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An Unsupervised Hierarchical Feature Learning
Framework for One-Shot Image Recognition

Zhenyu Guo, and Z. Jane Warfgenior Member, IEEE

Abstract—One-shot recognition has attracted increasing atten-
tion recently, inspired by the fact that human cognitive sysems
could perform recognition tasks well provided only one or a
few labeled training samples, in contrast to the conventioal
object recognition systems that require a large number of laeled g = Onc-shot
training images. One-shot recognition is a visual classifation [ Asetcps: | [chifubua | [Chimpaicen | Training
task, where only one training sample is available for each gbct
category in the target test domain, with the help of prior-
knowledge data from the source domain. In this paper, we
tackle this challenging one-shot recognition problem unde a g New Smeviin
more exciting setting by using only unlabeled images as prio ¢ Feature Classification
knowledge, which requires less labeling efforts than prewdus L

Chihuahua

works which adopt fully labeled data and/or a sophisticated e

A . Testing Target Domain
attribute table designed by human experts. We propose a { )
novel unsupervised hierarchical feature learning framewok to
learn a feature pyramid from the prior-knowledge domain. The PastiEE Supervised(image, label, attribute table)
proposed feature learning method also could be applied acss - Learning { _ _ ~
multiple feature spaces. Furthermore, we propose using pyamid Unsupervised (image only)

matching kernels to combine multi-level features. Examimg the
“Animals with Attributes” and Caltech-4 data sets in our one-
shot recognition setting, we show that the proposed unsupeised
feature learning approach with very limited information could
achieve comparable performance with that of supervised orse

Index Terms—object recognition, deep structure, hierarchical
feature learning, Dirichlet Process, feature combination pyramid
matching

We don’t use labels or
attribute table!

|I. INTRODUCTION

Object recognition using computer vision methods has gone
through considerable progress during the last decadedimg
methods based on low level features (e.g., Scale-Invafieat
ture Transform(SIFT) [1], Speeded Up Robust Feature (SURF

. ) . . Flzy. 1. One-shot recognition framework: Only one trainingage with label
[2]1 pyramld Histogram of Oriented Gradients (pHOG) [3]'15 provided for each category in the target domain. The gamwledge

and Self Similarity [4]) and specific designed machine le&gn domain contains images from categories that are differenth fthe target

techniques. Numerous papers [5] have shown that recogniﬂ@tegorles. Unlike previous works which usually use latheéteages and the
. . designed attribute-table, we only use unlabeled imagdseiptior-knowledge

accuracy generally increases as the number of traininglsamp =i

per category increases. However, a large number of labeled

training samples might not be feasible in practice.

However, there are significant evidences that human beings

can perform category-level object recognition in a more effi@sk consists of data from two domains: the target domain
cient way, by learning novel concepts from only one or a fe@"d the prior-knowledge domain. The target domain, where
exemplars. Motivated by such recognition ability of humaly€ actually perform the one-shot classification, consists o
cognitive systems, “one-shot” recognition [6], where tiys-s data fromtarget cf’;\tegorleswnh only one training sample in _
tem is given only one training sample for each object categof@ch category. It is assumed that the prior-knowledge domai
has attracted increasing research attention very recently CONsists of data from categories that aliéferent from the

the computer vision community, thene-shot recognition target categories. Based on previous works [6]-{9], as show

in Figure 1, the one-shot recognition procedure generally
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Since there is only one exemplar for each category in tladready showed good discriminative power in visual recog-
target domain, a standard classifier (e.g. Nearest Neighlmition tasks, we plan to incorporate the advantages of these
[8], Naive Bayesian [7] and Support Vector Machine (SVMhandcrafted low-level features. In this paper, we formaulat
[10]) is usually chosen for the supervised classificati@pst feature learning from prior-knowledge as a latent mixture
Previous methods for one-shot recognition [6]-[9] aressidht modeling problem, which is to learn mixture components over
mainly in the settings of the feature learning step in therpri the low-level descriptors as more meaningful features from
knowledge domain. [7] uses label information for all imagesnlabeled images. We propose using Hierarchical Dirichlet
from the prior-knowledge domain, along with a sophistidateProcess (HDP) [12] for this purpose. Since the feature irgrn
attribute table designed by human experts. [8] doesn’'t upeocess is actually a clustering operation on the histogram
any manually designed attributes, but it still relies on thef base features, we call it the HDP-encoder which can
fully labeled images. This similar setting was also adoptexhcode low-level features’ histograms into higher levatdee
by a recent work [9]. Although considerable progress haspresentations automatically, as explained later in iG@ect
been achieved by the methods mentioned above, the requiiéd and Figure 7.
side information (e.g., the large number of class labels andNow suppose we have the HDP-encoder and its output is
the manually designed attribute table) in the prior-knalgle also a histogram vector based on the higher level features. W
domain can be difficult to acquire in practice. Recalling thassign the low-level descriptor ésvel — 0 (LO) and the new
original motivation mentioned earlier that human cogeitivfeatures agevel — 1 (L1). From WordNet [13] in the natural
systems are able to adapt useful information from priolanguage processing community, a large lexical database of
knowledge without the help of such side information, w&nglish, we note that human language has a hierarchical
propose using only thenlabeledimages as prior-knowledge, structure to describe objects and events from holistic @spe
as illustrated in Fig 1. to details. Also, in the object recognition community, $plat

To intuitively justify that the proposed setting of usingoyramid matching [14] shows the matching power of “coarse
unlabeled images as prior-knowledge for one-shot learnitgy fine” in the 2-D image spatial domain. Inspired by the
is feasible, in Figure 2, we take a “zebra-horse” problem &derarchy observed in human language and in image spatial
an example. It is a simple task of classifying a test imaggyramid subdivision, we propose constructing a deep stract
into category “zebra” or “horse”. If we know the concepbtf the feature pyramid by stacking the HDP-encoders layer by
of “striped” texture pattern, we can easily distinguish rzsb layer, where each layer has a unique “describing resofution
from horses by generating this classification rule. If weldouThe details will be explained in Section IlI-D (Figure 7) and
learn this “striped” pattern from the “ zebra-horse” daté seSection IV-C (Figure 10). From top to down, the pyramid
we can also use this simple classification rule to distifguiprovides image representations from “coarse to fine”, whaere
tigers from leopards. From this example, we believe thah subigher level captures more “macro” information while a lowe
meaningful features are shared among relevant categaries Evel captures more “detail” information. It is worth nagithat
can significantly benefit category-level recognition. Ehare HDP-encoders can be stacked across feature spaces (e.g., th
evidences [11] showing that human beings can learn fraexture-L2 feature may be learned from SIFT-L1 and SURF-
unlabeled datathrough manifold regularization, indicatingL1 features). The joint feature vectors could be viewed as
that human beings can learn more meaningful features (fustograms generated from a large joint dictionary.
category-level recognition) from daily experiences. Ire th Based on the obtained feature-pyramid, how to transfer such
zebra-horse example, it is desirable to learn the “stripedith descriptions into classification power is our next annc
feature (and other abstract attributes) from unlabeledy@ma Similar to spatial pyramid matching [14], we choose to use
of zebra and horse. Therefore, how to learn the meaningfu¢ighted summation of intersection kernels to combine the
features is a challenging but valuable task. features at different levels. In addition, since the prepgos
HDP-encoder could also model the latent components across
different feature spaces, we can learn a single featurectirat
capture information from multiple lower levels of featusesd
is sufficiently compact for real world applications. Thene,
the proposed feature learning algorithm can also be viewed
as a novel feature combination method. In summary, the main
contributions of this paper are as follows:

