko(θ̃(z), θ̃(z

′))kp(z, z
′)

+a2a2
∑

z∈P

∑

z′∈Q m̃2(z)m̃1(z
′)ko(θ̃(z), θ̃(z

′))kp(z, z
′)

= a1a1kgrad(P,Q) + a1a2kgrad(P,Q
2)

+a2a1kgrad(P
2, Q) + a2a2kgrad(P

2, Q2),
(6)

whereP 2 andQ2 denote the pixel-value-squared patches
from P andQ. And it is worth noting that̂kgrad above
is different from the standardkgrad in Eq. (1), since we
define a different normalization approach in Eq. (5). Since
g =

∑2
i=1 aigi, Eq. (6) indicates

k̂grad(g(P ), g(Q)) =

2
∑

i=1

2
∑

j=1

aiajkgrad(gi(P ), gj(Q)).

(7)
Via Eq. (7), we successfully incorporate the pixel map-
ping functiong into image descriptors, which we callg-
incorporated KDES.
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Figure 3. Plots of the proposed basis functions.

To see this connection at the image-level, we plug Eq.
(7) into Eq. (2) and have the image-level kernel

Kemk(g(Ix), g(Iy) =
1

|X||Y |

∑

x∈X

∑

y∈Y k̂grad(g(Px), g(Py))

= 1
|X||Y |

∑

x∈X

∑

y∈Y

∑2
i=1

∑2
j=1 aiajkgrad(gi(Px), gj(Py))

=
∑2

i=1

∑2
j=1 aiaj(

1
|X||Y |

∑

x∈X

∑

y∈Y kgrad(gi(Px), gj(Py)))

=
∑2

i=1

∑2
j=1 aiajK(gi(Ix), gj(Iy))

=
∑4

m=1 dmKm,
(8)

wheredm andKm have one-to-one correspondence toaiaj
andK(gi(Ix), gj(Iy)), and the order does not matter since
they are exchangeable in the summation. Since we limitai
to be non-negative when we defineg, dm’s are also non-
negative. In addition,Km’s are positive definite (PD) ker-
nels, which makesKemk here a convex combination of PD
kernels and can be used in standard multiple kernel learning.
Therefore, we successfully transfer the problem of search-
ing optimalg∗ into the problem of learning the optimal ker-
nel weights through Eq. (8). In general, forN basis func-
tions (i.e.,gi’s), there will beN2 base kernels in Eq. (8).

3.2. Basis Functionsgi’s

From Section 3.1, we know that the selection of ba-
sis functions (i.e.,gi’s) is as important as learning the pa-
rameters. By exploring the pixel mapping functions (e.g.,
photography effect filters) used for photography, we note
that Gamma correction and the “S” curve are two major
categories of photography effects. Gamma correction can
brighten (γ < 1) or darken (γ > 1) the images, and the
“S” curve can increase the contrast. Although these pop-
ular functions are proposed for visual pleasure of photos,
we believe that they can also benefit the construction of bet-
ter image descriptors. For example, brightening can bring
back more details in the dark part of an image; Darkening
can surpass the irrelevant areas of an object image, since
most images are correctly exposed for the center object;
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Figure 4. From left to right: the original imageI , g1(I), g2(I), andg3(I).

Higher contrast emphasizes the texture and shapes. There-
fore, these three types of functions make good candidates
for basis functions. However, a power-law function used in
Gamma correction contains a free parameter that will be left
in the gradient expression and cannot be combined using
simple addition, therefore a good approximation is desired.
Since the “S” curve doesn’t have a standard formulation, we
adopt the sigmoid function in our algorithm. In this paper,
the three basis functions are:

g1(x) = 0.3 ∗ (log(2x+ 0.1) + | log(0.1)|) (9)

g2(x) = 0.8x2 (10)

g3(x) =
1

1 + e−8(x−0.5)
, (11)

wherex takes a value from[0, 1], representing a scaled im-
age pixel value. The plots of these functions are shown
in Fig. 3, from which we can see thatg1 could serve as
a brightening function, similar to gamma correction when
γ < 1, g2 has a shape like gamma correction whenγ = 2
and thus could be used as darkening, andg3 has a “S” shape
that increases the contrast by brightening the bright regions
and darkening the dark regions. The effects of these func-
tions can be seen from Fig.4.

