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Abstract—Due to the ever-growing demands in modern cities,
unreliable and inefficient power transportation becomes one
critical issue in nowadays power grid. This makes power grid
monitoring one of the key modules in power grid system and play
an important role in preventing severe safety accidents. However,
the traditional manual inspection cannot efficiently achieve this
goal due to its low efficiency and high cost. Smart grid as a
new generation of the power grid, sheds new light to construct
an intelligent, reliable and efficient power grid with advanced
information technology. In smart grid, automated monitoring
can be realized by applying advanced deep learning algorithms
on powerful cloud computing platform together with such IoT
(Internet of Things) devices as smart cameras. The performance
of cloud monitoring, however, can still be unsatisfactory since a
large amount of data transmission over the Internet will lead to
high delay and low frame rate. In this paper, we note that the
edge computing paradigm can well complement the cloud and
significantly reduce the delay to improve the overall performance.
To this end, we propose an edge computing framework for real-
time monitoring, which moves the computation away from the
centralized cloud to the near-device edge servers. To maximize the
benefits, we formulate a scheduling problem to further optimize
the framework and propose an efficient heuristic algorithm based
on the simulated annealing strategy. Both real-world experiments
and simulation results show that our framework can increase the
monitoring frame rate up to 10 times and reduce the detection
delay up to 85% comparing to the cloud monitoring solution.

Index Terms—Edge Computing; Smart Grid; Deep Learning.

I. INTRODUCTION

The electric power grid has become an important infras-

tructure in daily life, delivering electricity from large power

stations to customers. Though it has existed for a long period

of time, the current power grid is almost built and operated

following the theories and technologies 100 years ago [1],

, which have been shown less capable to fulfill the require-

ments in modern society. For example, one of the important

components in power grid system, the regular monitoring on

high voltage power line, still adopts the traditional manual

monitoring scheme, causing a number of problems such as

low efficiency, hard to be checked during off-work period

and unable to provide real-time monitoring. As a result, the

electricity system frequently suffers from blackouts and grid

failures in the past decades, leading to security risks and

inconvenience issues, as well as huge economic losses for both

power providers and consumers.

In recent years, the concept of smart grid has been proposed

to resolve the issues related to a variety of operational and

energy problems in the electrical power grid. By combining

the advanced technologies like Internet of Things (IoT) [1]

and Artificial Intelligence (AI) [2], the smart grid can create

an automated energy delivery network which is more secure,

reliable and intelligent than the current grid. In smart grid, the

regular monitoring is expected to be performed with all kinds

of IoT devices and processing servers instead of manpower,

where IoT devices such as sensors and cameras will collect

and upload the real-time videos and other information about

the power line to the processing servers. Such information will

then be automatically processed by the processing servers run-

ning deep learning algorithms to detect potential threats and,

if necessary, trigger appropriate actuations to achieve timely

and intelligent monitoring with automatic threat identification.

Since deep learning algorithms are extremely data intensive,

computation intensive and hardware-dependent, the process-

ing servers of smart grid are expected to be equipped with

abundant computation resources. This makes cloud computing

be widely proposed as a natural choice to host such servers

[3]. However, transferring large volume of data into the cloud

will push significant pressure to the network and generate

huge communication costs. In addition, from power providers

perspective, moving data to the remote cloud may also incur

privacy concerns. Moreover, the latency in the network can

become a severe performance bottleneck due to the latency

sensitivity of real-time monitoring.

Recently, the concept of edge computing has been proposed

as a complement of cloud computing, attracting great interests

from both academia and industry. In contrast to cloud, edge

usually refers to a geographical concept which is in close

proximity to the end devices in the network. By pushing

applications, data and services away from centralized cloud

to edge servers, the computing paradigm will be extended

to an edge-cloud collaborative computing, which has shown

outstanding performance on communication latency and traffic

reduction [4], and ease the privacy concerns of users as well.

In this paper, we for the first time introduce edge computing

to the smart grid scenario and propose a five-layer edge

computing framework to achieve high performance real-time

monitoring for smart grid, where by moving deep learning

algorithms to edge servers, the monitoring performance can

be greatly improved in terms of detection latency, frame rate,

etc. To maximize the potential benefits, we further formulate a

99

2018 IEEE International Conference on Industrial Internet (ICII)

978-1-5386-7771-1/18/$31.00 ©2018 IEEE
DOI 10.1109/ICII.2018.00019



scheduling problem based on the proposed framework to better

coordinate the affiliations between the smart grid monitoring

devices and edge servers. We also propose a heuristic algo-

rithm using simulated annealing strategy to solve the problem

efficiently. Both our real-world experiments and extensive

simulations have demonstrated that compared to cloud based

smart grid monitoring, our solution can achieve about 10 times

increase in frame rate and up to 85% reduction in detection

latency. To our best knowledge, this is the first effort to

propose a holistic solution to apply edge computing framework

into smart grid to achieve real-time monitoring with automatic

threat identification.

