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Abstract—RFID-based human activity identification has be-
come a key component in today’s Internet-of-Things applications.
State-of-the-art solutions mostly focus on the simple scenario
with a single person in the open space. Extension to the more
realistic realworld scenarios with multiple persons however is
non-trivial. Given the much richer interactions among them,
the backscattered signals will inevitably mixed, obscuring the
information of individual activities. This is further complicated
with multi-path in a common indoor environment.

In this paper, we however argue that, though often considered
harmful, the rich interactions combined with multi-path indeed
offer more observable data. After careful processing the raw
signals, critical information about the activities can be unveiled
through modern learning tools. We present M

2
AI, which for

the first time accommodates both multi-path and multi-object
for activity identification. M2AI incorporates a phase calibration
mechanism to automatically eliminate the frequency hopping off-
sets, and a novel decoupling mechanism for the periodogram and
pseduospectrum in the raw signal mixture. The refined data are
then fed into an advanced deep-learning engine that integrates a
Convolutional Neural Network and a Long Short Term Memory
network, which examines both spatial and temporal information
in realtime for activity identification.

Our M2AI is readily deployable using off-the-shelf RFID
readers. We have implemented an M2AI prototype with Impinj
UHF passive tags and a Speedway R420 reader. Experiments
with multiple objects in a multipath-rich indoor environments
report an activity identification accuracy of 97%, a significant
gain (27%) over state-of-art solutions.

Index Terms—RFID; Backscatter; Activity Identification; Deep
Learning;

I. INTRODUCTION

Human activity identification has become a key component

in such critical Internet-of-Things applications as healthcare

and smart homes. It has attracted significant attention from

both academia and industry, with a wide range of solutions

based on cameras [1], radars [2], and/or various inertial

sensors [3]. They generally require the object of identification

to carry sensors/wireless transceivers, which are not negligible

in both size and weight, not to mention the constraints from

the battery. Recently, Radio Frequency Identification (RFID) is

experiencing an explosion in many application contexts given

its low cost, small form size, and batterylessness nature [4]

[5] [6] [7] [8]. We have seen pioneer studies on RFID-

based activity identification as well [9] [10], together with

preliminary adoptions in industry. For instance, Disney has

built an RFID gaming system that can sense when a player

attached with an RFID tag is moving or touching objects in

real time [11].

The state-of-the-art solutions mostly focus on the simple

scenario, i.e., a single person in the open space. A reader tracks

the wireless signal backscattered from the person attached

with RFID tags and, from changes of the signal, identifies

the activities of the person. Extension to the more realistic

realworld scenarios with multiple persons (each with distinct

RFID tags) however is non-trivial. Given the much richer inter-

actions among them, the backscattered signals will inevitably

mixed, obscuring the information of multiple on-ongoing

individual activities. This is further complicated with multi-

path in a common indoor environment. Besides reflection from

surrounding walls, a person can also be occluded by furniture

and other persons, resulting in the signals to be deflected and

take multiple paths to arrive at the RFID reader.

There have been efforts towards better understanding and

distinguishing signals from different paths caused by mutual

interferences among multiple persons’ activities, and the Hid-

den Markov Model (HMM) has been suggested as a useful

tool [10]. Unfortunately, the features of RFID-based activities

are hard to be pre-selected manually, for the received signals

are a mixture of multi-path and multi-object, and the rules for

making correct estimations are hard to be pre-defined, either.

Without good a priori knowledge, the effectiveness of HMM

can be quite limited in this context.

In this paper, we however argue that, though often consid-

ered harmful in multi-object scenarios, the rich interactions

combined with multi-path indeed offer more observable data

that carry abundant information about the activities. The raw

RFID signals, which is a mixture from multi-objects, can be

too noisy to be directly processed and understood; to limit co-

channel interference, commercial RFID systems also support

frequency hopping that further scrambles the raw signals. Yet

after careful processing, critical information about the activi-

ties can be unveiled through modern learning tools. We present

M
2
AI (Multipath-aware Multi-object Activity Identification),

an RFID-based activity identification framework that for the
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Fig. 1: M2AI framework

first time accommodates both multi-path and multi-object. 1

As shown in Fig. 1, M2AI involves four steps: preprocess-

ing, activity identification, and activity assessment. Our data

preprocessing incorporates (1) a phase calibration mechanis-

m to automatically eliminate the frequency hopping offsets;

and (2) a novel decoupling mechanism that jointly considers

both periodogram [12] and pseduospectrum [13] in the raw

signal mixture. The carefully separated angles and powers of

different paths are then fed into an advanced deep-learning

engine for activity identification. Our engine integrates a

Convolutional Neural Network (CNN) [14] and a Long Short

Term Memory (LSTM) network [15]. We show that this

integration is computationally effective with high accuracy,

beating such conventional classification tools as SVM and

Nearest Neighbors.