3.3. Learning of the Parameters

After defining the basis functions, the next question is
how to estimate the weight coefficients for object recogni-
tion. According to Eq. (8), the image-level kernel can be de-
composed as a convex combination of several base kernels.
We adopt General Multiple Kernel Learning (GMKL) [22]
and put non-negative constraints on the kernel coefficients.
We also notice that some weight coefficients can be the
same (e.g.a1a2 = a2a1), though our experiments show
that the results are similar with or without the equal-weight
constraint. Since the number of kernels in our algorithm is
not large, we use the standard GMKL withl2 norm regular-
ization.

3.4. Adaptive Descriptor Design

In this section, we summarize the major steps of the pro-
posed adaptive descriptor design as follows:

Step-1 Process imageI from the data set with{gi}3i=1 shown
in Eq. (9) (10) (11), to obtain{gi(I)}3i=1.

Step-2 Compute gradient-based descriptors forI and
{gi(I)}

3
i=1 to get 4 descriptors.

Step-3 Build a codebook using K-means by sampling from all
training images and all 4 descriptors of each image.

Step-4 Quantize each image from training and testing sets into
4 image-level feature vectors based on the descriptors.

Step-5 For each pair of images, compute linear kernels be-
tween any two of their 4 image-level features to get 16
base kernels, as shown in Eq. (8).

Step-6 Train GMKL on 16 base kernels to obtain optimal ker-
nel weights.

Our proposed method does not require prior knowledge
on picture styles of training or testing images, and the Adap-
tive Descriptor Design (ADD) can work as a general frame-
work. For instance, in Step-1, other proper functions can be
used here as basis functions, besides the ones we use here.
According to the analysis by [2], most gradient-based de-
scriptors, such as SIFT [16], SURF [1] and HoG [4], are
special cases of the kernel descriptor, which all can be used
in Step-2 to compute descriptors from image patches. In ad-
dition, the quantization method used in Step-4 can be cho-
sen from Bag-of-word, Spatial Pyramid Matching and Effi-
cient Match Kernel. In other words, our proposed algorithm
can be used widely to improve previous methods which are
based on gradient descriptors and SVMs.

We also want to point out that the proposed ADD is es-
sentially asinglefeature method, although multiple kernels
are used for estimating the coefficients. For an imageI from
the data set, it is equivalent to extracting standard descrip-
tors ofg(I) and using a single kernel SVM based on these
descriptors for classification.
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Source Target standard KDES ADD AK ADD GMKL

dslr webcam 49.30± 1.26 50.28± 1.02 54.81± 1.07
webcam dslr 46.67± 0.80 48.17± 0.99 50.33± 0.79
amazon dslr 47.43± 2.79 48.57± 2.51 53.90± 2.67

Table 1. Experiments on the DA data set based on the KDES de-
scriptor. The average recognition accuracy in % is reportedand
the corresponding standard deviation is included.

4. Experiments

In this section, we describe the details of experiments
and report the recognition performances of the proposed
method when compared with standard gradient-based im-
age descriptors. We conduct object recognition on the Do-
main Adaptation data set [19] and the Oxford Flower data
set [18]. We also process the images from the Oxford
Flower data set using several popular photography effect fil-
ters in InstagramTM1.

4.1. Domain Adaptation Data Set

The Domain Adaptation data set was introduced by [19],
where images for the same categories of objects are from
different sources (called domains):amazon, dslr andweb-
cam. As we stated in Introduction, the two domainsdslr
andwebcamonly differ in picture styles which are due to
different image pipelines. Applying the proposed ADD al-
gorithm, we adopt KDES + EMK and SURF+BoW two sets
of features to demonstrate that ADD can work as a general
framework to improve the performances of gradient-based
descriptors in general. We follow the experimental protocol
used in [13, 19] for semi-supervised domain adaptation. It
is worth noting that we don’t use any domain-label infor-
mation to specify the picture styles of images, our proposed
method could figure out an optimal descriptor automatically
based on the training set.