1) We propose a novel feature learning algorithm based on
HDP modeling, which can encode low-level image de-
scriptors into a high level feature vector from unlabeled
images in the prior-knowledge domain, as illustrated in
Section 1lI-D (Figure 7).

Y 2) We propose a deep structure for feature learning by

Fig. 2. The animal pairs, zebra and horse, and tiger and fidpgan be stacking the HDP encoders to learn a feature pyramid
classified by the “striped” pattern. with multiple “describing resolutions”, as illustrated in
Sectionlll-D (Figure 7) and Section IV-C (Figure 10).

Since many low-level visual descriptors (e.g., SIFT) have 3) We evaluate the proposed unsupervised feature learning
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framework on one-shot image recognition tasks armbding is performed on image pixel patches and cannot be
show comparable performances to that of previous sapplied directly to the discrete space of the histogram of
pervised feature learning methods [7]-[9], [15]. low-level features (in the bag-of-feature representati@y

4) We evaluate the proposed framework on conventionadntrast, our proposed method is based on the handcrafted
multi-shot tasks and show the recognition improvemenisiage descriptors and thus it is suitable to learn a highe le

In the remainder of this paper, Section Il provides a bridgature without losing the nice property of low-level fetsi
review of previous work on one-shot recognition and featuftnother area in machine learning that seems be related to
combination. Section Il describes the proposed unsupedvi OUr one-shot problem is semi-supervised learning (SSL)H19
hierarchical feature learning framework. Section IV demor21], where unlabeled data are used to improve the weakly
strates the performances of the proposed method on real gitgervised classification tasks. As we stated in Sectiond; o
sets. Section V concludes the paper. shot recognition generally contains two separated commgsne

This paper expends upon our conference paper [10], }» feature learning in the prior-knowledge domain, and 2)
which we investigated learning a high level feature from gU/pervised classification in the target domain with only one
single type of local descriptor. In this paper, we propose labeled training sample per category. Since there are retedb
novel deep structure for feature learning based on multigl@ages in the prior-knowledge domain in our setting, there
types of local descriptors and propose a new feature combiffan© room for semi-supervision in the prior-knowledge data

tion scheme using feature pyramid and averaging kernels. Vle@ddition, it is not feasible to pool the unlabeled prior-
also conduct more experiments. knowledge data and target one-shot training data together

to run a SSL method during the classification. Usually SSL
methods [19], [20] assume that the unlabeled training data
come from the same categories as the labeled training data,
Compared with the conventional multi-shot visual recogwhile it is not true in our one-shot recognition setting wder
nition, there has been relatively less work in the area tfe images in the prior-knowledge domain generally come
one-shot recognition. The concept “one-shot learning” wé®m categories that are different from the categories & th
first introduced in [6]. [6] propose a Bayesian frameworkarget domain.
with a class prior learned from labeled prior-knowledgd. [7 To our knowledge, this paper is the first work that attempts
tackles the challenge by incorporating human specified highlearn a deep structure of the feature pyramid based on low-
level attributes, where a number of supervised classifidevel image descriptors in the area of one-shot recognition
are used to associate bag-of-feature representationsthdth Note that the idea of describing an object image in a “coarse
binary attributes. Their proposed cascade recognitiotesys to fine” way has a long history, also reflected in the design
provides the state-of-art recognition accuracy on the fdali of low-level descriptors. [14] extended the pyramid matghi
with Attributes” data set. To learn the semantic attributeédea [22] to the spatial domain by matching the feature oint
automatically from the prior-knowledge data, a nonlinean different spatial subdivisions. Since the proposed uieat
mapping based method is used [8] to learn a mapping functipyramid provides multiple “describing resolutions” whiahe
by optimizing the discriminative power of the intermediatgimilar to the “spatial resolutions” in [14], we will adopte
representation, where the mapping function can be viewegighted intersection kernels to combine different feadur
as a projection from the original feature basis onto hightrarned in the feature-learning step.
level latent attributes. Their results on multi-class chet
recognition are better than the simple naive Bayesian ndetho I1l. THE PROPOSEDMETHOD
in [7]. [8] still requires a large number of labeled images

as Er_ior—lgnfowledge. Lart]er, sm;lar to thc(ja.se:]tmg 'r.]b[gzthfeature learning problem for unlabeled prior-knowledg&agda
wo(; dm [ ] ocu;etst onkt € a}tt(r; Utfs usfe m; € attlr)' u da then describe the proposed feature combination method and
and designs a betler knowledge transier scheme by mo elm supervised classifier for one-shot recognition. For the

the atFripute_ priors. [9] can b_e considered as a b_etter way supervised feature learning step, we propose using atier
associating image features with the manually demgnechbm@,uoaI Dirichlet Process. By wrapping up the feature lezgni

attributes. cess into the HDP-encoder, we propose a deep structure to

. 0
There are several research works in other areas Wh.@g}lstruct the feature pyramid in two ways: One emphasizes

emphasize weak supervision, not specific to one-_shot_ kﬁgtrnlthe recognition performance, and the other emphasizes the

%fﬁciency and compactness of the learned features. For the

labeled as "same” or "different” to learn a metric for measl.”supervised classification in the target domain, we presant h

ing similarity between unseen object images. Metric lezgni to incorporate intersection kernels and the average keonel

approgches like [17] require_at least weak sup.ervisi.on Wmbine all features in the pyramid, and then a standard
the prior-knowledge data, which cannot be obt_auned In o upport Vector Kernel Machine is used for classification.
problem. So far, the closest work to our paper is self-taught

learning [18], which uses sparse coding to learn a set of ]

bases for the linear combination to approximate the imafe Problem Formulation

data in the prior-knowledge domain. The weights of the baseswe denote the data set in the target dom@inas X,
are used as features to represent images. In [18], spassth data points{z1,z2,...,2,,}, and the data set in