The remainder of the paper is organized as follows. In

section II, we discuss the background and motivation for

our work. In section III, we propose our edge computing

framework for real-time monitoring and further compare it

with cloud monitoring and traditional monitoring schemes.

We formulate a scheduling problem to further optimize the

proposed edge computing framework and present a heuristic

algorithm in section IV. The performance evaluations by real-

world experiments and extensive simulations are presented in

section V. Section VI will summarize the related work and we

conclude of our work in section VII.

II. BACKGROUND AND MOTIVATION

In this section, we briefly discuss the background of power

grid and describes cloud computing and edge computing which

motivates our work.”

A. From Traditional Power Grid to Smart Grid

The job of traditional power grid is generally to deliver

the electricity power from a few number of power generator

to a large number of customers. Yet given the ever-growing

demands in modern cities, current grid becomes less capable

to fulfill the requirements on energy efficiency and reliability.

The smart grid, by adding a information flow along with the

traditional electricity flow, allows a two-way flow to construct

an automated and distributed energy delivery network.

The smart grid takes control over every single event oc-

curred anywhere in the power grid by utilizing the modern

information technologies. The working scope of a smart grid

generally covers aspects including power generation, transmis-

sion, distribution and consumption, and each aspect may have

close relationships with other aspects in the grid. The self-

monitoring system in the smart grid will report the current grid

status to the central server. Once it finds a failure event such as

voltage transformer failure, the smart grid will automatically

changes the power flow and calls the self-recover service.

Also, it may influence the current local power price from

consumers perspective. All these aspects are automatically

executed and controlled by the strategies set in the smart grid.

From systems view, the smart grid mainly includes three

systems: infrastructure system, management system and pro-

tection system. The infrastructure system mainly focuses on

energy, information and communication infrastructure in the

smart grid environment. Its jobs contains energy generation,

delivery and consumption, metering and monitoring, commu-

nications between components of the smart grid, etc. The

management system is a centralized system which dispatches

and coordinates each component of the smart grid to col-

laboratively work for a specific job. According to different

management objective, the management system will dispatch

different strategies to utilize the resource in an efficient and

economic way. The protection system in a smart grid works

automatically to maintain the whole smart grid systems reli-

ability and privacy, not only addressing the issue caused by

user mistakes, equipment failures and natural disasters, but

also being able to make responses to deliberate man-made

attacks such as spies and terrorists.

In recent years, deep learning techniques rise in machine

learning fields with the convolutional neural networks (CNN),

as one of the typical deep and feed-forward neural networks,

gaining huge success in many areas such as speech recog-

nition, image recognition and natural language processing.

It has also attracted wide attentions from industry, such as

Google, Microsoft and Nvidia and they all develop applica-

tions with deep learning techniques such as Google Translate

and Microsoft Xiaoice. Deep learning also can be widely

applied under smart grid environment. By introducing well-

trained model, the important module in a smart grid such as

threat detection, malicious attack identification and intelligent

electricity power control [5].

B. From Cloud Computing to Edge Computing

Deep learning tasks are computation-intensive tasks and

usually involve great amount of training data, which usually

put strict requirements on the hardware. One recent trend is

using GPU to replace CPU as the deep learning computa-

tion hardware. With thousands of computational cores, GPUs

can greatly outperform CPUs in matrix calculations which

are massively involved in deep learning algorithms. Since

powerful GPU resource is expensive, cloud providers such

as Amazon have developed GPU cloud platform to provide

users large GPU computation resources which are flexible for

allocation. However, the latency to cloud is often high, making

it not suitable for latency-sensitive applications.

Recently, edge computing has been proposed as a com-

plement of cloud computing, where edge is defined as the

network topology at close proximity to end devices which

can be accessed by Radio Access Networks (RAN), WLAN,

ethernet and other network connections. Comparing to cloud

servers, edge servers usually have relatively smaller scale of

moderate powerful computation resources, which can play a

critical role in aggregating, preprocessing while the distributed

data are forwarded to central servers in data centers. By

moving part of the computation and storage resources from

the cloud to the network edge, it has been shown that great

network performance gain will be obtained in edge computing

applications such as edge computation offloading [6] [7] [8]

[9], edge caching [10] [11] and edge resource allocation [12].

