An Adaptive Descriptor Design for Object Recognition in theWild

Zhenyu Guo, Z. Jane Wang
Dept. of ECE, University of British Columbia
2332 Main Mall
Vancouver, BC Canada V6T 1Z4

{zhenyug, zjanew}@ce. ubc. ca

Abstract

Digital images nowadays show large appearance vari-
abilities on picture styles, in terms of color tone, contras
vignetting, and etc. These ‘picture styles’ are directly re
lated to the scene radiance, image pipeline of the camera,
and post processing functions (e.g., photography effect fil
ters). Due to the complexity and nonlinearity of these fac-
tors, popular gradient-based image descriptors generally
are not invariant to different picture styles, which couketd
grade the performance for object recognition. Given that
images shared online or created by individual users are
taken with a wide range of devices and may be processec
by various post processing functions, to find a robust ob- |
ject recognition system is useful and challenging. In this |
paper, we investigate the influence of picture styles on ob-
ject recognition by making a connection between image de-|
scriptors and a pixel mapping functign and accordingly
propose an adaptive approach based op-ancorporated
kernel descriptor and multiple kernel learning, without es
timating or specifying the image styles used in training and
testing. We conduct experiments on the Domain Adaptation
data set, the Oxford Flower data set, and several variants
of the Flower data set by introducing popular photography
effects through post-processing. The results demonstrate
that the proposed method consistently yields recognition i
provements over standard descriptors in all studied cases.

(e) ®
Figure 1. We show 3 pairs of images about the same objects with
different picture styles. The differences between (a) d)cae

Digital images can be different in terms of color tones, mainly due to different scene radiances (illumination dtod).

1. Introduction

contrast, clarity, vignetting, and etc. Here we refer such (c) and (d) are of the same object and taken under the same cond

charactt_aristics of digitfall images a'ﬂ;:t.ure stylgs With the g%l?eyn? ?E;?é%;?::ﬁ V\('gbiga; rfnfgggtggtlzirzgzreb?g:&?y
popularity of photo editing "_’md sharing services such as I_n- Instaram™lomo-fi effect filter as a post-processing step to image
stagram, Facebook and Flickr that are available on moblle(e)’ representing one specific photography effect.

devices, many digital images generated by users nowadays

are captured by a wide range of devices (e.g., smart phones

and digital slrs) and processed using different photograph Instagram) to get distinct picture styles with strong paeso

effect filters (e.g., “lomo-fi” and “lord-kelvin” available artistic expressions. Recall that the goal of object reeogn