Il. RELATED WORKS

In this section, we will first formulate our unsupervised
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the prior-knowledge domair? as Xp, with data points

{#1,Z2,...,ZTn, ;. The data inX'; comes fromM categories
Cr = {c1,¢2,...,cu}, and the data inXp comes from
categoriesCp = {car+1,Cm+2,---,¢s}. It is worth noting

that C+ and Cp are disjoint, which makes one-shot learning
a problem different from semi-supervised learning. In shet
recognition tasks, the training data frafy- iS Xyyqin, With
category label&, 4. The prior-knowledge data is denoted

as X;... - without corresponding category labels. We warfti9- 3- The blue circles indicate local patches which the-level descri_ptc_)rs
trainp P 9 gory are generated from, and the squares are local clusters ofiftess within

to learn |?'t(_9nt features basgd mminm and to project the each image. Those two red squares linked by a dotted linedpeétothe same
target training dataX,.,, into the learned feature spaceglobal cluster across image groups.
which is denoted aX,.i,, . At last, a supervised classifier is

trained on{XtmmT, Yirains }- IN the testing phase, the trained

classifier is used to predict the labels of projected tesa d&t€ Shared among all groups. Through the feature learning
Xiest, 10 g€ty cqice. The framework can be described b);nethod, we could obta|p(zj|z_ui), the probability that a low-
major steps in Table I, where step 1 is described in Sectiljye! feature belongs to a higher level feature. We also can
III-B and Section I11-D, and steps 2 and 4 are described fPt@in the new histogram of the imagebased on the L1

Section IlI-C and Section IlI-E, and steps 3 and 5 are desdripdictionary Vi by normalizing the posteriop(z;|1). _
in Section IlI-F. We therefore need a method that could solve the mixture

modeling problem from one lower level to the next higher

Algorithm 1 One-shot Recognition Framework level. Since the new features are homogeneous with the lower
1 HDP-encoder «  HDP modeling onX¢rainy, level ones they are learned from, it is desirable to be able to
2 Xirainy «  ProjectX¢rqin, ONMo the latent feature space 555y the feature learning method layer by layer to construc

using HDP-encoder,

3 Classifier  +  Train a SYM on{Xsrains Yirains } - a feature pyramid. We propose using Hierarchical Dirichlet
(_

4 Xiestr Project X;cs¢, onto the latent feature space ~ Process (HDP) [12] as the feature encoder in the proposed
using HDP-encoder, _ unsupervised feature learning approach. We will explain ou
5! Ypredict < Predict the labels oR'test using Classifier.  chojce of HDP and describe the details of HDP shortly.
TABLE |

MAJOR STEPS FOR THE PROPOSED ONEHOT RECOGNITION SYSTEM B. Hierarchical Dirichlet Process Mixture Model

Our idea is to assemble related descriptors (lower level
features) into mixture components as higher level features
Furthermore, we briefly discuss data representation in gdn-Fig 3, the blue circles indicate local patches which the
eral object recognition problems. A standard way to represdow-level descriptors are generated from, and the squages a
object images is to use the bag-of-feature model, which welsisters on the descriptors as higher level features. Sice
originally borrowed from the document modeling area. In these the bag-of-feature representation, we choose thet laten
bag-of-feature model, the low-level image descriptors/esertopic model in the document modeling community to find the
as visual words, a codebook or dictionary is computed lgtent mixture components. After comparing with paraneetri
clustering the total samples of visual words, then images datent topic models such as Latent Dirichlet Allocation @D
represented by the occurrence histograms of the visualsvo[@3] and Probabilistic Latent Semantic Analysis (pLSA) ]24
in the dictionary. We us& = {w;,wsa,...,w;,...,wq} t0 we adopt Hierarchical Dirichlet Process (HDP), a nonpara-
denote the dictionary with vocabulary sidewherew; means metric generative model, for our feature learning task. As a
the ith visual word. For an imagé, we use its histograms infinite mixture model, HDP provides a way to sample an
of the dictionary visual wordh = (hq,he,..., hi,...,hq) unbounded number of latent mixture components for grouped
to represent it in the bag-of-feature model, whéremeans data, which means HDP can find the number of the mixture
the occurrence frequency af; in the imagel. The histogram components and the data points related to each component
vector is based on the low-level features and can be usedaasomatically. This property is highly desirable for ouatiere
training and testing data in classifiers. Considering tl@he learning task, since there is no easy way to predetermine the
image is represented by a histogram vector, our goal herenismber of mixture components. Although Dirichlet Process
to learn a higher level feature by fitting a mixture model t¢DP) is also a nonparametric infinite mixture model and is
the grouped feature data (i.e., histograms of the images). easier to sampling, we don’t choose DP because DP is suitable

Let us denote the LO level feature dictionary ¥ = for mixture modeling in non-grouped data (all the data in
{wi,we,...,w;,...,wq} and the L1 level feature dictionarya single group), but can't be applied to grouped data. As
asVy = {z1,29,...,2,...,2}. Here a higher level visual illustrated in Fig 3, the squares connected by the dotteal lin

word z; may be a mixture component af;’s with different indicate the same latent component (“striped pattern”yesha
proportions. We could see that a low level feature wordy two individual groups. In contrast to DP, HDP has the
may belong to different higher level features with differerclustering property to model the latent components shared
probabilities according to its group statistics. Singgs are among groups. Before describing the details of HDP, we first
exchangeable across different groups, we also ng&dto  define some notations:
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to model the unlabeled images in the prior-knowledge domain
in an unsupervised way. The graphical model of HDP with
auxiliary variables is showed in Fig 4. In HDP model;;
means theith visual word in imagej, z;; is the indicator
variable (index) associated with a mixture component and
has discrete values ofil,2,...}. 6 is the factor associated

with the distribution ofz;; given eache;;. Referring to Fig 4,
’ we now show how to generats; for image;.
@)

Q0

@

G-

1) Samplef ~ GEM/ (v), where GEM is a distribution
designed from stick-breaking construction of Dirichlet