Our M2AI is readily deployable using off-the-shelf RFID

readers (e.g., a single UHF reader with a limited number

of antennas), and allows reusing existing RFID readers for

indoor activity identification. We have implemented an M2AI

prototype with Impinj UHF passive tags and a Speedway R420

reader. Experiments with multiple objects in a multipath-rich

indoor environments report an identification accuracy of 97%,

a significant gain (27%) over state-of-art solutions.

The rest of the paper is organized as follows. Section II

examines the key challenges for identifying the activities of

multiple objects in the indoor environment, and presents our

M2AI framework to explore the hidden information in multi-

path. Section III introduces our data pre-processing scheme to

deal with frequency hopping and de-couple multipath signals.

Section IV then presents a deep learning solution for multiple

object activity identification from the processed data. Sec-

tion V discusses the framework implementation details, with

its performance being evaluated in Section VI. Section VII

discusses some potential further extensions. We provide a lit-

erature review on related works in Section VIII, and conclude

the paper in Section IX.

1In this paper, an object of activity identification refers to a person equipped
with multiple RFID tags, where the number of tags is set to 3 by default. Note
however our solution works with non-human moving objects as well.

II. M2AI: MOTIVATION AND OVERVIEW

The Angle of Arrival (AoA) of an RF source is computed by

comparing the phases of the received signals at antennas [16]

[17]. AoA estimation is widely used in RF-based positioning

given the different propagation distances to different anten-

nas, and serves as a foundation for activity identification as

well [9]. It is known that the estimation is quite challenging in

a multi-path indoor environment, not to mention with multiple

objects.

Consider an illustrative example in Fig. 2. In this paper,

we consider an object of activity identification as a single

person equipped with multiple tags. In Fig. 2(a), Tag 1 is

attached to one person, and there exist three paths in the

indoor environment as the AoA spectrum shows. In particular,

the stationary Tag 1 continuously reflects the signals with the

same angle and power from 40◦, 90◦ and 125◦, respectively.

Further, Fig. 2(b) illustrates the scenario for a single object of

activity identification with another moving object, where the

moving person blocks path 1 at 40◦. As such, not only the peak

of the blocked path is decreased, but the peak amplitudes and

angles of the other paths are also changed. Specifically, the

path at 90◦ is shifted to 85◦ with power decrease. When there

are more tags in the area, e.g., Fig. 2(c) with five more tags

added, we can see that the number of signal paths increases

rapidly in multiple objects of activity identification.

Intuitively, estimating AoA is more difficult in these indoor

environments than in an open space. Analyzing the estimated

data to derive the corresponding activities can be even more

complicated, particularly for the latter two cases with multi-

object. On the other hand, the massive multi-path signal

information in this context also provides opportunities, as they

indeed reflect the activities from different observation angles.

It is however non-trivial to explore the rich but hidden

information therein.

• Mixture of signals from multiple paths and multiple

objects: First, the signals may twist with each other

and sometimes hide behind noises, the patterns of the

relationships between them and human activities are

hardly determined with a simple set of predefined rules;
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(a) A single object of activity identifica-

tion: there are three paths in the multipath
indoor environments from a stationary Tag
1.

(b) A single object of activity identification

together with another moving object: one
path at 40

◦ is blocked, while the power of
peak 40

◦ is reduced and the peak at 90◦ is
shift.

(c) Multiple objects of activity identifica-

tion: massive signals may twist with each
other in multiple tags and multiple objects
scenarios.

Fig. 2: The basic idea of M2AI from a single object to multiple objects of activity identification in the indoor environments.

• Frequency hopping: Second, to limit the co-channel in-

terference, FCC regulation requires that commercial UHF

RFID readers must randomly hop to one of the 50 center

frequencies within the 902-928 MHz band every 200 ms.

The recent study shows that frequency hopping will cause

noticeable phase offset due to the phase difference of the

oscillator and the non-uniform frequency responses of the

tags’ antennas [18]. The aggregated impact with multi-

path and multi-object can be even more dramatic.

To deal with the above challenges, our M2AI incorporates a

phase calibration scheme to automatically calibrate the phase

difference between frequencies without the requirement of

human intervention. It then combines the signals’ psedu-

ospectrum and periodogram frames to decouple signals from

multiple paths while reserving the accurate signal power and

direction estimation at the same time. Such pre-processing pro-

vides refined data with the essential information for identifying

the activities through automated learning.

Our learning network takes two inputs, i.e., periodogram and

pseduospectrum. Since each individual spectrum frame forms

only a small part of the human activities, such conventional

machine learning methods as support vector machine (SVM)

and decision tree based on the incomplete information can

easily be confused. They do not well utilize the temporal

spectrum, either, which contain important information about

the activity. Hence, we explore the latest deep learning tools;

in particular, we use an integrated design of a Convolutional

Neural Network (CNN) [14] and a Long Short Term Memory

(LSTM) network [15] units, which uses memory cells to store,

modify, and access internal state, so as to discover long-range

temporal relationships. Our networks integrate information and

maintain a constant number of parameters while capturing an

accurate activity description in the massive spectrum data.