4321



Patch Gradient SIFT

H “ 1 L h Difference between
il abodld 1N SIFT vectors

coduditbod Lo
; ! fr
B0 SN

Figure 2. In the upper left is an original image from the Ogféilower data set. In the lower left is th@mo-fi version of the image.
We select two regions at the same location from the two imégegcated by red boxes), and show the pixel patch, gradamd SIFT
descriptor for each of them. We then plot the difference ketwtwo descriptors in the right.
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tion is to recognize natural scenés][14], daily objects [5], domains, in their algorithms the domain lable of an image
or fine-grained species [8,123] based on digital images, ithas to be specified. However, in real world applications, im-
is natural to extend the scope of object recognition from ages collected from Internet have no “domain labels”, and
standard laboratory images to photos in the wild for daily the training /testing sets are always mixtures of imagels wit
use. Although there are a large number of picture styles,various picture styles. Furthermore, more picture stys c
their contributing factors can be separated into 3 major cat be created by users through post-processing (e.g. Instagra
egories: (1) scene radiance, (2) image pipeline, and (3) posusers or iphone camera app users) besides the ones due to
processing. In Fid.]1, we show three pairs of images of thedifferent cameras. Therefore, with a more general setting
same objects to illustrate different picture styles. than DA, developing robust object recognition algorithms
To illustrate the connection between image descriptorsbecomes useful and challenging, which should overcome
with picture styles, we take an image from the Oxford the difficulties introduced by different picture styles hwit
Flower data set and process it with a poputestagramef- out knowing the style information.
fect filter: lomo-fi We select two patches at the same lo- In this paper, we study this general object recognition
cations for these two images respectively, and compute theproblem with a focus on picture-style-considered desoript
gradients and SIFT descriptors of the patches, which aredesign. Existing approaches usually ignore the difference
shown in Fig.[2. Although these two image patches are of picture styles when computing the standard descriptors,
almost the same except the color tones, we note that the reand then try to reduce the influences of picture styles in the
sulting SIFT descriptors differ with each other about 33% in corresponding feature spaces. Such indirect methods are
terms ofl; norm, which probably will make them be quan-  |imited by the feature spaces and always require the style
tized into two dictionary words in the bag-of-word model. information of the images (e.g. the domain labels in DA).
Since the difference is significant for two images that are |n this paper, we tackle the problem in a direct way. Sup-
almost identical in content, it is reasonable to assume thatpose a set of images is denotedbyFor an imagd € A4,
the difference could be more significant for two content- we define a pixel mapping function: [0, 255] — [0, 255]
differentimages with different picture styles within ong-o  that can be applied to all the pixelsirand obtain a new im-
ject class. Therefore, when images used for training andageg (7). Let B denote the set of images such thidte A,
testing don’t have similar picture styles, the accuracytfo 4(1) € B. For convenience, we denofe = g(A). From
ject recognition will degrade. Among the previous related our observation, we assume that the pixel mapping func-
literature, onlyDomain Adaptatio{DA) considers the sit-  tion g would influence the object recognition accuracy when
uation [19] where some images are taken by a Digital SLR the images used in training and testing are processeg by
and the rest are taken by a webcam under similar conditiongwhich is confirmed later by experimental results in Section
(e.g. (c) and (d) in Fid.]1), and images used in training and[Z.2). Therefore, we propose searching an optigaathat
in testing are taken by different devices. can achieve the best recognition accuracy when all images
Although the DA touches the picture style issue by con- used are processed hy. The searching of* could be dif-
sidering two sets of images from different devices as two ficult since there is no clear connections between a general
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functiong and the empirical risk of the classifier used inob- And m(z) = m(z)/\/>,cp m(2)? + ¢4, Wheree, is
ject recognition. However, by definingbased on aconvex a small value. Orientation is normalized 86z) =
combination of several basis functions, in this paper, we in [sin(A(z))cos(A(z))]. To build compact feature vectors
corporate the pixel mapping functigninto image descrip-  from these kernels for efficient computatidn, [2] presemted
tors, and we propose an adaptive descriptor design based ogufficient finite-dimensional approximation to obtain fnit
kernellearning. Though we derive the method based on ker-gimensioned feature vectors and to reduce the dimension
nel descriptors [2], it is worth mentioning that the propbse by kernel principal component analysis, which provides a
approach can be extended to existing standard descriptorg|osed form for the descriptor vectét,,..q(P) of patch P
as a general framework. In the following, we discuss some gy ch thatk,,.a(P, Q) = grad(P)TFgrad(Q)- And Bo
related works in Sectidn1.1. Then we revisit the kernel de- et. al. [2] also showed that gradient based descriptor like
scriptors in Sectiof]2. We present the proposed method ing|ET [16], SURFI[1], and HoG 4] are special cases under
Sectior 3 and report the experiments in Seéfion4. this kernel view framework.
For the image-level descriptors, Bo and Sminchisescu

1.1. Related Works [3] presented Efficient Match Kernels (EMK) which pro-

Domain Adaptation is probably the most related area to vide a general kernel view of matching between two images
our problem. In the data set introducedini[19], images from as two sets of local descriptors. And they demonstrated that
dslr andwebcamare different in picture styles, which is the Bag-of-Word (BoW) model and Spatial Pyramid Match-
similar to the focus of this paper. Metric learning based ing are two special cases under this framework. Xednd
methods[[18.19], Grassmann manifold based methdds [7,8]Y denote the set of local descriptors for imadesand I,
and output kenrel space based mettiod [10] were proposediespectively.z € X is a descriptor vector computed from
As we stated, these DA methods cannot solve our problempatchP, inimagel,. When applying EMK on top of¢;.q4,
in general situations where the domain label information is we can have the image-level kernel as
unknown and hard to specify for images in the wild. Works 1
in [9l[12[26] estimate the model of image pipelines, butsuch ~ Kepmi (I, 1) = XV Z Z kgrad(Pe, Py),  (2)
estimations are difficult and have no clear relationshighk wi reX yeY
the descriptor and recognition accuracy. In the area of key

point matching, several robust descriptors were prc?pOSEdvclosed-form approximation of the feature vector such that
such as DAISY[[21l], GIH[[1b] and DaL[[17]. Descriptor Kemi(Io,1,) = ®(1,)T®(L,), which makes the match