Recent research on moving deep learning applications to edge

has also demonstrated to successfully reduce the communica-
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Fig. 1: An edge computing framework for real-time monitoring

in smart grid

tion cost [13], inference latency and energy consumption [14].

This motivates us to investigate the opportunity to introduce

edge computing to the smart grid scenario and propose a edge

computing framework to achieve high performance real-time

monitoring for smart grid.

III. INTRODUCING EDGE TO REAL-TIME MONITORING

FOR SMART GRID

In this section, we present our framework that introduces

edge computing to smart grid real-time monitoring. We will

first describe the details of the framework and then make a

comparison with cloud and traditional monitoring schemes.

A. Real-time Edge Monitoring Framework

The power line monitoring is one of the important work

in power grids. The common solution in traditional grid is

to delegate professional staff to inspect whether the voltage

power lines are damaged or not, while in smart grid, all

monitoring tasks are replaced by IoT devices attached to the

grid. The centralized cloud will then gather such information

as pictures or videos captured by IoT devices through the

Internet and process with deep learning algorithms to detect

the potential threats.

We propose a novel framework which introduces edge com-

puting into smart grid, as illustrated in Fig. 1. Our framework

contains five main layers: IoT device layer, edge network layer,

edge server layer, Internet layer and cloud server layer. The

monitoring procedure will go through these five layers from

the bottom to the top.

IoT device layer: The IoT device layer consists of such IoT

devices as smart cameras that are used to monitor the smart

grid. These devices are not only responsible for capturing the

high resolution pictures or video streams, but also installed

with a communication module and local storage to assist the

transmission of the captured information to the edge server.

Edge network layer: This layer connects IoT devices to

edge servers. For connectivities, since each edge server may

take charge of multiple IoT devices that may be attached to

the grid arbitrarily, wireless connections are often preferred

than wired connections due to its convenience. Also, the

transmissions of images and videos require high data rate for

the connection. This makes Wi-Fi and 5G networks are better

choices over ZigBee and Bluetooth.

Edge server layer: One key module in this layer is the

threat identification module, which executes the inference

algorithm based on some trained deep learning models. Once it

finds a threat in the received picture or videos, such as people,

a car or a bird getting close to the power line, the module

will upload the monitoring data with warning information to

the cloud. Based on the edge network connectivity type, edge

servers can be deployed at Wi-Fi access points or 5G base

stations or both. These servers should be equipped with certain

high performance GPU resources to support the execution of

the threat identification module.

Internet layer: This layer connects edge servers to the

cloud server. Different from edge network layer, wired connec-

tions are often used here as backbones in the public network

domain.

Cloud layer: This layer is the central controller of the moni-

toring system. It will receive warning information from all the

edge servers and according to the smart grid’s strategies to

react to those warnings. For instance, if the cloud consistently

receives warnings from one specific area, then the smart grid

will recognize that there are potential threats in the area and

further checking and restoring process will be executed.

B. Comparison Between Edge, Cloud and Traditional Moni-
toring Approaches

Traditional monitoring approaches adopt manual inspection,

which involves enormous human labors and cannot satisfy the

real-time requirements , not to mention the introduced high

employment cost. Even in developing countries, the monetary

cost for one climb on the electric tower can take USD

$100. Comparing to new monitoring schemes using advanced

information technologies, the traditional approaches should not

be adopted under the smart grid environment.

Cloud monitoring system, in contrast, is intelligent, auto-

mated and able to achieve real-time monitoring. Also, the man-

agement cost is significantly reduced comparing to traditional

monitoring. However, one critical issue is about the network

performance. The traffic created in the Internet is enormous be-

cause all the picture and video information captured by every

single IoT device is required to uploaded to the cloud through
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Edge monitoring Cloud monitoring Traditional monitoring
Manual or automated Automated Automated Manual
Monitoring frequency Real-time Real-time Long-term periodic inspection
Threat detection Deep learning based approaches Deep learning based approaches Manual inspection
Server hardware Moderate storage and computation re-

sources with one or several GPUs
Large storage and computation re-
sources with powerful GPU clusters

No server required

Server location Co-locate with wireless access points,
e.g., Wi-Fi routers and 5G base stations

Set at specific places where the cloud
service providers choose, with the size
of several stadiums

No server required

Network latency Less than tens of milliseconds Usually between 50 to 500 ms No network
Network traffic Small since only warning information

will be transmitted through the Internet
and this occurs in low frequency.