Process:
J|
k-1
Fig. 4. The graphical model of HDP with auxiliary variables,; is - _ A _
the ith observation (visual word) in group ( image j), and z;; is the B ~ beta(1,7), B = By, H (1=5), (1)
=1

mixture component indicator associated with. 7; is the prior distribution

on mixture components, which follows a Beta distributionntcolled by 8= (51,52, . 7500)_

the concentrating parameter and the stick-breaking random variakte 3

follows a Beta distribution controlled by the parameteré;, controls the 2) Sampled, from the Dirichlet prior's base distribution
distribution over the observatian;; and H is the Dirichlet Prior distribution H

on b 3) Generate the group (imagej) by the following steps:

a) Sampler; from

0, % 0,
3‘; eﬂ ew O ve mjle, B ~ DP(a, B) by the construction:

k
W.;k ~ beta(afk, a(l — HB[))a

& 1=1
0, o o, 2
9:7\ e:: 9z< 9;—, eee , k—1 , ( )

Tjk = Tjk H (L —mj).
=1
Oy

eue,; [ Whereﬂ'j = (7Tj1,7Tj2, . 77Tjoo)-
9“ q’" Q O *ee 4) Givenr;, generater;; by the following steps:

a) Sample component indicater; from a multino-

Fig. 5. lllustration of the clusteri ty of the ChieeRestaurant mial distributions : 2;i|; ~ 7;-
ig. 5. ustration of the clustering property of the estauran i o ’ - :
Franchise [12]. Tableg’s, as the local clusters of customet's, are linked b) Samplexﬂ given zj; and 6, from a multinomial

by dishes¢’s to form global clusters across the restaurants. distribution F(szi)i Iji|zji7 O, ~ F(ezﬁ)-
To estimate the HDP model, among those Markov Chain
Monte Carlo Sampling schemes, Chinese Restaurant Franchis
1) A feature dictionary V at a low-level. (CRF) is probably the most intuitive one, which also can

V. = A{wi,ws,...,wa}, where each entry is ajjustrate the clustering property of HDP over grouped data
dictionary visual word. Before going into details of CRF, we first introduce the CRF
metaphor.

2) An image is a group of visual feature data and rep- |n CRF, there are multiple restaurants with an unbounded
resented by orderless visual words denotedxas= number of tables. A customer comes into a restaurant and
(zj1,2j2,...,2jn), Wherez;; is corresponding to an chooses a table to sit at, and there is a shared menu across
instance ofith visual word in thejth image. Note that the restaurants and one dish is ordered from the menu by
although we use bag-of-feature histogram to representi@@ first customer who sits at that table. Tables within each
image, ther;; here is the indicator for certain dictionaryrestaurant play the role of local clusters within one group,
word in V, not the frequency. over the customers sitting at them. The dishes shared across

We represent an image as a group of orderless vistlaé restaurants are used to link all the tables together to ge

words, as defined in the bag-of-feature model. We assumméxture components over all data points in different groups
that there exist latent mixture components corresponding Table 1l shows the notations and the process of CRF.
clusters of low level visual words with related attribut¥ée As an analogy to the CRF model in Table II, in our one-shot
also assume that such latent mixture components are shammbgnition problem, we treat each image as one restawant,
among different images. We therefore need to study thetlateisual word in that image as customey; coming in and a
components and the component memberships of the vislaaal cluster (within the image) as tablg wherez; sitting
words. In order to model the images with better describirag. To link the tables in different restaurants, we use dish
ability, we construct a new visual dictionary based on the&erving at tablet in restaurantj as the indicator of global
learned latent components, and encode the images with thixture component shared across all images. The distoibsiti
new dictionary. To serve this learning purpose, we use HOR ¢;; andk;; given previous random variables are given here:
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Chinese Restaurant Franchise

0;; : the iy, customers in restaurant ¢, : dishes in the global menu.;; : the dish served at tablein restaurant;.
t;; . the index of they;; associated witl;;. k;; : the index of¢;, associated with) ;¢
The metaphor will be:

customer; in restaurantj sits at tablet;;, whereas table in restaurantj serves dishk;;.
nj¢, - the number of customers in restaurgnat tablet eating dishk.

nj¢. . the number of customers in restaurgnat tablet.

n;.x - the number of customers in restaurgneating dishk.

nj.. . the number of customers in restaurgnt

mj : the number of tables in restauranserving dishk.

my. . the number of table in restauragt

m. . : the number of tables serving digh

m.. : the number of tables occupied.

Initialization: customer = 1 enters the restaurapgtand sits at table 1, and orders dish 1.
051 = 51,511 =1,mj; =1

Fori=2,...,

t with probability—4t: Jfor i =1,2,...,n;
customeri sits at table P ..ty“}jo“o I

nj..+1 with probab|||tyz.71+ao , for new table
) k with probability””—-jﬁ Jfork=1,2,...,m.
tablet serves dis . LT )
m..+1 with probability , for new dish
m_+v
TABLE 1l

PARAMETER DETAILS AND THE SAMPLING PROCEDURE OF THECHINESE RESTAURANT FRANCHISE SCHEME

i p(tji = tlaji, t77 k)
t]l|tjla v 3tj(i—1) , GO ~ Z njtgtji:t + OLGO, (3) ’]’L;Jlf_mh (x]z|9kﬂ) if ¢ previous|y used
t=1 . . .
Oép(tji = t|$ji, t=J, k) if ¢ =¢new

K If the sampled value of;; is t"*, then we need to assign
jelkin, kiay ..o ko, ooy kjio1,y ~ kag,w:k +~H. aglobal cluster to thig"**. The probability fork;snec. is:
k=1

)

gnew

_ @) p(kjnew = klt, k™7
Where_ Go ~ DP(v,H). _qu_Jat|0ns (3), (4_) have the same m . f =% (2:|0k,,) if k previously used
meaning as Table I, which is also the guidance for us to do s (10 it b pnew
sampling for HDP. Note that the number bf; variables is VTl Oe) T K=

not fixed by the algorithm, which is an important propertyt some tablet becomes unoccupied during the updating;ef

of infinite mixture model that the mixture component spacge may delete the correspondihg from the data structure. If

is infinite. The CRF also illustrates the clustering prop@ft the result of deleting:;, some mixture componettbecomes

HDP, as shown in Fig. 5. After modeling the local clustergnallocated, then we delete this mixture components as well

(tables) in images (restaurants), HDP also models the blobasampling k: Becausek;, determines the component mem-

clusters across all groups using table specific disheslifinapership of all the data points in tabigthe likelihood by setting

the dishk;; indicates the cluster associated with customeys, — k is given by f % (x;;|6,,), So the probability oft;;

x;3;'s sitting at the tablée;,, which is the higher level featurejg:

we want to model. .