It is worth noting that although working with rich multi-

paths in indoor environments, our M2AI design requires only

one reader with four antennas and can increase the path

diversity by adding tags in the area, so the deployment cost

can be well reduced. Moreover, M2AI does not need to

explicitly know the RFID tags’ locations. Hence, the tags can

be arbitrarily placed with a high degree of flexibility.

Fig. 3: Phase jumping caused by frequency hopping

III. DATA PREPROCESSING

The state-of-the-art RFID hardware with the standard Low

Level Reader Protocol (LLRP) can provide low-level data

reports, such as the phase and Doppler shift. Yet, as indicated

in previous research work [19] [20], the reported data may

not be accurate enough to be immediately applied to activity

identification, due to such factors as the multipath effect and

frequency hopping. Targeting on these factors, we propose

our M2AI design to preprocess the measured phase from the

reader.

A. Phase Calibration

To limit the co-channel interference, FCC regulation re-

quires that commercial UHF RFID readers must randomly hop
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(a) Single Path Signal Arrival at Antenna Pair (b) Multiple Path Signals Arrival at Antenna Pair (c) Antenna Array and Angle of Arrival

Fig. 4: Illustration of Angle of Arrival

to one of 50 center frequencies within the 902-928 MHz band

every 400 ms, which will cause phase offset due to the phase

difference of the oscillator and the non-uniform frequency

responses of the tags antennas. To this end, we measure the

phase of a stationary tag for 60 seconds, which supposed to

keep consistent on phase values. We plot phase values against

their frequency in Fig. 3, where it is clear to see that the

phase and frequency relation follows the linear model. These

experiments imply that different frequencies induce different

initial phase-offsets at the reader. To overcome the issue, we

design a mechanism to calibrate the phase difference between

frequencies, so that the phase output looks like coming from a

fixed frequency. The calibration is done by collecting an initial

phase measurement that takes about 10 seconds for the tag in

stationary. In particular, we have frequency fj , ∀j ∈ [1, 50]
and set a common frequency as fr (default to 910.25 MHz).

Let φj(t) denote the measured phase at frequency fj at time t.

Let φ̃j and φ̃r represent the median value of measured phase

in recent 10 seconds at frequency fj and common frequency

fr, respectively. We map the measured phase φj at frequency

fj to the calibrated phase φ(t) as follows:

φ(t) = φj(t)− φ̃j + φ̃r (1)

B. Angle of Arrival

Intuitively, the AoA estimation works as illustrated in

Fig. 4(a): A signal source s impinges on the antenna pair with

an angle θ, and D is the distance between two antennas. We

can calculate the spatial angle θ by comparing the phases of

the received signals at multiple antennas. The phase φ of an

RF signal rotates by 2π for every λ (wavelength) distance the

signal travels. Let ds,i and ds,j denote the distances from the

source s, to the two antennas respectively, and φi and φj are

the phases of the received signal that we measure at the two

antennas. The phase difference between the received signals at

the two antennas, Δφj,i = φj −φi, relates to the difference in

their distances from the source, Δdj,i = ds,j−ds,i, as follows:

Δdj,i
λ

=
Δφj,i

2π
+ k (2)

where k can be any integer in [−D
λ
−

Δφj,i

2π , D
λ
−

Δφj,i

2π ].

However, we find that the above intuition is true only when

the multipath effect is negligible. As seen from Fig. 4(b), if the

signal arrives at each antenna via two paths, the overall phases

received at the two antennas become φ∗
i and φ∗

j . Let si and sj
denote the signals along direct path from source s to antenna i
and j. Let s′i and s′j denote the signals along second path from

source s to antenna i and j. Let α denote the amplitude of s.

Let αi, αj ,α′
i and α′

j represent the propagation attenuation at

the path ds,i, ds,j , d′s,i and d′s,j . The overall amplitude received

at the two antennas become α∗
i and α∗

j . We assume the source

s is far from antennas, therefore ds,i = ds,j = d, and have the

following equations:

si = α · αi · e
jφi (3)

sj = α · αj · e
jφj (4)

where φi = φ0 +
d
λ
· 2π and φj = φ0 + ( d

λ
+ Dcosθ

λ
) · 2π.

s∗i = α · α∗
i · e

jφ∗

i = α · αi · e
jφi + α · α′

i · e
jφ′

i (5)

s∗j = α · α∗
j · e

jφ∗

j = α · αj · e
jφj + α · α′

j · e
jφ′

j (6)

where φ′
i = φ0 +

d′

s,i

λ
· 2π, φ′

j = φ0 + (
d′

s,j

λ
+ Dcosθ

λ
) · 2π,

φ∗
i = 2·φ0+

d
λ
+

d′

s,i

λ
and φ∗

j = 2·φ0+
d
λ
+

d′

s,j

λ
+2·Dcosθ

λ
. Thus,

the new phase difference under this simple multipath scenario

is not equal (nor a good approximation) to the original phase

difference, i.e., Δφj,i �= Δφ∗
j,i. Hence, these approaches are

ineffective in multipath-rich indoor environments.