Large because of all the picture and
video information will be transmitted
through the Internet.

No network

Data privacy More secure. Most of the data stored at
IoT devices and edge servers without
go through the Internet.

Captured pictures and videos may leak
on the Internet.

No data leak concern

Reliability High reliability with distributed located
edge servers. Single edge server down
won’t affect the whole monitoring sys-
tem.

Low reliability. Centralized control
module will cause termination of the
whole system once there are severe
issues with the cloud.

Low reliability since its inspection
cycle is extremely long comparing
with automated real-time monitor-
ing.

Price Moderate. Most cost is the one-time
charge for buying and setting those IoT
devices and edge servers.

High. Cloud monitoring will require
huge network bandwidth to serve for
large-scale data transmission, which
will be charged a lot from Internet
Service Provider (ISP).

Extremely high. Each time of the
maintenance requires high-quality
staff and the labor cost is relatively
high.

TABLE I: The comparison between edge, cloud and traditional monitoring approaches

the Internet. This results in large network bandwidth resource

is occupied and network is likely to be congested. Also, the

high network latency will increase the threat detection latency

and degrade the detection performance.

Edge monitoring system, on the other hand, can well com-

plement the cloud system. Since edge servers are distributedly

located near Wi-Fi routers and/or 5G base stations, each edge

server only needs to take charge of limited number of IoT

devices and will less likely be overloaded. The network traffic

generated over the Internet is also greatly reduced since the

data will only be transmitted when the edge server finds a

potential threat and this usually happens with only a small

probability. Also, the edge network latency is largely smaller

than the Internet latency. This makes the real-time threat

detection become more feasible. Besides these advantages,

edge monitoring excels cloud monitoring from the perspectives

of data privacy and system reliability. We summarize the

comparison between edge, cloud and traditional monitoring

approaches in TABLE I.

IV. EDGE SCHEDULING OPTIMIZATION

As edge servers are distributedly located, an IoT device

may be eligible to connect to multiple edge servers and each

feasible connection will possess different network bandwidth.

Thus it is important to appropriately arrange the connections

to obtain the optimal performance. In this section, we will

formulate this as a scheduling problem and further propose an

algorithm to optimize it.

A. Problem Formulation

In the edge monitoring system, there can be hundreds of

IoT devices and a few number of edge servers. Though these

edge servers and IoT devices are located in fixed place, the

connections between IoT devices and edge servers are still

flexible and they are influencing the monitoring performance

of the overall system. One important performance metric is

the effective frame rate. The effective frame rate is defined as

the picture frames the whole system can capture and process

in the threat detection module within one second. The higher

effective frame rate the system owns, the better monitoring

quality the system can achieve. Also the delay is another im-

portant metric we need to consider. We hope that the potential

threat in one picture frame should be detected with low delay

after this frame being captured by the device. Based on these

two optimization objectives, we mathematically formulate a

scheduling problem for our edge monitoring system.

Suppose there are n IoT devices, m edge servers and a

centralized cloud in the smart grid. We use set C to represent

the set of IoT devices and ci to represent the each IoT device

where 1 ≤ i ≤ n. Also, we use set E to represent the set

of edge servers and ej to represent each edge server where

1 ≤ j ≤ m.

We first introduce the constants involved in our problem

formulation. For simplicity, we consider each IoT device as

the same type of smart camera and each edge server possesses

the same computation resource. For each IoT device ci, each

picture it captures is in the same format with the size of s.

The maximum frame rate for each IoT device to capture is

fu. Since the probability to be detected with threats among

different locations varies, we define pi as the probability to

be detected with threats in one picture captured by device

ci. These probabilities can be counted from real-world data.

For each edge server, we define the edge processing rate

as ve, which refers to the number of picture frames can be

processed on each edge server within 1 second. For the cloud,

the processing rate is denoted as vc. For the connections, the

uplink bandwidth from each IoT device ci to the cloud is
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denoted as bci, and the uplink bandwidth from each edge

server ej to the cloud is denoted as bej . The uplink bandwidth

between each IoT device and each edge server will change

due to the geographical distance. We define for the connection

between device ci and edge server ej , the uplink bandwidth

is bi,j .