Sampling t According to Equations 3 and 4, the likeli- p(kj = klt, k7"

hood due toz;; givent;; = t for some previously used m g f " (x;;|0k,;,) if k previously used

is f=% (x:|0k,,), Where f~%5i(z;|0y,,) is the conditional 0<{ N (2O, ) i k= knew

probability of z;; given all data points except itself. The e Emew

likelihood for ¢;; = t™ can be calculated as : Following the sampling scheme above, givgh= k;;, we
can updatef'(6.,,) in Fig. 4 for image;.

=i 4 _ gnew C. New Feature Representation
plxyilt™", tj =", k) _ .
K After modeling HDP over the prior-knowledge data, we
- Z &f*rﬁ(xﬁ)wkﬁ + Lfizji(xjilenew)- now obtain the IikeIihoo@(wi|zk, Dyrior) and the probability
m.+7 m.+7 p(zr|w;) for connecting latent components with the dictionary
(5) visual words. To find the representations of images based on
the latent components, we need to commpte; |I;) for the jth
Thus the conditional distribution af;; is: image. Recall that the histogram for imagebased on visual
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dictionary V' is h;, and we haveh;; = p(w;|I;). According PPN T e ol — [ e "
to the Bayesian rule, we have o P 4 teldo % e o |° ] 4] e
+_ e 4+ o +_ e|4 o H_ e+ |e
o .+°. + e o .+<>. + e o .+°. + e
p(zelTy) = > plarlwi)p(w;|I;), Q) ARSI I s s o o P
w; €15 8 & é 5
o + 4 * ° + 4+ . + 4 +
wherep(w;|I;) corresponds to théth dimension of the nor- B L B L Bl W J Bl
malized bag-of-feature histogram, |ed’]”— We define 1111 lm I 7‘ um T 2;”132.;'“
fe(h;) = p(z]L;) to map the raw feature vectds; = o — Xl/,: — Xulz‘ ”
(hj1,hjo, ..., hja;) to the higher level representatid(h;),
where F(-) = (fi(-), f2(:),.-., fx(-),..., fa;(-)), for j = Fig. 6. lllustrations of spatial pyramid subdivisions [#d the weights for
1,2,..., N. Supposé; is the bag-of-feature histogram repre&ach level of resolutions.

sentation based on visual dictiondry the new representation
F(h;) is actually the normalized bag-of-feature histogram
based on the next level dictionak¥,,, where each entry is
a latent mixture component learned from HDP modeling. We
call F(-) the HDP-encoder.
[ L1 |—

D. Hierarchical Feature Learning

In this section, we will present the hierarchical feature [ LO
learning structure based on the HDP unsupervised feature _ . _
learning model described in previous sections. Fig 7 shoﬁgr"g 'Hgg’jg;rggé'grns?‘Egghfesg‘;’e%gg? its’agg?aﬁ]gg iw&ﬁ;;‘;e}%ﬁs
the construction process of multiple-level features bas@@ HDP modeling on the lower level features.
single type of low-level features.

To motivate the proposed structure, we first review the
spatial pyramid matching scheme [14]. In spatial pyramigrovide a more comprehensive similarity metric, which can
matching, as shown in Fig 6, the two-dimensional image spdgoenefit the classification later. In details, Fig 7 shows how
is divided into sub-images equally, then the sub-images ahe HDP-encoders work under the pyramid structure based
treated as separate channels to compute the feature matcha single type of features. In Fig HDPro_r1 means
ing at each level. Experimental results show that this spédre transformation function learned froi0 features using
tial pyramid construction yields improvements in simitgri Equation (9) based on HDP modeling, and thi< Pro_r1
measurement using intersection kernels. Since the bag-sfused to encod£0 features intd.1 features. Recursively, we
feature representation treats the visual vocabulary festulearn the functiond DPr,_1o from L1 features and encode
orderless, the improvement introduced by such multipléiapa them into L2 features and so on. Note that with applying
histogram resolutions is intuitive: It actually takes thedtion the HDP-encoder multiple times, we reduce the feature space
information of feature points into consideration. In theppr, to a low dimensional one. In practice, we stop the multiple
we propose a similar solution in the discrete feature spad¢¢DP-encoder process once the dimensionality of the new leve
We construct a multi-layer feature space where each leyehture is below 100, to ensure the discriminative power of
consists of features with different “describing resologtd  each level. It is worth noting that we estimate the stacked
For example, in the “zebra-horse” problem, the “strippeddDPs layer by layer in a greedy way, under the assumption
pattern has higher level of “describing resolution” thatattk” that features at each layer follow a multinomial distribuati
and “white”, since we can describe certain areas as “black”So far the feature learning we described is based on a
or “white”, while only a structure with repeating lines andingle type of image descriptor (e.g., SIFT). Is this endugh
alternative color areas in between could be called “stdppe Empirically conducting feature learning on one individual
A lower level feature captures local characteristics ofraage image descriptor cannot capture all useful information: Fo
while a higher level feature describes properties related instance, both color and texture information can be impadrta
certain structure of the object or image background. for classification tasks and should be learned into joinhaig

Incorporating the idea of multiple “describing resolusdn level features. It is therefore important that we can jgintl
we now present how to use HDP-encoders to build the featursedel different image descriptors (e.g., SIFT from graylesca
pyramid. Fig 7 reveals that the feature learning method ilmages and Color Histogram from color images). We propose
actually a clustering process on the previous lower leveene learning a higher level feature vector from multiple typds o
L0 denotes the bottom level andl denotes the next higherlow-level descriptors: To couple the feature spaces tagéth
level, and so on. In contrast to spatial pyramid subdivisiotHDP modeling, we concatenate different feature vectorsant
where higher levels have more details, our method providesg vector and then apply HDP, which is equivalent to encode
more informative descriptions at higher levels. In our feat images with a large joint dictionary. In practice, we mayaee
pyramid, from bottom to top, the descriptions focus fromaloc to design a specific learning structure for a particular tagk
details to regions, then to objects. Similar to spatial pyich analyzing the features provided. Fig 10 in Section IV-C shiow
we believe that our multiple “describing resolutions” abultwo possible feature learning procedures.
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E. Feature Combination resolutions” of different levels. Unlike the spatial pyraimin

In this section, we will discuss how to combine featuredhich finer grid has higher weights, in our feature pyramid,
learned from above sections into the classifier's input .datgtuitively higher level features have higher weights sivee
that images within the same class usually have high intsacldhan the lower level ones with respect to objects’ character
variability. The low-level image descriptors are desigried iStics. More specifically, the low-level features have agéar
be invariant to the variations within classes. At the sanfdoportion of noisy information, which is an important cenc
time, the descriptors are desired to have discriminatiwegpo N the one-'s.hot ,recognltl_on problem, and higher level fesstu
for different classes. There is no single descriptor that c§omehow ‘filter’ out unimportant information by clustering
combining different types of features is preferred. Bdsica We can see that the higher level feature SIFT-L1 yields
we want to combine descriptors based on color, shape Sgjter recognition performance than the lower SIFT-LOdeat
texture information. Therefore, intuitively it makes sense to assign higher fsig