Iearn_mg fr;nethodsﬂZD]%S] (;Nere_also dheveIoEed t_o _de'kernel can be used in real applications with efficient com-
termine the parameters of the descriptors through optimiza putation and storage.

tion. All these methods are designed for key point matching
between image pairs. The different goal leads to descsptor 3, Proposed Method

that are not suitable for object recognition, since they are

too discriminative to tolerate the within-class varianoés ~ 3.1.g-incorporated Kernel Descriptor
object categories.

where | - | is the cardinality of a set[[3] provides a

As stated in Introduction, we want to apply a pixel map-
ping functiong to images used for object recognition. In
this section, we will give the relationship between pix-

The kernel descriptor (KDES) is proposed by Bo et. al. €IS and descriptors under the functign Since a gen-
in [2], which gives a unified framework and parametric form €ral function is hard.to !earn, we define a fl_mct@n: _
for local image descriptors. Let denote a pixel at coor-  2_;—1 @i @; = 0, which is a convex combination of basis
dinatez, m(z) denote the magnitude of image gradient at functions. For the convenience of presentation, let’s look
pixel z, andd(z) denote the orientation of image gradient. atan simple example that contains only two basis functions
And m(z) andé(z) are normalized by the average values 91 andgz, whereg: (u(z)) = u(z) andgz(u(z)) = u(z)*.
of one patch containing into 77.(z) andf(z) respectively. The”{i(u(z?) = alu({?)_ + (I2U(Z).2, Wherea_l, az are non-
The gradient match kernel between two image patdhes Nnegative,z is the position of a pixel from image patah,
andQ can be described as andu(z) is the pixel value at. Let g(P) denote the new

patch after applying on the pixels ofP. Now the image

kgraa(P, Q) = Z Z m(z)m(z’)ko(é(z), é(z’))kp(z, Z), gradientat of g(P) becomes

2. Kernel Descriptor Revisit

epHee (1) Vg(u(z)) = g'luVulz) 3)
where k,(z,2') = exp(—,||z — #/||?) is a Gaussian = (o1 +202u(2))Vu(2),
position kernel andk,(A(z),0(z')) = exp(—7,||0(z) —  wherea; + 2asu(z) is a non-negative real number and

6(2")||? is a Gaussian kernel over gradient orientations. vVu(z) is a vector. Letn,(z) andd,(z) be the magnitude
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and orientation of7g(u(z)), andm(z) andf(z) be corre-

sponding values of7u(z). Itis clear thatd,(z) = 6(z), g, l
therefored(z) = 6,(z), which means the orientation is in- oel|—9
variant to the pixel mapping functianapplied to the image Tl—g,
patch. Under the assumption that a; > 0, we have
0.6r
mg(z) = |[Vg(u(2))|

= (@1 + 205u(2))vuz)| @

= a1l|Vu(2)]| + az||Vu(z)?|]

= a1][Vg1(u(2))]| + azl[Vga(u(2))]]. 02l
Notice that the magnitudes used fg,.q are normalized
based on local patches, which is important to make the con- % o2 04 G o8 1

textual information comparable for different patches. Let
m1(z) andms(z) denote||Vg (u(z))|| and||Vga(u(2))]]
respectively. To retain the simple convex combination form
of my(z), we propose a new local normalization

rhq(z) = alrhl (Z) + agrhg(z), (5)

where i, (z) denotes the new normalized magnitude of
mg(z), andm, (z) andime(z) are normalized by, norm as
mentioned in Sectidnl 2. It is clear tha, () is also locally
normalized and still comparable for different patchescgin
the goal of this paper is object recognition, any appropriat
local normalization method is acceptable.

Now given two image patcheg(P) and ¢(@), which
are obtained by applying the functigrto patches? and@

Figure 3. Plots of the proposed basis functions.