Then we introduce the variables. We define the set X =
{xi,j |1 ≤ i ≤ n, 1 ≤ j ≤ m} to indicate the connection

between each IoT device and edge server. If ci is chosen to

connect to ej , xi,j will be set 1 otherwise 0. Since each IoT

device can only connect to one edge server, therefore

m∑

j=1

xi,j = 1, ∀i (1)

xi,j ∈ {0, 1}, ∀i, j (2)

For the IoT device ci, the effective frame rate which is

the actual number of picture frames being processed within

1 second is denoted as fi. fi cannot be greater than the

number of frames which the edge network can transmit during

1 second, and also cannot be greater than the maximum frame

rate for an IoT device. It should satisfy the minimum frame

rate requirement, so that

xi,j ∗ fi ≤ min(
bi,j
s

, fu), ∀i, j (3)

Also, for one specific edge server ej , the sum of frames it

receives in 1 second should not be greater than the number of

frames it can process, thus

n∑

i=1

xi,j ∗ fi ≤ ve, ∀j (4)

Till now, we are able to calculate some important metrics.

We define the effective frame rate for edge monitoring as Fe.

It can be calculated as the sum of each device’s effective frame

rate:

Fe =
n∑

i=1

fi (5)

Also, according to equation (1)(2)(3)(4), Fe can be trans-

formed to:

Fe =

m∑

j=1

min(

n∑

i=1

xi,j ∗min(
bi,j
s

, fu), ve) (6)

For cloud monitoring, the effective frame rate Fc is con-

strained by either the uplink bandwidth from IoT device to

cloud, or the cloud’s processing rate.

Fc = min(
bci ∗ n

s
, vc) (7)

We are able to calculate the average detection delay De

for one picture frame for edge monitoring as well. De can

be divided into three parts: the uploading time from the IoT

device to the edge server, the edge processing time, and

the potential uploading time from the edge server to the

cloud when this picture frame is detected with threats. The

mathematical expression for De is shown as below:

De =

∑n
i=1 xi,j ∗ ( s

bi,j
+ 1

ve
+ s

bej
∗ pi)

n
(8)

For comparison, the average detection delay for cloud

monitoring Dc is calculated as below:

Dc =

∑n
i=1

s
bci

+ 1
vc

n
(9)

For better system performance, our two optimization ob-

jectives are increasing the effective frame rate and reducing

the average detection delay respectively. Since the cloud

monitoring’s effective frame rate and average detection delay

are fixed values, we transform the first objective into reducing

effective frame rate ratio between cloud monitoring and edge

monitoring, and transform the second objective into reducing

average detection delay ratio between edge monitoring and

cloud monitoring. To unify these two objectives, we set

coefficients before the two ratios and the finalized optimization

objective O is to minimize the sum of the weighted ratios. O
can be defined as the function of scheduling X as below:

O(X) = A ∗ Fc

Fe
+B ∗ De

Dc
(10)

And the coefficients A and B should follow

A+B = 1, A,B ≥ 0 (11)

Thus our problem can be generalized as:

argmin
X

O(X) (12)

subject to the constraints in equations (1), (2), (6) to (11).

B. A Simulated Annealing Scheduling Solution

Our optimization goal is to solve a NP-hard scheduling

problem. In this subsection, we give a heuristic scheduling

algorithm with simulated annealing strategies.

Simulated annealing is a probabilistic strategy for approx-

imating the optimum solution of a given function. Based

on an initial solution, simulated annealing will continuously

revise it and try to approach the optimum solution. It has the

similar idea like greedy search to accept the move which turns

to a better return of the given function, meanwhile, it also

accepts the move which gets a worse return under the dynamic

probability, since this move may create space for future moves

which can result in finding the global optimum solution. Each

time it accepts a worse move, the probability to accept the

next worse move will decrease.

The algorithm’s pseduo code is shown as Algorithm 1. This

algorithm can be divided into two parts. The first part is using

greedy search to find an initial scheduling. We first sort the set

of IoT devices C following a non-increasing order according

to its probability to detect with threats pi. Then we arrange

each IoT device to connect to one edge server which has the

largest uplink edge network bandwidth.
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(a) Detection delay comparison (b) Detection delay of edge monitoring (c) Detection delay of cloud monitoring

Fig. 2: Real-world experiments on delay

(a) Traffic comparison (b) Frame rate comparison

Fig. 3: Real-world experiments on traffic and frame rate

The second part is to use the simulated annealing strategy

to optimize our current scheduling. The simulated annealing

rescheduling process will last for a fixed rounds, and in each

round every IoT device will own the chance to reconnect

to other edge servers. For the reconnection, the IoT device

will reconnect to anyone of all the edge servers. If current

scheduling scheme can achieve a better return which means

the calculated value of O is smaller than previous scheduling,

we consider it is a better move and always accept it. Otherwise,

we consider it as a worse move. The algorithm will accept this

worse move according to the current acceptance probability.