In this paper, we are facing two kinds of feature combinatidR" higher level featurels. The weight associated with I¢vsl
problems: 1) How to combine all types of features at the sarfguristically set to be—, whereL means the highest level.
the first questi(_)n, the describgd crossing-space HDP nmagleli K(Hx, Hy) = ZZL:O 2Llil K'(Hyx, Hy)
can be a solution. The new higher level features learned from L 1 1 M
concatenated spaces capture information from all lowezllev ~ 210 3T M, 2 k=1 (k) (Hx, Hy)
features, yielding a much more compact feature space thean th = 3= s/ 5 S50y 0.2 min(Hy,, (i), H, (i)
original ones. However, as we mentioned earlier, sinceyever (12)
feature space has its unique advantages, we need to itegfafere the final intersection kernel is actually weighted sum
useful information as much as we can, especially for oné-shfation of matching scores for all the dictionary words in all
tasks where only extremely limited information is provided feature types from all levels.

Grauman and Darrell [22] propose pyramid matching to find
an approximate correspondence between two sets of featu':_e
Pyramid matching works by placing a sequence of increagingl’ N .
coarser grids over the feature space and taking a weighted su FOr one-shot recognition tasks, we first use the proposed
of matches that occur at each level of resolution. In oumfeat Unsupervised structural learning method to build a feature
pyramid, at any level, the occurrence of the same featureRiramid based on unlabeled prior-knowledge data, we then
two images is considered as a match. More specifically, f6pmpute the kernel matrix for the testing data in the target

the feature pyramid with levelg, 1,2,..., L, we useH) domain according to Equation (12). Since [22] shows that the

® . ) "
and H!, to denote the histograms of featukefor images intersection kernel is additive Mercer Kernel, we can diyec

(k) ) : i ] . . .
X andY at levell. Then the intersection kernel for these twd!'PUt Our pre computed final kerndl, as in Eq“‘.”‘_“"” (12),
histogram vectors is: into the popular Support Vector Machine classifier to make

the classification decision.

One-shot Recognition Decision

IV. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed method on one
It was shown that this histogram intersection is additivedde SNOt image recognition, we examine two popular, publicly-
Kernel [22]. Now let us look closely at all features at level available data sets in the area of one-shot recognition. ife fi

of the feature pyramid. [7], [8] simply concatenate all feat evaluate the proposed upsupervised feature learning ahetho
vectors into a long vector, which is equivalent to using the a®n @ 4-class data set which is a subset of Caltech-101, com-

erage kernel over intersection kernels calculated foypls of Paring with previous reported performances b’f}SGF’ on multi-
features. [5] shows that Multiple Kernel Learning (MKL) andhot training; We then report the results on the "Animalshwit
its variants have the best performances on classificatigksta Attributes” data set using two different feature learnimgqe-

However, in our one-shot recognition problem, we don’t hay&res (as shown in Fig 10). All classifications are perforimed
sufficient training data to optimize the linear combinatisn LIBSVM [25] with using our pre-computed kernels or linear

different kernels when optimizing the classifier's coeéiiis kernel (in the 4-class experiment) with the parameéter 10.

simultaneously. Thus, we choose the average kernel here for
simplicity and good performance according to [5]. Then th&. Data Sets

Dy,
o (e, Hy) = S min(Hk, (), (). (10)
1=1

kernel function for level is: 4-Class[6], [15], a subset of Caltech-101, is a data set
. My . consisting of images from Airplane, Faces, Leopard and
R (Hx, Hy) = 57 > ki (Hx, Hy). (11) Motorbikes 4 classes. Since no previous work using unlabele

=1 data as prior-knowledge under one-shot recognition sgttie

After defining the matching kernel at each level, we puwtompare our one-shot recognition results with [15] whichdus
weights on the kernel scores according to the “describir@ training samples in classifications. Airplane, Facesplaed



ACCEPTED FOR THE IEEE TRANSACTIONS ON MULTIMEDIA, AUGUST 22

Classes 50 training [15] | 50 training (SIFT-L1) || one-shot (SIFT-L1)] one-shot (SIFT-LO)
Airplanes 94 % 89% 79 % 46 %
Faces 74 % 93% 82 % 85 %
Leopard 92 % 89% 77 % 99 %
Motorbikes 88 % 94% 93 % 68%
mean 87 % 91% 83 % 74%
Fig. 8. Images from 4-class data set TABLE Il
PERFORMANCES OF ONESHOT RECOGNITION ON THE4-CLASS CALTECH
DATA SET.
and Motorbikes are used as target categories, and 30 image
from each of the remaining categories are used as prior-  *®[ 5 Faces
knowledge data. We compute SIFT descriptors on a dense grid ~ oos}| * k;*’tpag_dk *
. . . . lotorbikes
of the images, every 8 pixels, to form the dictionary and eect o3l Aplanes
data. In the testing phase, we randomly select 1 trainingpkam ’ . .

from each target category, and use the remaining 29 samples oozt

as the testing data. The experiments are repeated 10,089 tim ootk * *

to calculate the averaged classification accuracy. L O o o x
0 * o4 0

“Animals with Attributes” data set [7] contains natural
color images of 50 animal categories. There are 30,475 %[ *
images in total and six types of pre-computed features for -0z} Rk
downloading, including RGB color histograms (CH), SIFT,[1] 003 ‘ ‘ ‘ ‘ ‘ ‘ ‘
rgSIFT [26], PHOG [3], SURF [2] and local self-similarity -003  -002 -001 0 001 002 003 004
histograms (LSS) [27]. Lampert et al. extracted CH feature
vectors for all 21 cells of a 3-level spatial pyramids(1, 2x 2, (a) Raw features
4x4). For each cell, 128-dimensional color histograms are 8.
extracted and concatenated to form a 2688-dimensionalrteat ¢ Ceopard o
vector. Each of the other vectors, except PHOG, is 2000- ol Motorbikes B T,
bin bag-of-feature histogram. We didn’t use PHOG because gL Atplanes o *ﬁ 0
that its simple structure is not suitable for recursive deat i AR
learning. Among the descriptors, SIFT and SURF provide &%%%@@
image gradient information, CH captures color information or &e
LSS serves as texture descriptor and rgSIFT is a combination R 0 x
of color and local gradient information. Ve <

8 YT,

For one-shot recognition we examine the same 10 tar- o Vv
get categories suggested by [7], and use the remaining as ol v
unlabeled prior-knowledge data. We only use 30 samples R a— s . . . .

per prior-class as unlabeled training data, to achieve low
computational cost and to show the generalization ability o
the proposed feature learning method. In the testing phase,
we randomly select One. t_ralnlng sample from each targlgl'&. 9. 2D plots of the subsets of the 4-class data set. Ealch/pattern
class and use the remaining as testing data. Therefore mf@esents a different class from the four categories.

have 10 training samples and 6170 testing samples for each

independent experiment. We repeat the experiments 10,000

times to report the average classification accuracy. The B0 Results on “4-class” data set

target testing categories are: chimpanzee, giant parajzaid,

Persian cat, pig, hippopotamus, humpback whale, raccaon, r Based on the SIFT-L1 features learned as in Section lll, we
and seal (S’ee F,ig. 11). ' ’ 'employ the SVM classifier to perform one-shot recognition.