4.1.1 ADD based on KDES and EMK

We extract KDES descriptors of all the images in three do-
mains and create a 1,500-word codebook by applying K-
means clustering on a subset of all 4 types (original + 3
variants for each images) of descriptors fromamazondo-
main. And then this codebook is used to quantize 4 types
of descriptors of all 3 domains of images using EMK. Af-
ter obtaining the 16 linear kernels by computing the in-
ner product of every two types of descriptors between two
given images, we conduct object recognition experiments
using SVMs for: the standard KDES, the average kernel
of these 16 kernels (AK), and the GMKL based on 16 ker-
nels. We show the results in Table1, from which we can see
that the proposed Adaptive Descriptor Design outperforms

1We use Adobe PhotoshopTM action files created by Daniel Box, which
can give similar effects as InstagramTM .

Source Target standard SURF ADD AK ADD GMKL

dslr webcam 37.05± 1.72 41.61± 1.05 42.00± 1.16
webcam dslr 30.09± 0.81 36.57± 0.75 36.45± 0.49
amazon dslr 34.49± 1.30 40.62± 1.59 36.19± 2.04

Table 2. Experiments on the DA data set based on the SURF de-
scriptor. The average recognition accuracy in % is reportedand
the corresponding standard deviation is included.

the standard KDES in all cases for both the average kernel
and an optimal kernel learned by GMKL. Particularly, the
ADD GMKL method improves about 6% from the standard
KDES in all cases, which is close to the improvements ob-
tained by domain adaptation methods [7, 11, 13, 19] where
domain-label information is used.

4.1.2 ADD based on SURF and BoW

To show the general applicability of the proposed ADD,
we follow previous methods [7, 11, 13, 19] to extract stan-
dard SURF descriptors from the original and 3 variants of
each image, then a 800-word codebook is created from
amazondomain. All images in 3 domains are quantized
by this codebook using Vector-quantization to get Bag-of-
Word features. After obtaining 16 linear kernels, we also
conduct experiments using the standard KDES, the average
kernel, and an optimal kernel learned by GMKL. We re-
port the results in Table 2. The proposed ADD methods
also outperform the standard SURF descriptor in all cases.
However, in this experiment, the average kernel approach
gives better results than that of the GMKL learned kernel in
some cases. We think the worse performance of the GMKL
based ADD is due to the lack of training, since the SURF
descriptors are sparsely extracted from images and only 11
(8 from the source domain and 3 from the target domain)
training images per category are used. But the results of
ADD AK and ADD GMKL are sufficient to show that the
proposed Adaptive Descriptor Design can be applied on top
of gradient-based descriptors widely, for different tasks.

4.2. Oxford Flower Data Set

Oxford Flower data set [18] contains 1360 images for 17
flower species. To simulate the images used in real world
applications, which are taken by different devices and under
various pixel-level post-processing, we process the images
from the Oxford Flower data set using 3 photography effect
filters that are popularly used in InstagramTM: lomo-fi, lord-
kelvin, andNashville. Together with the original images, we
obtain an image data set of 4 effects. We keep the images
generated from the same original images with same IDs.
Note that images from the original Oxford Flower data set
were collected from many different sources (e.g., they were
taken by different devices under different conditions), the
factors of scene radiance and image pipelines are already
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Figure 5. From left to right: the original image, withlomo-fi, lord-kelvin, andNashvilleeffects.

taken into consideration. We show an example image and
its variants processed by 3 photography effect filters in Fig.
5, and these 4 images have the ID.

Since KDES gives a general framework for gradient-
based descriptors, we only use KDES in the experiments
in this section. For convenience of expression, we refer
the data sets obtained by applying effect filters by picture
styles. Similar as in Section 4.1.1, we extract KDES for all
images from all 4 styles (original, lomo-fi, lord-kelvin, and
Nashville). We construct a 2,000-word codebook by sam-
pling 4 types of descriptors from theoriginal style. Then
all images from 4 effects are quantized using EMK with
this codebook.