Besides the parameters involved in the problem definition in

Section IV, we also define rl as the number of rounds which

the simulated annealing rescheduling process will last, and pc,
pd as the two parameters to control the acceptance probability

for worse moves.

V. SYSTEM EVALUATION

In this section, we will first evaluate our edge monitor

system’s performance from real-world experiments. Since the

experiment resource is limited, we further design a simulation

test to show our system’s execution efficiency involving with

multiple edge servers and multiple smart cameras.

Parameters Values
s 0.9 MB
fu 60 fps
ve 115
vc 1550
bej 17.76 Mbps
bci 15.76 Mbps
bi,j 10 - 320 Mbps or no connection
pc 0.5
pd 0.05

TABLE II: The values of simulation parameters

A. Real-world experiment

The first part is the real-world experiment. We made a

prototype following the proposed edge monitoring framework

in Section III and deploy it in real-world experiments. The

experiments use 1 smart camera, 1 edge server and 1 cloud

platform which has a powerful GPU cluster. The type of the

smart camera is D-Link DCS-936L HD Wi-Fi camera . The

edge server is a Dell server (OPTIPLEX 7010) and equipped

with an Intel Core i7-3770 3.4 GHz quad core CPU, 16 GB

1333 MHz DDR3 RAM, and an NVIDIA GeForce GTX 1080

Ti GPU. The cloud platform is the Google Cloud Platform

with the instance with 13 GB RAM and a NVIDIA Telsa K80

GPU. The deep learning application for threat detection uses
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Algorithm 1 Simulated Annealing Rearranging Algorithm

Input:
X , bi,j , ∀i, j;

optimization objective function O(X);
simulated annealing parameters rl, pc, pd.

Output:
best scheduling scheme produced by simulated annealing

strategy Xbest

1: Set all xi,j = 0, ∀1 ≤ i ≤ n, 1 ≤ j ≤ m
2: Sort the IoT device set C = {ci|1 ≤ i ≤ n} in a non-

increasing order according to the value of pi
3: for i from 1 to n do
4: for j from 1 to m do
5: Find the index j0 where {bi,j0 ≥ bi,j |∀1 ≤ j ≤ m};

6: xi,j0 ← 1;

7: end for
8: end for
9: Xbest, Xcurrent ← X;

10: objbest ← O(Xbest);
11: for r from 1 to rl do
12: Initialize visited edge server set as visited ← {};

13: for k from 1 to n do do
14: i ← a random number from 1 to n but not in visited;

15: Set visited ← visited
⋃

i;
16: for j from 1 to m do
17: Set xi,j ← 1;

18: Calculate objective function difference

δ ← O(X)−O(Xcurrent);
19: if δ < 0 then
20: Update Xbest, objbest;
21: Accept this move by setting Xcurrent ← X;

22: else
23: if epc > a random number between (0, 1) then
24: Accept this move by setting Xcurrent ← X;

25: Adjust parameter pc ← pd ∗ pc;
26: end if
27: end if
28: Set xi,j ← 0;

29: end for
30: end for
31: end for
32: return Xbest;

singleshot detection [15].

The dataset are the pictures captured by the camera beside

the high voltage power line. We prepared 4 sets of pictures.

Each set of picture contains 2,000 pictures and there are 10%,

20%, 30% and 40% of these pictures will be detected with

threats for each set respectively.

We first evaluate the detection latency for each picture

frame. See Fig. 2. The first picture presents the delay com-

parison between edge monitoring and cloud monitoring. The

cloud monitoring’s delay from the picture being sent by the

IoT device to the cloud finished the detection processing is

(a) Frame rate

Fig. 4: Simulation evaluation (part 1)

about 533 to 545 ms per picture frame. Our edge monitoring’s

delay is ranging from 113 to 255 ms. Comparing to cloud

monitoring, the delay is largely reduced by 53% - 79%.

Though with the increasing on the probability to be detected

with threats, the edge monitoring’s traffic will increase as well.