For the 4-class data set, the classification accuracy seardt
For the conventionahulti-shot recognition, we follow the reported in Table Ill, where an average accuracy8&f; is

protocol in [7] with using50 images in each target categoryobserved for SIFT-L1. We clearly note &% improvement
for training and the rest for testing. We randomly seledtom SIFT-LO. It is worth noting that the proposed one-
the training samples in each iteration, and repeat 10,080t learning method yields comparable performances to the
iterations to report an averaged accuracy. Similar to the oimethod in [15] which is trained on 50 training samples per
shot recognition experiments, for feature learning, wdl stclass and provides an average accuracg@b. In addition,
only use the features learned from a small subset of prido- show the general applicability of the proposed method, we
knowledge data, without using the training data in the targalso report the results for SIFT-L1 with 50 training samples
categories. The training data in the target categories mlye oper category, and the average accuracyli& which is better
used for classifier training. than that of [15]. It is worth mentioning that the 50 labeled

(b) Learned intermediate representations
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samples per category are used in both feature learning amdor features together to learn a3 “All” feature. Finally,
classification stages in [15], while they are only used in thee compute the final average kernel by Equation (12) and
classification stage in our proposed method. perform classifications using SVM.

To understand the feature learning process better, in FigAlternatively, we can construct a feature pyramid follogvin
9, we visualize the raw SIFT-LO features and the learnddg 10(b), to learn a compadt2 “Fusion-single” feature. We
intermediate (SIFT-L1) features in 2D plots using the t-SNEompute an interaction kernel based on this feature by
technigue [28]. In the plot of raw features, the testing datquation (10) to do classifications. Since the “Fusiondgihg
points from different classes are somehow mixed, thoudgature is compact (e.g., 60 dimensions), it is possible to
they seem to reveal a separable pattern by using nonlinearused in real time mobile applications. Also [29] designs
classifiers. However, it is important to recall that, sineeanly a fast approximate training approach to speed up the SVM
have one training sample per class in one-shot recognitiontraining and testing over intersection kernels. We belida
is infeasible to discover such nonlinear distribution @atts the “Fusion-single” feature has practical advantages.
based on one training sample without any prior assumption.Table IV summarizes the results in one-shot recognition
In the plot of the learned intermediate representations, titsks when employing the two feature pyramid constructions
is clear that testing data points from different classes ashowed in Fig 10. Note that &.1% accuracy based oh0
well separated in the feature space, therefore even with of¢atures was reported by [7]-[9], where they simply concate
one training sample available for each target class, the S\fMted all feature vectors into a long vector and used PCA
classifier may still be able to make correct decisions for the get a lower dimensional representation for classificatio
testing data. The proposed feature learning based on miisjdn our experiments, we use average intersection kernels and
prior-knowledge data may have the potential to achievegat a better accuracy akr.8%. As we can see from the
comparable accuracy as that of the fully trained classifinat table, employing feature learning from LO to L1 can provide
method in [15], although more investigations will be needeal good performance improvement, i.e. fram8% to 20.0%.

in the future to test on a larger number of categories. By constructing the feature pyramid, we get accuracy gains
gradually as the feature level increases. It seems that we
C. One-shot Results on “Animals with Attributes” can achieve the best performance by constructing a 4-level
pyramid. From LO to LO-L1-L2-L3 we observe an absolute
All L3 7.5% accuracy improvement (i.e., representing a relative im-
T provement ovet0%). From LO-L1 to LO-L1-L2-L3 we only
l”_ e L observe al.6% absolute accuracy gain. However, it is worth
? ,,,,,,,, =—") emphasizing that even6% represents a significant progress in
Tt = 1 one-shot recognition where the provided information istkh
16 ) C ) ( PG ) ( ) and the average accuracy is generally quite low. In one-shot
— ‘W* - *ﬁ* - *ﬁt - \*ﬁ* i recognition, the standard deviation of recognition accyiia
Cster ) (Csure ) (s ) (Con ) (resFT) Lo usually large due to the randomness introduced by selecting
(a) feature learning procedure 1. only a single training sample in each category. However we
L2 observe a consistent improvement (more than 75% of the
T trials) from LO-L1 to LO-L1-L2-L3 during the repeated 100
ilniagieiesiealiis il il 3 independent experiments and the improvement represepted b
L( ) ( ) ( ) C ) ( )| the pair-wise accuracy differences is statistically digant,
o ﬁ_ a _ﬁ_ h _ﬁt T _Tf T ﬂf - judged by the t-test. In addition, it is worth mentioning ttha
(Csier ) (Csure ) (Css ) (Ccn ) (rgSIFT ) Lo we used SIFT-L1 only and can achieve&3% accuracy in
(b) feature learning procedure 2. our conference paper [10], and here we can further imprave th

: . I . accuracy by3.3%. From Table IV, we also note that the 60-
Fig. 10. Two feature learning procedures used for examitAmymals with . . . . .
Attributes”. The dotted line boxes mean that we concatediferent feature dimensionalL2 “Fusion-single” feature can achieve2@.30%
spaces together and then apply the HDP-encoder. accuracy. It suggests that the proposed feature learnittyohe

can learn a single compact feature with good discriminative

We perform the unsupervised feature learning on a smabwer.
subset (30 images each class and 1200 images in total) oSince there are no specific algorithms designed for one-shot
the 40-class prior-knowledge data. The feature pyramids aecognition with using only unlabeled prior-knowledge ajat
constructed by two different procedures, as illustratedrim to have a feeling of the accuracy upper-bound, we compare
10. In the first procedure in Fig 10(a), we use the HDP-encodle performance of the proposed method with the ones using
to learn L1 features from each of the b0 descriptors. Here much more prior information. Lampert et al. [7] used fully
we don't do the cross-space learning yet mainly due to thebeled images in the prior-knowledge domain and used a
concern of computational cost. The HDP learning frdih sophisticate animal attribute table designed by humanrexpe
to L1 actually filters the feature spaces. We then assignf& each of the class. They achiee8% in the IAP [7] setting
types of L1 features into 2 categories, texture and color, arehd40.5% in the DAP [7] setting. Tang et al. [8] used fully
perform cross-space learning to obtain/zgh“texture” feature labeled data in the prior-knowledge domain, which is prdypab
and anL?2 “color” feature. Further, we combine the texture anthe closest experimental setting to ours, and they repeamed
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|chimp:mzm- ‘ | giant panda | | leapard ‘ | Persian cat | | pig l |hippopnmmus| “\':Itl:n!:c | raccomn ‘ ‘ rat