C. De-couple Multipath Signals

As shown in Fig. 4 (c), consider a number of plane waves

from M narrow-band sources s1(t) = ρ1e
jφ1 , . . . , sM (t) =

ρMejφM (which may also be multipath signals from the same

source) impinging from different angles θ1, . . . , θM , and into

a uniform linear array (ULA) of N antennas. Then we have

s(t) =
[
s1(t), . . . , sM (t)

]�
(7)

Let a(θ) be an N×1 vector referred to as the array response

to that source or array steering vector for that direction. It is

given by:

a(θ) =
[
1 e−jφ . . . e−j(N−1)φ

]�
(8)
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(a) Pseduospectrum Estimation (b) Periodogram Estimation (c) Pseudospectrum Frame (d) Periodogram Frame

Fig. 5: Illustration of data preprocessing in our M2AI system framework.

The N × 1 received signal vector r(t) can be expressed as:

r(t) = As(t) +w(t) (9)

where A =
[
a(θ1), . . . ,a(θM )

]
is an N ×M matrix of steer-

ing vectors, and w(t) is a noise term. The spatial correlation

matrix R of the observed signal vector r(t) can be defined as:

Rr = E{r(t)rH(t)} = ARsA
H + μ2

I (10)

where Rs = E{s(t)sH(t)}, μ2 is the noise covariance matrix,

and I represents an N ×N matrix.
1) Pseduospectrum Estimation: Our pseduospectrum es-

timation design is mainly based on the MUSIC (MUltiple

SIgnal Classification) algorithm [13], which is one of the

high resolution subspace AOA (Arrival of Angle) algorithms

and is originally used to estimate the number of received

signals from their directions of arrival. The correlation ma-

trix Rr has N eigenvalues associated with N eigenvectors

U = [U1, . . . ,UN ]. The largest M eigenvalues correspond

to the M incoming signals while the rest N −M correspond

to the noise. The corresponding eigenvectors in U can be

classified into the signal subspace Us and noise subspace Un:

[UsUn] = [U1, . . . ,UM︸ ︷︷ ︸
Us

,UM+1, . . . ,UN︸ ︷︷ ︸
Un

] (11)

Similar to the MUSIC algorithm utilizing the orthogonality

relationship between the signal and noise subspaces [13],

which implies aH(θ)Un = 0, the direction of arrival angle

can be represented in terms of a spectral estimation plots:

PMUSIC =
1

aH(θ)UnUn
H
a(θ)

(12)

The above equation results in high peaks, when the direction

of arrival of the signal source is exactly equal to that of θ. In

Fig. 5(a), the M higher peaks are of great power, where each

corresponds to an estimated arrival angle.
2) Periodogram Estimation: We introduce the peri-

odogram [12] to strengthen pseduospectrum estimates by

taking the accurate power information into consideration. The

Power Spectral Density (PSD) is defined as the discrete-time

Fourier transform (DTFT) of the covariance sequence:

φ(ω) =

∞∑
k=−∞

r(k)e−jwk (13)

where r(k) = 1
2π

∫ π

−π
φ(ω)ejωkdω. We use the periodogram

spectral estimator to compute the power density distribution

as follows:

φ̂p(ω) =
1

N
|

N∑
t=1

y(t)e−jwt|2 (14)

where {y(t)} denote a deterministic discrete-time data se-

quence. In practice, it is not possible to evaluate φ̂p(ω) over a

continuum of frequencies. Hence, the frequency variable must

be sampled for the purpose of computing φ̂p(ω). The following

frequency sampling scheme is most commonly used:

ω =
2π

N
k, k = 0, . . . , N − 1 (15)

Let W be e−i 2π
N . Then, the evaluation of φ̂p(ω) at the

frequency samples reduces to the computation of the following

Discrete Fourier Transform:

Y (k) =

N∑
t=1

y(t)W tk, k = 0, . . . , N − 1 (16)

In our system, we use Fast Fourier Transform [21] to es-

timate the power distribution. According to the Parseval’s

theorem [22], the Fourier transform is unitary, i.e., the sum

(or integral) of the square of a function is equal to the sum

(or integral) of the square of its transform.

As illustrates in Fig. 5(b), we can get four values in the

periodogram for the power density distribution. In the imple-

mentation, we have four antennas to connect to the Impinj

Speedway R420 reader, where the number of RF ports in the

reader limits the scale of our antenna array. We can increase

the antenna number by Impinj antenna hubs. The effectiveness

of the periodogram estimation has also been demonstrated by

our experiments in Section. VI.