To simulate the real image collections as mixtures of im-
ages with different picture styles, we first generate an ex-
perimental data set from the 4 styles, then split this data
set into training and testing sets. 1)Experimental data set
generation: M styles are chosen first, from which we want
to sample images. For a given ID, only one image is uni-
formly randomly selected fromM styles (i.e. one and only
one image from Fig. 5 is sampled) to form a experimental
data set. This generation procedure makes sure that images
with the IDs will not appear in training and testing together.
2) Training/testing sets splitting: after obtaining an ex-
perimental data set, we randomly split the set into training
and testing sets with equal sizes. Therefore, there are equal
numbers of images from each style appearing in training
and testing. Different from domain adaptation, images used
here in training or testing are not separated according to
domain labels, which is more similar to real-world appli-
cations where no information of picture styles are available.
We perform object recognition using SVMs for the standard
KDES, average kernel, and the optimal kernel by GMKL.
We report the results for 10 runs of experimental data set
for each scenario in Table 3. For each run, an experimental
data set is randomly generated and split into training and
testing.

From Table 3 we can clearly see that the proposed
ADD GMKL method is superior than the standard KDES
in all cases. From the top 4 rows of Table 3, we note that the
recognition accuracy decreases when images with different
picture styles are used, which confirms the motivation we
described in Section 1. In addition, according to the single

style1 style2 standard KDES ADD AK ADD GMKL

original n/a 69.35± 2.20 67.76± 2.65 74.32± 1.77
original lomo-fi 65.85± 1.66 64.24± 1.88 71.62± 1.04
original lord-kelvin 67.53± 1.32 66.06± 1.80 72.82± 0.69
original Nashville 66.44± 1.73 64.62± 1.39 71.88± 0.72
lomo-fi n/a 65.12± 1.48 63.97± 1.62 69.82± 0.70
lord-kelvin n/a 68.09± 1.38 67.06± 1.40 72.62± 1.38
Nashville n/a 67.03± 1.10 66.85± 1.28 71.68± 1.94
all n/a 64.56± 0.90 63.24± 0.58 69.88± 0.51

Table 3. Results on the Oxford Flower data set. The average
recognition accuracy in % is reported and the correspondingstan-
dard deviation is included.

style experimental results, the pixel mapping functiong can
influence the recognition accuracy through the computation
of theg-incorporated descriptors for all images, which sup-
ports the proposed idea that learning an optimal functiong∗

can improve object recognition when using gradient-based
descriptors. Further, when images are uniformly sampled
from all 4 styles, the standard KDES descriptor yields worst
performance, which is reasonable since the higher diver-
sity in appearances of images leads to larger differences
between descriptors of similar image patches of the same
objects.

After demonstrating that picture styles can affect
the recognition accuracy, the improved performance of
ADD GMKL shows that our proposed algorithm is an ef-
ficient solution. Recall that our ADD can be considered
as a single feature method, the proposed ADDGMKL out-
performs the state-of-art [6] by 4% on the original Oxford
Flower data set. Therefore, the Adaptive Descriptor Design
can be used widely on top of gradient-based descriptors to
further improve the recognition accuracy.

We also notice that the ADDAK method is not better
than the standard KDES. We believe it is due to the small
size of the codebook (2,000 words). Since 4 types of de-
scriptors are extracted from one image on a dense grid and
there are 1360 images in total, this codebook introduces
large distortion in quantization, which decreases the perfor-
mance of the average kernel approach.

5. Conclusion

In this paper, we focus on the effects of different pic-
ture styles of images on object recognition. After show-
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ing the connection between pixel mapping functions and
gradient-based image descriptors, we incorporate the pixel
mapping functiong into the image descriptor and propose
an Adaptive Descriptor Design (ADD) framework for ob-
ject recognition in the wild. We demonstrate that the pro-
posedg-incorporated ADD can be widely used as a gen-
eral framework based on popular image descriptors, and the
experimental results show the recognition improvements of
ADD on the domain adaptation data set, the standard Ox-
ford Flower data set and its variants with different picture
styles (photography effect filters).

Acknowledgement

This work was support (in part) by the Canadian Natu-
ral Sciences and Engineering Research Council through the
NSERC DIVA Strategic Research Network.

References

[1] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up
robust features (surf).Computer vision and image under-
standing, 110(3):346–359, 2008.

[2] L. Bo, X. Ren, and D. Fox. Kernel descriptors for visual
recognition. Advances in Neural Information Processing
Systems (NIPS), 7, 2010.