To see this connection at the image-level, we plug Eq.
(@) into Eq. [2) and have the image-level kernel

Kemk(g(lm),g(l ) = |XHy\ ZzeX Zyey qrad(g(P ),9(Py))
£|y| ZmEX ZyGY Zz 1 Z] 1 @i05kgraa(9i(Pr), 95(Fy))
=i ZJ 1 al%(\xny\ Dzex ZyGY kgrad(9i(Pz), 95 (Py)))
= Zl 1ZJ 1 Qi@ K(gi(1:), gJ(I )
= Zm 1 AmKom,

(8)

respectively, we derive the gradient match kernel betweenWhered,, andk,, have one-to-one correspondence o,

them as following

kgraa(9(P), 9(Q))

=2 e g(P) > "eg(Q) thg (2)mhg(2')ko(0g(2), 0 (2"))p (2, 2")
— Z » GQ(alml(z) + agma(2))(a1my(2") + agma(z
ko(0(z ) 9(2'))/%(272') o
=101 ) cp D weq ()M (2)ko(0(2), 6(2))kp(z, 2)
0102 5 p Yoreq (i o 0(2), 6" i (2, 2)
a0 3 e (i (o 0(2), 6"y (2, 2)
+a202 Y p Do icqMe2(2)Mi(2)ko(0(2), 0(2"))ky(2,2")
— alalkgrad(Pa Q) + a1a2kgrad(P7 2)
+a2a/lkgrad(P27 Q) + a2a2kgrad(P 7Q2)7 (6)

where P2 and Q? denote the pixel-value-squared patches
from P and Q. And it is worth noting thaiffgmd above
is different from the standard:,,.q in Eq. (d), since we
define a different normalization approach in Eg. (5). Since

9=3"2 | aig:, Eq. [B) indicates

haraa(9(P).9(Q) = 303" aiaskgraagi(P). 9;(Q)).

i=1 j=1

(7)
Via Eq. [2), we successfully incorporate the pixel map-
ping functiong into image descriptors, which we cajt
incorporated KDES.

and K (g;(1),g95(1y)), and the order does not matter since
they are exchangeable in the summation. Since we timit
to be non-negative when we defiged,,’s are also non-

negative. In additionK,,’s are positive definite (PD) ker-

(z")nels, which make&(..., here a convex combination of PD

kernels and can be used in standard multiple kernel learning
Therefore, we successfully transfer the problem of search-
ing optimalg* into the problem of learning the optimal ker-
nel weights through Eq[{8). In general, faf basis func-
tions (i.e.,g;'s), there will beN? base kernels in EqLX8).

3.2. Basis Functionsy;'s

From Sectior_3]1, we know that the selection of ba-
sis functions (i.e.g;'s) is as important as learning the pa-
rameters. By exploring the pixel mapping functions (e.g.,
photography effect filters) used for photography, we note
that Gamma correction and the “S” curve are two major
categories of photography effects. Gamma correction can
brighten ¢ < 1) or darken § > 1) the images, and the
“S” curve can increase the contrast. Although these pop-
ular functions are proposed for visual pleasure of photos,
we believe that they can also benefit the construction of bet-
ter image descriptors. For example, brightening can bring
back more details in the dark part of an image; Darkening
can surpass the irrelevant areas of an object image, since
most images are correctly exposed for the center object;
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Figure 4. From left to right: the original imade g1 (1), g2(I), andgs(I).

Higher contrast emphasizes the texture and shapes. There3.4. Adaptive Descriptor Design
fore, these three types of functions make good candidates
for basis functions. However, a power-law function used in
Gamma correction contains a free parameter that will be lef
in the gradient expression and cannot be combined usi8ep-1 Process imagdefrom the data set witkg; }?_, shown
simple addition, therefore a good approximation is desired in Eq. (@) [10)[11), to obtaitig;(1)}3_,.

Since the “S” curve doesn’t have a standard formulation, we
adopt the sigmoid function in our algorithm. In this pape?,ter)'2
the three basis functions are:

In this section, we summarize the major steps of the pro-
tposed adaptive descriptor design as follows:

Compute gradient-based descriptors fbr and
{g:(I)}3_, to get 4 descriptors.