IV. DEEP LEARNING DESIGN FOR ACTIVITY

IDENTIFICATION

This section describes the main components of our M2AI

design. Our deep learning design takes the results from da-

ta preprocessing into our M2AI deep learning architecure,

i.e., periodogram and pseduospectrum frames, as shown in

Fig. 5(c) and Fig. 5(d), respectively. As illustrated in Fig. 6,

we develop an integrated design of a Convolutional Neural

Netwok (CNN) [14] and a Long Short Term Memory (LSTM)
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Fig. 6: M2AI deep learning network architecture

network [15]. CNN networks can extract spatial relationships

in a single spectrum frame; while LSTM networks can learn

dynamic temporal relationships from a sequential spectrum

frames. The output is the classification of object activities

using a softmax layer. We discuss the design of each layer

one by one in the following subsections.

A. Input Layer

This part starts from the design of our spectrum frames. The

preprocessing stage outputs the spectrum for each tag, where

we utilize the spectrum of all tags to build the spectrum frame.

Specifically, we provide the following as input to the model:

(1) pseudospectrum frames for angle of arrival as illustrated

in Fig. 5(c), and (2) periodogram frames for power spectral

density as Fig. 5(d) shows. By combining these two types of

information, the model can take into account both the angle

and power information of signals. The size of pseudospectrum

frame is n×180, and the size of periodogram frame is n×N ,

where n is the number of tags, N is the number of antennas

and 180 is the number of angles. The input layer then takes all

the spectrum outputs from our preprocessing stage and build

the corresponding spectrum frame, where a series of spectrum

frames along the time will further serve as the initial input for

the hidden layer.

B. Hidden Layer

The hidden layer integrates a CNN structure and a LSTM

structure.

1) CNN Structure: We construct a Convolutional Neural

Network (CNN) to take the spectrum frames as input and

provide the output to be fed into the LSTM structure. The

extracted lower dimension features then form the input as

a sequence of spectrum frames x = (x1, . . . , xT ) to the

LSTM structure. In this work, we use the fully-connected

layer to merge two inputs, where these features are outputs of

rectified linear units. As illustrated in Fig. 6, CONV represents

convolutional layers (with filter size of kernels: CONV-E1:

n × 180, CONV-E2: n × 32, CONV-E3: n × 4, CONV-F:

n×N , while FC represents fully-connected layers and LSTM

represents LSTM layers.

2) LSTM Structure: In our design, a stacked LSTM first

encodes the frames one by one from the output of the CNN.

LSTM is a subnet that allows to easily memorize the context

information for long periods of time in sequence data. The

subnet includes three gates: the input gate it, the forget gate

ft, and the output gate ot, which have the controls to overwrite,

keep, or retrieve the memory cell ct, respectively. Each LSTM

cell remembers a single floating point value ct. This value may

be diminished or erased through a multiplicative interaction

with the forget gate ft or additively modified by the current

input xt multiplied by the activation of the input gate it.
The output gate ot controls the emission of the memory

value from the LSTM cell. The LSTM cells are then grouped

and organized into a deep LSTM architecture. Inside the

architecture, the output from one LSTM layer will be the

input for the next LSTM layer. We use two stacked LSTM

layers, and each with 32 memory cells. Following the LSTM

layers, a softmax classifier at the output layer is used to make

a prediction at every spectrum frame.

C. Output Layer

The outputs from the last hidden layer are normalized with

the softmax function. We use a softmax function to get the

probability distribution over the activity label y in the activity

cluster γ. Our goal is to find the maximum likelihood of all

training samples. We apply the negative log probability as an

objective function, i.e., cross entropy error function

E = −
∑
γ

zylnPr(y|xi) (17)

where zy ∈ {0, 1} and Pr(y|xi) is the predicted probability

of the label y.

V. SYSTEM IMPLEMENTATION

Our M2AI can be fully implemented based on a commercial

reader and requires no modifications to tags. In this section,

we further describe the key implementation details that are not

covered in the previous sections.
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(a) Implementation hardware (b) Antenna setting (c) Laboratory (d) Hall

Fig. 7: Commercial hardware used to implement M2AI and two typical indoor environments, i.e., laboratory and hall,

corresponding to high and low multipath environments, respectively.

Fig. 8: Sketches of the tested activities

Readers and Tags: Our prototype implementation uses an

Impinj Speedway R420 reader2 and an antenna array without

any hardware or firmware modification. The Impinj Speedway

R420 reader is compatible with EPC Gen2 standard. The

reader has four antenna ports to construct an antenna array,

where the antennas work in a time division multiplexing mode

with the inventory duration for an antenna port as 25 ms.