Fig. 11. Sample images from 10 target classes in “Animalé witribute” data set

Feature pyramid 1 L0 LO—L1 | LO—L1—-L2 | LO—L1—-L2—-L3 Feature pyramid 2| L2 Fusion-single
Accuracy 14.1% [7], [8]/17.8%(ours)] 20.0% 20.3% 21.6% Accuracy 20.3%
TABLE IV

ONE-SHOT RECOGNITION ACCURACY ON‘A NIMALS WITH ATTRIBUTES” DATA SET WITH FEATURE PYRAMID 1 AND 2. THE RESULTS SHOWN IN
BOLDFACE ARE SIGNIFICANTLY BETTER THAN THE OTHERSJUDGED BY A PAIRED-SAMPLE T-TEST.

Methods | Raw Features [7]| Feature Pyramid 1] Feature Pyramid 2

average accuracy df3.7% for linear projection an®7.2% Accuracy 659% 1% 70.0%

for logistic projection. We are glad to notice that under our

experimental setting which provides very limited inforioat TABLE VI

Compared with previous Worksy the proposed method CanMULTI-SHOTRECOGNITION ACCURACY RESULTS ON THEA NIMALS
. . . WITH ATTRIBUTES” DATA SET WHEN USING RAW FEATURES IN[7] AND

achieve a comparable perf_ormanceza_fG%, which is closg FEATURE PYRAMIDS AND 2 IN THE PROPOSED METHOD

to the 23.7% accuracy obtained by using fully labeled prior-

knowledge [8].

To show the scalability of the proposed one-shot recogni- _ _ _ _
tion method, we also conduct a 50-class recognition task lds Multiple Shots Results on “Animals with Attributes

described in [8]. Here all the testing images are still drawn 19 evaluate the general applicability of the proposed
from the 10 target categories, and the training images ftem tyethod, we conduct the conventional multi-shot recognitio
rest 40 prior-knowledge categories serve as distractdr&@8 experiments on the “Animals with Attributes” data set, anel t
convenience and saving computational cost, we use a subsggQu|ts are shown in Table VI. The proposed method based on
distractors in the feature learning, and the results are/shio  feature pyramid 1 in Fig. 10(a) achieve§ha4% accuracy, and
Table V. For the proposed method, the LO features achieveig proposed “Fusion-single” feature also yields an aayura
accuracy oft.68%, and the combination of 4 levels of featuregg high as70.0%. [7] reported a65.9% accuracy in multiple
achieve an accuracy df.27%. [8] reported an accuracy of shots experiments based on 6 typesIof raw features. It
5.38% for the raw features and an accuracy®5% for the s noted that our feature learning process performed only on
logistic projection method. The accuracy difference befwe the prior-knowledge data can improve the absolute accuracy
the proposed method and [8] when using the raw features (L)) 5 5% in multi-shot recognition tasks. It indicates that the
could be due to the following major setting differences: Wgroposed feature learning method can learn a general expres
use a subset of 40 prior-knowledge categories as distect@ition and provides better discriminative power by trangig

for simplicity and [8] uses the entire data set; we onljformation between the prior-knowledge and target domain
use the unlabeled prior-knowledge images and [8] uses thgis example shows that the usage of the proposed method is
labeled ones. However the proposed method still shows g limited to one-shot recognition tasks. It is expected the
improvement fromt.68% to 5.27% when combining different couid get further improvement if we perform feature leagnin
levels of features. also on the multiple training samples in the target categori

Methods Proposed Method in [8]

V. CONCLUSIONS ANDFUTURE WORK
Accuracy(raw/learned)| 4.68%/5.27%| 5.38%/7.5%

In this paper, we tackle the problem of one-shot image

RECOGNITION ACCURACY R-II;AS?JE'II'ES\QF USING RAW FEATURES AND reCOgnltlon and we propose a novel -UnSUperVISGd hlerabhlc
LEARNED FEATURES IN DIFFERENT METHODS feature learning framework to learn higher level featuraseol
on low-level image descriptors. To construct the hieraxahi

feature pyramid, we propose using Hierarchical Dirichlet

Process to perform feature learning from a lower level to a
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higher level. We also show that the HDP encoder can be ap# J. Davis, B. Kulis, S. Sra, and 1. Dhillon, “Informatietheoretic metric

plied recursively, which makes the feature learning proced
flexible and can be customized depending on particular .tash%]
Furthermore, we propose using the summation of weighted

learning,” in International Conference on Machine Learning (ICML)
2007.

R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Selfight learn-
ing: Transfer learning from unlabeled data,”liternational Conference

intersection kernels and the average kernel to transfefeaur
ture pyramid into discriminative power. The proposed featu

pyramid construction procedure is capable of learning glsin

[19]

on Machine Learning (ICML)2007.

X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supegddearning using
gaussian fields and harmonic functions,’litiernational Conference on
Machine Learning (ICML)2003.

compact feature for recognition. Our experimental resuli]
show that the proposed feature learning framework could

K. P. Bennett and A. Demiriz, “Semi-supervised suppegttor ma-
chines,” in Proceedings of Neural Information Processing Systems
(NIPS) 1998.

benefit both one-shot recognition and conventional mbldits [21] A. Gammerman, V. Vovk, and V. Vapnik, “Learning by trahstion,”

recognition tasks.

Since we could perform the HDP modeling across featu B

in In Uncertainty in Artificial Intelligence (UAL) Morgan Kaufmann,
1998, pp. 148-155.
K. Grauman and T. Darrell, “The pyramid match kernels@imina-

spaces, in the future, we plan to incorporate multiple media tive classification with sets of image features,” IBEE International

sources into the proposed one-shot recognition system. FZOE
instance, we would like to add the image-associated téx%

descriptions into the feature learning phase.
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