[3] L. Bo and C. Sminchisescu. Efficient match kernel between
sets of features for visual recognition.Advances in neural
information processing systems (NIPS), 2(3), 2009.

[4] N. Dalal and B. Triggs. Histograms of oriented gradientsfor
human detection. InIEEE Conference onComputer Vision
and Pattern Recognition (CVPR), volume 1, pages 886–893.
IEEE, 2005.

[5] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of
object categories.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(4):594–611, 2006.

[6] P. Gehler and S. Nowozin. On feature combination for multi-
class object classification. InIEEE International Conference
on Computer Vision (ICCV), pages 221–228. IEEE, 2009.

[7] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow
kernel for unsupervised domain adaptation. InIEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 2066–2073. IEEE, 2012.

[8] R. Gopalan, R. Li, and R. Chellappa. Domain adaptation
for object recognition: An unsupervised approach. InIEEE
International Conference on Computer Vision (ICCV), pages
999–1006. IEEE, 2011.

[9] M. D. Grossberg and S. K. Nayar. Modeling the space
of camera response functions.IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 26(10):1272–1282,
2004.

[10] Z. Guo and Z. Wang. Cross-domain object recognition via
input-output kernel analysis.IEEE transactions on image
processing, 22(8):3108–3119, 2013.

[11] I.-H. Jhuo, D. Liu, D. Lee, and S.-F. Chang. Robust vi-
sual domain adaptation with low-rank reconstruction. In

IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2168–2175. IEEE, 2012.

[12] S. Kim, H. Lin, Z. Lu, S. Susstrunk, S. Lin, and M. Brown.
A new in-camera imaging model for color computer vision
and its application.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2012.

[13] B. Kulis, K. Saenko, and T. Darrell. What you saw is not
what you get: Domain adaptation using asymmetric kernel
transforms. InIEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1785–1792. IEEE, 2011.

[14] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. InIEEE Conference on Computer Vision
and Pattern Recognition (CVPR), volume 2, pages 2169–
2178. IEEE, 2006.

[15] H. Ling and D. W. Jacobs. Deformation invariant image
matching. InIEEE International Conference on Computer
Vision (ICCV), volume 2, pages 1466–1473. IEEE, 2005.

[16] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 60(2):91–110, 2004.

[17] F. Moreno-Noguer. Deformation and illumination invariant
feature point descriptor. InIEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1593–1600.
IEEE, 2011.

[18] M.-E. Nilsback and A. Zisserman. A visual vocabulary
for flower classification. InIEEE Conference on Computer
Vision and Pattern Recognition (CVPR), volume 2, pages
1447–1454. IEEE, 2006.

[19] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting vi-
sual category models to new domains. InEuropean Confer-
ence on Computer Vision (ECCV), pages 213–226. Springer,
2010.

[20] K. Simonyan, A. Vedaldi, and A. Zisserman. Descriptor
learning using convex optimisation. InEuropean Conference
on Computer Vision ECCV, pages 243–256. Springer, 2012.

[21] E. Tola, V. Lepetit, and P. Fua. Daisy: An efficient densede-
scriptor applied to wide-baseline stereo.IEEE Transactions
on Pattern Analysis and Machine Intelligence, 32(5):815–
830, 2010.

[22] M. Varma and B. R. Babu. More generality in efficient multi-
ple kernel learning. InInternational Conference on Machine
Learning (ICML), pages 1065–1072. ACM, 2009.

[23] C. Wah, S. Branson, P. Perona, and S. Belongie. Multiclass
recognition and part localization with humans in the loop. In
IEEE International Conference on Computer Vision (ICCV),
pages 2524–2531. IEEE, 2011.

[24] S. Winder, G. Hua, and M. Brown. Picking the best daisy. In
IEEE Conference onComputer Vision and Pattern Recogni-
tion (CVPR), pages 178–185. IEEE, 2009.

[25] S. A. Winder and M. Brown. Learning local image descrip-
tors. In Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on, pages 1–8. IEEE, 2007.

[26] Y. Xiong, K. Saenko, T. Darrell, and T. Zickler. From pixels
to physics: Probabilistic color de-rendering. InIEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 358–365. IEEE, 2012.

4328