The reader perform frequency hopping across the UHF RFID

band, 902-928 MHz with hopping occurring between 902.75-

927.25 MHz in 500 KHz steps, and the dwell time on each

channel is set to 400 ms in a 20-second interval. Note that

since the inventory duration for an antenna port is 25 ms,

one round of ports switching in a 4-antenna array is 100 ms,

which is far less than one channel dwell time, i.e., 400 ms.

Thus, the pseduospectrum and periodogram estimation can

be well implemented with Impinj R420 reader, which has

been extensively used in the research community [23] [24].

According to the available frequencies of RFID reader, we set

the common frequency fr = 910.25 MHz, and the typical

wavelength λ is 0.32 m. We use Impinj tags as shown in

Fig. 7(a), which are one of the cheapest tags available on the

market and cost 5 cents USD.

Antennas Settings: We connect our Impinj Speedway R420

reader to four omni-directional antennas as shown in Fig. 7.

One important setting is the distance d between antenna pairs,

where we set d as λ/8 with the following rationale:

• Theoretically, the antenna separation d should be spaced

by λ/2, which effectively reduces the ambiguity caused

2https://support.impinj.com/

by the high-resolution grating lobes [9].

• Since RFIDs communicate by backscattering the reader

signal, the signal phase reading returned by the reader

reflects the round trip distance instead of the one-way

distance. Hence, each tightly spaced antenna pair has a

separation d of λ/4.

• Although the Impinj reader can report phase readings

ranging from to 0◦ to 360◦, the signal processing com-

ponent in the Impinj Speedway R420 reader introduces

π radians of ambiguity such that the reported phase can

be the true phase (φ) or the true phase plus π radians

(φ+ π), which leads that the separation d is λ/8.

Given that λ is 0.32m, we set the separation d to λ/8 as

well as the distance between antenna pair equal to 0.04 m.

Server and Algorithm Implementation:

The system employs a typical client-server architecture. The

processes adopt Octane SDK JavaOctane SDK Programmer’s

Guide3 with LLRP protocol to communicate with the reader,

collect the readings and upload them to backend module. We

utilize the multiple threads method, where a loop is used to

execute the tag reading operation and returns immediately a

sequence of RFID readings to the calling thread. The calling

thread then uploads the tag readings to the server. The backend

module on the server accepts the streaming of tag readings,

where the server also stores the training data in the database

and execute our algorithms to identify the activity. CNN and

LSTM classifiers are implemented in Keras with Tensorflow

backend on Dual NVIDIA GeForce GTX 1080 Ti GPUs and

the multiclass classifiers based on machine learning tools are

implemented based on the Scikit-learn library.

VI. PERFORMANCE EVALUATION

A. Experiment Setup

We conduct extensive experiments in two typical indoor

environments, as Fig. 7(c) and (d) show: a laboratory and an

empty hall corresponding to high and low multipath environ-

ments, respectively. The laboratory with a size of 13.75 m ×
10.50 m has many file cabinets and writing desks, as shown

in Fig. 7(c). The empty hall with a size of 8.75 m × 7.50

m is shown in Fig 7(d). In each environment, we deploy one

3https://support.impinj.com/
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Fig. 9: Overall activity identification per-

formance

Fig. 10: Impact of phase calibration Fig. 11: Impact of # of objects

Actual labelPredicted
lable A 01 A 02 A 03 A 04 A 05 A 06 A 07 A 08 A 09 A 10 A 11 A 12

A 01 97% 0 0 0 0 0 0 0 0 0 0 0

A 02 0 95% 0 0 0 0 0 0 0 0 0 0

A 03 0 5% 100% 0 0 2% 0 0 0 0 0 0

A 04 0 0 0 97% 0 0 0 0 0 0 0 0

A 05 0 0 0 0 100% 0 3% 0 0 0 0 0

A 06 0 0 0 0 0 98% 0 0 0 0 0 0

A 07 3% 0 0 0 0 0 95% 0 0 7% 0 0

A 08 0 0 0 0 0 0 0 95% 5% 0 7% 2%

A 09 0 0 0 0 0 0 0 0 95% 0 0 0

A 10 0 0 0 3% 0 0 2% 0 0 93% 0 0

A 11 0 0 0 0 0 0 0 5% 0 0 93% 0

A 12 0 0 0 0 0 0 0 0 0 0 0 98%

TABLE I: Confusion matrix of activity identification

readers and one 4-antenna array, where we place the antenna

array at a height of 1.25 m. The tags are attached to volunteers,

so that their heights are between 1 to 1.5 m above the ground

and their distance to the reader is around 3 to 6 m.

We invite ten volunteers4 and by default each volunteer is

attached with three Impinj UHF passive tags on their hand,

arm and shoulder, respectively. The volunteers do various

activities about 3-6 meters away from the reader antennas in

our experiments. We test 12 activity scenarios with two people

as shown in Fig. 8. The default setting of our experiments is

4 antennas connecting to the reader.