Step-3 Build a codebook using K-means by sampling from all

91(x) = 0.3 % (log(2z + 0.1) + |log(0.1)[) ~ (9) training images and all 4 descriptors of each image.
0.822 (10) Step-4 Quantize each image from training and testing s&ts in
g2(x) = 0.8z 4 image-level feature vectors based on the descriptors.
1 Step-5 For each pair of images, compute linear kernels be-
g93(z) = 15 o 8@ 05 (11) P P g P

tween any two of their 4 image-level features to get 16

. . base kernels, as shown in EQl (8).
wherex takes a value fron, 1], representing a scaled im- a ®)

age pixel value. The plots of these functions are shovBtep-6 Train GMKL on 16 base kernels to obtain optimal ker-
in Fig. [3, from which we can see that could serve as nel weights.

a brightening function, similar to gamma correction when
~v < 1, g2 has a shape like gamma correction wheg- 2

and thus could be used as darkening, @ndas a “S” shape
that increases the contrast by brightening the bright regio
and darkening the dark regions. The effects of these func-
tions can be seen from Hig.4.

Our proposed method does not require prior knowledge
on picture styles of training or testing images, and the Adap
tive Descriptor Design (ADD) can work as a general frame-
work. For instance, in Step-1, other proper functions can be
used here as basis functions, besides the ones we use here.
According to the analysis by ][2], most gradient-based de-
scriptors, such as SIFT_[16], SURFE [1] and HJG [4], are
special cases of the kernel descriptor, which all can be used

After defining the basis functions, the next question is in Step-2 to compute descriptors from image patches. In ad-
how to estimate the weight coefficients for object recogni- dition, the quantization method used in Step-4 can be cho-
tion. According to Eq.[(B), the image-level kernel can be de- sen from Bag-of-word, Spatial Pyramid Matching and Effi-
composed as a convex combination of several base kernelscient Match Kernel. In other words, our proposed algorithm
We adopt General Multiple Kernel Learning (GMKL) [22] can be used widely to improve previous methods which are
and put non-negative constraints on the kernel coefficients based on gradient descriptors and SVMs.

We also notice that some weight coefficients can be the We also want to point out that the proposed ADD is es-
same (e.g.aia2 = asay), though our experiments show sentially asinglefeature method, although multiple kernels
that the results are similar with or without the equal-weéigh are used for estimating the coefficients. For an imafyem
constraint. Since the number of kernels in our algorithm is the data set, it is equivalent to extracting standard descri
not large, we use the standard GMKL withnorm regular-  tors ofg(7) and using a single kernel SVM based on these
ization. descriptors for classification.

3.3. Learning of the Parameters
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[ Source [ Target [ standard KDE§ ADD.AK [ ADD_GMKL ] [ Source | Target [ standard SURF ADD.AK [ ADD_GMKL |
dslr webcam 49.304+1.26 | 50.284+ 1.02 | 54.81+ 1.07 dslr webcam || 37.054+1.72 | 41.61+ 1.05| 42.00+ 1.16
webcam | dslr 46.674+0.80 | 48.174+0.99 | 50.334+0.79 webcam | dslr 30.09+£0.81 | 36.57+0.75 | 36.45+0.49
amazon | dslr 47.43+2.79 | 48,57+ 2.51| 53.90+ 2.67 amazon | dslr 34.49+1.30 | 40.62+1.59| 36.19+ 2.04

Table 1. Experiments on the DA data set based on the KDES de-Table 2. Experiments on the DA data set based on the SURF de-
scriptor. The average recognition accuracy in % is repoated scriptor. The average recognition accuracy in % is repoated
the corresponding standard deviation is included. the corresponding standard deviation is included.

4. Experiments the standard KDES in all cases for both the average kernel
. . . . . and an optimal kernel learned by GMKL. Particularly, the
In this section, we describe the details of experiments 55 MK method improves about 6% from the standard
and report the recognition performances of the propose KDES in all cases, which is close to the improvements ob-

method when compared with stgndard graq.ient—based im'tained by domain adaptation methods [/ T1[18, 19] where
age descriptors. We conduct object recognition on the Do'domain—label information is used

main Adaptation data set [[19] and the Oxford Flower data
set [18]. We also process the images from the Oxford
Flower data set using several popular photography effect fil 4
tersin Instagraﬁf’ﬂ.