The threat will be detected beside a high voltage power line

in the real-world environment is extremely low and usually

not beyond 10%. So this can prove the excellent efficiency on

detection delay of edge monitoring.

We further investigate the construction of the delay. Fig.

2(b)(c) shows the construction of edge monitoring delay and

cloud monitoring delay respectively. We can see that the

biggest difference for edge computing and cloud computing

is the data transmission time between IoT device and the

processing server. In cloud monitoring system, the pictures

captured by the IoT device will be directly sent to the cloud

over the Internet, this process will cost more than 500 ms.

While in our edge monitoring system, the pictures are sent

to the near-end edge servers, which has superior network

condition and larger bandwidth and the transmission only takes

about 30 ms to finish. This is the most significant advantage

of edge monitoring.

Then we evaluate the traffic produced on the Internet. See

Fig. 3(a), the traffic produced by cloud monitoring is totaly 1.8

GB, while the traffic produced by edge monitoring is less than

750 MB. Though the traffic will increase with the increasing

on probability to be detected with threats, since more and

more processed pictures with detection information will be

transmitted to the cloud. The size of traffic produced by edge

monitoring is still far less than the cloud monitoring. We also

evaluate the effective frame rate and the result is shown as

Fig. 3(b). It proves that the frame rate has no relation with

the probability to be detected with threats. And for our edge

monitoring, the frame rate is more than 10 times higher than

the cloud monitoring.

From the above real-world evaluation result, our edge

monitoring framework significantly outperforms cloud mon-

itoring in detection delay, traffic and frame rate. In the next
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(a) Delay (pi = 5%) (b) Delay (pi = 20%) (c) Delay (normal distributed probabilities)

Fig. 5: Simulation evaluation (part 2)

(a) Delay (power-law distributed probabilities) (b) Objective comparison (20 edge servers) (c) Objective comparison (100 edge servers)

Fig. 6: Simulation evaluation (part 3)

subsection, we will consider the case of multiple IoT devices

and multiple edge servers.

B. Simulation evaluation

In this subsection, we will give the simulation evaluation of

our edge monitoring system. We evaluate the edge monitoring

performance using the solution provided in section IV. B.

Concerning the consistency with real-world environment, our

simulation uses the data collected from real-world experi-

ments, see TABLE II. The parameters defined in the table

is the same as the parameters defined in section IV. In our

simulation evaluation, the edge monitoring system will contain

a large number of IoT devices, totally 10 edge servers and 1

cloud server. Each edge server is a GPU cluster which has the

computation resources 5 times of the single NVIDIA GTX

1080 Ti GPU. The cloud server is a more powerful GPU

cluster which has the computation resources 50 times of the

single NVIDIA Telsa K80 GPU. For simplicity, we consider

each of the IoT device will have the same uplink bandwidth

connecting to the cloud. Also, each edge server owns the

same uplink bandwidth of the connection to the cloud. The

bandwidths from each IoT device to the cloud are different.

For each IoT device, we confine that it can get access to at

least 1 edge servers. The bandwidth between each IoT device

and each edge server is a random value between 10 - 320

Mbps, or 0 Mbps if they are not connectable.

We will make comparison of performance under different

conditions, i.e., the different number of IoT devices, the differ-

ent value of coefficient A and B and the different distribution

of probability to be detected with threats. Lower objective

value we get, the better performance our edge monitoring

system will own comparing to the cloud monitoring. We also

introduce the random scheduling as the baseline, which has the

strategy to randomly choose to connect for each IoT device to

one of the accessible edge servers.

We first evaluate the effective frame rate, see Fig.4. To

measure the effective frame rate, we can set the coefficient

A = 0, B = 1 in equation (10) which is the formulated

optimization objective in our problem formulation. Since

B = 0 here, then our optimization objective will not be

related with the pi. Starting from 20 IoT devices, our algorithm

will give the scheduling with O = 0.061, which means the

effective frame rate of cloud monitoring is only 6% of our edge

monitoring system has. With the increasing on number of IoT

devices, objective O is increasing as well. This phenomenon

doesn’t mean edge monitoring’s performance is being worse,

actually comparing to cloud monitoring, the increasing frame

rate of the edge monitoring is even larger. Since O is a ratio,
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the base of the numerator (the frame rate of edge monitoring)

is so large that even a little increasing on cloud monitoring will

lead to the reduction of the calculated objective O. Also we

noticed that, our simulated annealing algorithm performs better

than other algorithms when the number of IoT devices is small.