We train the models for the two different scenarios with

cross validation to mitigate overfitting, where 80% of the data

is used as a training set and the remaining 20% is used as

a test set. The training includes 100 epochs using stochastic

gradient descent (SGD). To combat exploding gradients, we

scale the norm of the gradient, and both hyperparameters are

chosen using the training set. Throughout training, we save

the model and compute prediction accuracy5 on the test set

for each epoch.

4Note that those volunteers vary in age, gender, height, and weight.
5In this paper, the accuracy is defined as Accuracy =

Tp+Tn

Tp+Tn+Fp+Fn
,

where Tp, Tn, Fp, Fn are true positive, true negative, false positive and false
negative, respectively.

B. Activity Identification Performance

Fig. 9 shows the performance of our M2AI compared with

ten commonly used classifiers: k-Nearest Neighbors, one-vs-

all Linear SVM, one-vs-all RBF SVM, Gaussian Process,

Decision Tree, Random Forest, Adaptive Boosting, Bayesian

Net and Quadratic Discriminant Analysis. We can see that

our M2AI performs the best among all approaches with the

highest accuracy up to 97%, which is 27% better than the

runner-up approach (SVM). It is worth noting that the signal

patterns have linear features, which makes the linear SVMs

have better performance than the decision tree algorithm. Tab. I

shows the detailed results of our M2AI approach, where each

row denotes the actual activity performed and each column

represents the activity recognized by M2AI. Each element in

the matrix represents the percentage of activities in the row

that is recognized as the activity in the column. As shown in

the table, the identification accuracy is at least 93% for all

scenarios. This indicates that M2AI can distinguish various

mixed activities from different objects with high accuracy by

efficiently extracting rich information about the activities.

Our phase calibration mechanism also contributes to the

improvement of the precision to identify the object activity.

We further compare M2AI with phase calibration and non-

calibration. The results are shown in Fig. 10, where M2AI

with phase calibration is able to achieve the activity identi-

fication accuracy of 97% against the accuracy of 52% with

no calibration, since our calibration mechanism achieves a
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Fig. 12: Impact of different places Fig. 13: Impact of different distance Fig. 14: Impact of # of antennas

Fig. 15: Impact of # of tags per person
Fig. 16: Impact of different inputs

preprocessing

Fig. 17: Impact of different learning

networks

high AoA estimation accuracy. The result also explains the

statement in [20] that directly using the measured phase by

Impinj R420 reader API is not accurate enough for activity

identification and further demonstrates the effectiveness of our

phase calibration mechanism.

We further examine the performance of M2AI for multiple

object activity identification. The results are shown in Fig. 11.

Intuitively, with more people acting in the environment, the ac-

tivity identification accuracy will drop dramatically. Yet M2AI

can achieve a high and relatively stable activity identification

performance, where the average accuracy is still close to

80% even when three people are simultaneously acting in the

environment. Fig. 12 shows the activity identification accuracy

in two different environments, where M2AI achieves the best

performance in the hall (low multipath) environment with the

accuracy of 95%, and its accuracy is close to the laboratory

(high multipath) environments. In Fig. 13, we further evaluate

the accuracy with varying distances from 1 m to 4 m, where

the results do not exhibit clear correlation with the distance.

Therefore, the distance is not a crucial factor affecting the

activity identification accuracy.

M2AI de-couples the multipaths using the array of antennas,

which makes that with more multipaths, M2AI achieves a

higher mulitpath diversity in the area and improves the activity

identification accuracy. Since the number of antennas may

limit the multipath decoupling ability by our pre-processing

scheme, we thus investigate the impact of the number of an-

tennas as shown in Fig. 14. We can see that when the number

of antennas increases from 2 to 46 more angle information of

multipath can be detected, and thus M2AI can achieve even

higher activity identification accuracy.

With more tags, more signals will be reflected, creating

more paths to cover the monitoring area and provide the

information of target’s activity. In the laboratory environment,

we vary the number of tags from 1 to 3 per person and the

results are shown in Fig. 15. It is easy to see that more tags are

helpful to provide more information and improve the activity

identification accuracy. Since the number of multipath that

our data pre-processing scheme can detect for each tag is

limited by the number of antennas on the reader, the number

of tags actually is the most effective and cheapest method to

increase the path diversity in the environment. Thus, in an

indoor environment with more tags, the cost of the equipment

can then be dramatically reduced by simply using more tags

for better accuracy.

In Fig. 16, we compare the results of our deep learn-

ing design with inputs from various preprocessing options.

The comparison among the MUSIC-based, FFT-based, Phase-

based, RSSI-based and M2AI shows the effectiveness of our

preprocessing scheme. In Fig. 17, we further compare the

results of our M2AI with different deep learning network

architectures. It clearly shows that M2AI can achieve 30%

higher accuracy than the architecture only using CNN and

our preprocessing scheme, which demonstrates that LSTM

architectures are necessary for activity identification. On the

other hand, M2AI obtains 25% higher accuracy than the

6Note that Impinj Speedway R420 reader has maximally four ports to
connect with antennas.
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architecture only using LSTM, which illustrates that CNN

can efficiently extract the features for activity identification. In

summary, the benefits of M2AI comes from both our prepro-

cessing scheme and deep learning approach that work jointly

to enable harvesting the rich phase information for multiple

object activity identification in a multipath-rich environment.