.1.2 ADD based on SURF and BoW

To show the general applicability of the proposed ADD,
we follow previous methods$ |7, 11, 13.]119] to extract stan-
dard SURF descriptors from the original and 3 variants of
The Domain Adaptation data set was introduced by [19], each image, then a 800-word codebook is created from
where images for the same categories of objects are fromamazondomain. All images in 3 domains are quantized
different sources (called domaingmazondsir andweb- by this codebook using Vector-quantization to get Bag-of-
cam As we stated in Introduction, the two domaidsir Word features. After obtaining 16 linear kernels, we also
andwebcamonly differ in picture styles which are due to conduct experiments using the standard KDES, the average
different image pipelines. Applying the proposed ADD al- kernel, and an optimal kernel learned by GMKL. We re-
gorithm, we adopt KDES + EMK and SURF+BoW two sets port the results in Tablel2. The proposed ADD methods
of features to demonstrate that ADD can work as a generalalso outperform the standard SURF descriptor in all cases.
framework to improve the performances of gradient-basedHowever, in this experiment, the average kernel approach
descriptors in general. We follow the experimental protoco gives better results than that of the GMKL learned kernel in
used in[18.109] for semi-supervised domain adaptation. It some cases. We think the worse performance of the GMKL
is worth noting that we don't use any domain-label infor- based ADD is due to the lack of training, since the SURF
mation to specify the picture styles of images, our proposeddescriptors are sparsely extracted from images and only 11
method could figure out an optimal descriptor automatically (8 from the source domain and 3 from the target domain)
based on the training set. training images per category are used. But the results of
ADD_AK and ADD_GMKL are sufficient to show that the
proposed Adaptive Descriptor Design can be applied on top

of gradient-based descriptors widely, for different tasks
We extract KDES descriptors of all the images in three do-

mains and create a 1,500-word codebook by applying K- 4.2. Oxford Flower Data Set

means clustering on a subset of all 4 types (original + 3 5y¢orq Flower data sef[18] contains 1360 images for 17
variants for each images) of descriptors framazondo-  \yer species. To simulate the images used in real world
main. And then this codebook is used to quantize 4 types,p,jications, which are taken by different devices and unde
of descr_|p.t0rs of all 3 Fjoma'”s of images usmg_EMK. Af' various pixel-level post-processing, we process the image
ter obtaining the 16 linear kemels by computing the in- £5m the Oxford Flower data set using 3 photography effect
ner prpduct of every wo typesf of descrlpt.qrs betwe(_en WO fiiters that are popularly used in Instagréfn lomo-fi lord-
given images, we conduct object recognition experimentsy yyin andNashville Together with the original images, we

using SVMs for: the standard KDES, the average kernel obtain an image data set of 4 effects. We keep the images
of these 16 kernels (AK), and the GMKL based on 16 ker- generated from the same original images with same IDs.

nels. We show the resultg in TalEIe;, from W_hiCh We €an S€eypte that images from the original Oxford Flower data set
that the proposed Adaptive Descriptor Design outperformswere collected from many different sources (e.g., they were

taken by different devices under different conditionsg th
factors of scene radiance and image pipelines are already

4.1. Domain Adaptation Data Set

4.1.1 ADD based on KDES and EMK

1We use Adobe PhotoshBpaction files created by Daniel Box, which
can give similar effects as Instagréth
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Figure 5. From left to right: the original image, wikbmo-fi lord-kelvin andNashvilleeffects.

taken into consideration. We show an example image and[stlel style2 standard KDES ADD.AK | ADD_GMKL
: : - -~ [orginal | na 69.35+ 2.0 | 67.76+ 2.65| 7432+ 1.77
'S variants processed by 3 photography effect filters in Fig original | Tomo-fi 6585+ 1.66 | 6424+ 1.88| 71.60+ 1.04
[, and these 4 images have the ID. original | lord-kelvin | 67.53+ 1.32 | 66.06+ 1.80 | 72.82+ 0.69
Since KDES gives a genera| framework for gradient- orlglngl Nashville 66.44+ 1.73 | 64.62+1.39| 71.88+0.72