However, the performance of each algorithm become similar

when the number of IoT devices is large. This is caused by

the bottleneck of limited computation performance of the edge

server. Because the number of edge server is fixed, there exists

a maximum effective frame rate for edge computing. When

the amount of IoT devices reaches a specific number, then

the only solution to increase effective frame rate is to enlarge

the computation resource on each edge server or increase the

amount of accessible edge servers.

We then evaluate the detection delay. By setting A =
1, B = 0 in equation (10), we are able to calculate the average

detection delay for each picture frame. Fig.5(a)(b) presents

the results being evaluated under similar environments except

the probability to be detected with threats. The probability

for each IoT device is all set to 5% in Fig.5(a) and 20%

in Fig.5(b). Similar as the effective frame rate evaluation

above, our edge monitoring system can finish the detection

using only 12% - 25% time of what the cloud monitoring

requires. When concerning about the algorithms, our simulated

annealing algorithm has the same performance with greedy

algorithm. It is because the greedy algorithm always looks for

the maximum network bandwidth for edge network connection

and this is the only variant in measuring the detection delay.

So that the greedy algorithm will always achieve the optimal

solution, as well as our algorithm since it is an enhancement

of greedy strategy. With the increasing of IoT devices, there

is no significant changes in the objective function value.

These proves the scalability of the edge monitoring system.

Comparing with these two graphs, we can find the objective

function value is increasing when pi increases. This is the

natural phenomenon since more and more pictures will be

uploaded to the cloud and increase the average detection delay.

Also, we conduct another two experiments where the prob-

abilities to be detected with threats for each IoT device will

follow two specific distributions, i.e., normal distribution and

power-law distribution. See Fig.5(c) and Fig.6(a), in each of

the graphs, there is no evident trend of what our objective

function value will change with the increasing on amount of

IoT devices. This phenomenon shows that the probability is

not the determining factors in edge monitoring, comparing to

the connection of edge network.

We finally make two simulations focusing on the coeffi-

cients of our formulated problem, see Fig.6(b)(c). The x-axis

means the value of A. We can find that with the increasing on

the value of A, the objective function will get smaller values.

This shows that our system is more efficient in increasing

effective frame rate comparing to reducing detection delay.

VI. RELATED WORK

The smart grid was first proposed in 2005. It enables a

new era for the electrical power grid system to be constructed

with more reliable and efficient services combing with in-

formation technologies. Key researches on smart grid is to

investigate on all kinds of IoT devices and sensors and build

the communication network between these devices. Yun et
al. [16] proposes the architecture of smart grid and listed

several key technologies of IoT will be involved. Gungor et
al. [17] investigates in the challenges and opportunities of

wireless sensor networks under the smart grid environment and

conducts experiments on the statistical characterization study

under different electric-power-system environments. Sagiroglu

et al. [18] presents their vision on dealing with issues featuring

big data and smart grid.

Edge computing enables the computation performed on

the near-end and deal with the high-latency issue of cloud

computing. Zhu et al. [19] investigates the advantages of

mobile edge computing proposed a content optimization in-

frastructure. Karim et al. [8] proposed FemtoClouds to enable

multiple mobile devices to share the computation resources

and configure a coordinated edge-cloud collaborative comput-

ing service, by leveraging mobile devices to provide cloud

services at the edge. Dawei et al. [20] proposed an adaptive

mobile object recognition framework called DeepCham, which

solves the issue of recognition accuracy degradation due to

context variations caused by different locations and time,

by collaboratively training a domain-aware adaption model

together with a domain-constrained deep model with the

introducing of the intermediate edge master. Chen et al. [9]

focused on the distributed computational offloading problem

and proposed a offloading model for mobile edge computing.

He et al. [21] proposed heuristic strategies to protect the user’s

location privacy by mimicking the user’s mobility.

VII. CONCLUSION

In this paper, we introduce the edge computing into the

smart grid monitoring system. Edge monitoring has the huge

advantage in low latency and is able to largely improve the

monitoring quality comparing to cloud monitoring. We also

formulate a scheduling problem of optimizing the performance

of our edge monitoring system. We further make a prototype

of the edge monitoring system and conduct real-world ex-

periments and simulations to prove its efficiency. Our edge

monitoring framework has been accepted by the State Grid

Corporation of China, and we are deploying over 1,000 devices

and edge servers in the power system of Liaoning Province,

China.
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