VII. FURTHER DISCUSSIONS

M2AI marks an important step toward enabling accurate

indoor activity identification. We envision the basic M2AI can

be further extended and explored in the following aspects.

Current deep learning model is trained under the same

environment with identical antenna settings and tag place-

ments. As a result, the model may need to be re-trained

for different settings and environments. This is because the

pseduospectrum and periodogram estimation are sensitive to

the activity directions and tag orientations. Therefore, although

the current implementation of M2AI works well on accu-

rately identifying predefined scenarios with multiple objects

and multiple activities, it is not clear how M2AI performs

beyond predefined environments and activities. We expect one

extension is to identify multiple activities in different scenarios

without frequently re-training, which requires incorporating

complex models of human activities. Yet our preliminary

results have shown that deep learning has great potentials

in de-coupling the individual activities and is thus far more

effective than conventional learning tools towards this goal.

Another extension is on the coverage scale. Current cov-

erage of M2AI with a single antenna array is limited to 12

m, which is the reading range of the Impinj reader. Yet,

beyond 6 meters, the RFID tag may not harvest enough energy

to achieve a desired read rate. To cover larger areas, one

may exploit Impinj antenna hubs to deploy multiple RFID

antenna arrays. It is thus interesting to explore how the system

performs along this extension.

VIII. RELATED WORK

Radio Frequency Identification (RFID) is a promising tech-

nology due to its low cost, small form size, and battery-

lessness, making it widely used in a range of mobile appli-

cations. including detection of human-object interaction [9],

people/object tracking [23] and more complex problems such

as activity identification [10].

In activity identification, most solutions exploited the

change of wireless signals incurred by human actions, where

accurate wireless localization techniques are often used to

achieve effective activity identification. Previous work on RF-

based positioning primarily relied on RSSI information [25].

Ding et al. [5] estimated the number of human objects based

on the received RF signal. Yet the major limitation of RSSI-

based approaches is unreliable, since RSSI is insensitive to

small body movement, and thus difficult to achieve high-

precision localization. There is growing interest in using phase

measurement for localization. Han et al. [4] leveraged the

coupling effect caused by interference among passive tags

to detect a single moving subject. Wang et al. [6] detected

the moving tags using physical-layer features of RFIDs, i.e.,

the phase profile and the backscatter link frequency. Liu et

al. [7] exploited the polarization properties of the RF waves

to identify the spatial direction of the tag. Tagoram [23]

built a differential augmented hologram based the measured

phase values. RF-IDraw [9] achieved good tracking accuracy

with eight antennas connected to two RFID readers. Ding et

al. [10] developed FEMO that uses the frequency shifts of the

movements to determine what exercise a user is performing.

RFIPad [26] transformed a tag plane into a virtual touch screen

by anylzing the induced disturbance of RF signals. CARM [27]

presents a state-of-the-art WiFi-based interface, yet it only

supports the detection and classification of a predefined set of

nine gestures. Different from these aforementioned approach-

es, M2AI tackles the multiple objects activity identification

problem in the indoor multipath-rich environment, where we

design a series of solutions to carefully handle multipath

signals and develop a deep learning approach to cope with

the dynamics caused by multiple objects and multiple tags.

Deep learning has become a very active research area for

general activity understanding, which has demonstrated great

potentials to achieve high levels of performance and has

revolutionized image classification [28] and speech recogni-

tion [29]. Recently, Li et al. [20] proposed to collect the

coarsely grained RSSI readings to range about the tag, and

apply a deep learning approach for activity identification. The

recurrent neural network architecture we employ is derived

from Long Short Term Memory (LSTM) units [15], and

uses memory cells to store, modify, and access internal state,

allowing it to discover long-range temporal relationships. Our

research well complements these works by exploring the po-

tential of applying deep learning approaches to multipath mul-

tiple object activity identification, where we also demonstrate

the benefits of appropriate data preprocessing to maximize the

performance gain from deep learning approaches.

IX. CONCLUSION

In this paper, we presented the Multipath-aware Multi-object

Activity Identification framework (M2AI) that can identify

multiple object activities in typical indoor environments. M2AI

employs a data preprocessing scheme to handle frequency

hopping and de-couple multipath signals, which potentially

offers the rich information for activity identification. We then

build a deep learning architecture that can effectively solve the

multiple object activity identification problem. Our extensive

experimental results have demonstrated that M2AI achieves the

activity identification accuracy of 97%, which is 27% better

than the state-of-art machine learning approaches.
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