: : ) lomofi | n/a 65.12+ 1.48 | 63.07+ 1.62| 69.82+ 0.70

PaS?d desquptors, we only use KDES in th? experiments orgkelvin | n/a 68.00- 1.38 | 67.06+ 1.40| 72.62+ 1.38
in this section. For convenience of expression, we refer | Nashvile | n/a 67.03- 1.10 | 66.85t 1.28 | 71.68+ 1.94
the data sets obtained by applying effect filters by picture [a! n/a 64.56+ 0.90 | 63.24+0.58 | 69.88+ 0.51

_styles Similar as in Sectlo_m.l, we e_xtract KDES for all Table 3. Results on the Oxford Flower data set. The average
Images from all 4 stylesofiginal, lomo-fi, lord-kelvin, and recognition accuracy in % is reported and the corresponstisg-
Nashvill§. We construct a 2,000-word codebook by sam- yard deviation is included.

pling 4 types of descriptors from thariginal style. Then

all images from 4 effects are quantized using EMK with ) ) ) _
this codebook. style experimental results, the pixel mapping funciaran

influence the recognition accuracy through the computation
of the g-incorporated descriptors for all images, which sup-
ports the proposed idea that learning an optimal fungjion
can improve object recognition when using gradient-based
descriptors. Further, when images are uniformly sampled
from all 4 styles, the standard KDES descriptor yields worst
formly randomly selected from/ styles (i.e. one and only pgrfqrmance, which is r.easonable since the higher diver-
sity in appearances of images leads to larger differences

one image from Figl5 is sampled) to form a experimental f d ot f similar i ich f th
data set. This generation procedure makes sure that imagel%e ween descriptors of simiiar image patches ot the same

with the IDs will not appear in training and testing together Objects. . .

2) Training/testing sets splitting: after obtaining an ex- Aiter dgmonstratlng that picture styles can affect
perimental data set, we randomly split the set into training the recognition accuracy, the improved p(_erformance of
and testing sets with equal sizes. Therefore, there ard equ PD‘GMKI‘. shows that our proposed algorithm is an ef-

numbers of images from each style appearing in training icient solution. Recall that our ADD can be considered

and testing. Different from domain adaptation, images used®> @ single feature method, the p(r)oposed AG_KL out-
here in training or testing are not separated according toperforms the state-of-alf][6] by 4% on the original Oxford

domain labels, which is more similar to real-world appli- Flows r datadseF(.jTlheref?re, t?e A‘;f"‘pt;"s Dezc;ptor.Dte&g?
cations where no information of picture styles are avadabl can be used wigely on top of gradient-based descriptors to

: I : further improve the recognition accuracy.
We perform object recognition using SVMs for the standard . .
KDES, average kernel, and the optimal kernel by GMKL. We also notice that the ADIAK method is not better

We report the results for 10 runs of experimental data setthan the standard KDES. We believe it is due to the small

for each scenario in Tablé 3. For each run, an experimentalSlze of the codebook (2,000 words). Since 4 types of de-

data set is randomly generated and split into training angScriptors are extracted frpm oneimage on a den_se grid and
testing. there are 1360 images in total, this codebook introduces

large distortion in quantization, which decreases theguerf
From Table[B we can clearly see that the proposed

_ - mance of the average kernel approach.
ADD_GMKL method is superior than the standard KDES
inall cases. From the top 4 rows of Tae 3, we n(_)te that the5_ Conclusion
recognition accuracy decreases when images with different
picture styles are used, which confirms the motivation we In this paper, we focus on the effects of different pic-
described in Sectidd 1. In addition, according to the single ture styles of images on object recognition. After show-

To simulate the real image collections as mixtures of im-
ages with different picture styles, we first generate an ex-
perimental data set from the 4 styles, then split this data
set into training and testing sets. Byperimental data set
generation M styles are chosen first, from which we want
to sample images. For a given ID, only one image is uni-
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ing the connection between pixel mapping functions and
gradient-based image descriptors, we incorporate the pixe
mapping functiory into the image descriptor and propose [12]
an Adaptive Descriptor Design (ADD) framework for ob-

ject recognition in the wild. We demonstrate that the pro-
posedg-incorporated ADD can be widely used as a gen-
eral framework based on popular image descriptors, and thd13!
experimental results show the recognition improvements of
ADD on the domain adaptation data set, the standard Ox-
ford Flower data set and its variants with different picture [14]
styles (photography effect filters).
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