

L'Université canadienne Canada's university

An Intelligent Rate Controller for Video Traffic in VANET

Jungang Liu and Oliver Yang CCNR Lab University of Ottawa Auto21 KTT Workshop July 2012

Acknowledgement: We would also like to acknowledge the financial support from Auto21 Project F303-FVT.

Outlines

- Introduction
 - Background
 - Objective and Motivation
- Our New Scheme: IntelRate
- Performance Evaluation
- Conclusion

Background (1)

- Importance of multimedia communication in wireless network
 - Applications over ad hoc network includes rescue operations, disaster recovery, connect people where an infrastructure is unavailable
 - Multimedia over cell phone or portable tablets
 - Provide video surveillance to monitor home and business in real time;
 - Make video conferencing not just sitting on the meeting rooms
 - Entertain people with video gaming and streaming anywhere anytime.
 - Video traffic in VANET (Vehicular Ad hoc NETworks)
 - Provide multimedia communication, road safety, emergency response, traffic control/management, etc..

Background (2)

- VANET consists of:
 - A cluster of cars involved in vehicle to vehicle and/or vehicle to infrastructure communication.
 - Basically automobiles, Road Side Units (RSU) and the backhaul network.

Background (3)

• Challenges:

- Good QoS requirements for real-time video applications and multimedia streaming
- Need to combat data traffic congestion
- Channel fading and asymmetrical distribution of resources
- Requirement of mobility and scalability to support video communication
- Very difficult to achieve high link utilization and fair bandwidth allocation while maintaining small queue length and minimizing packet loss.

Objective and Motivation (1)

• Objectives

- Tackle VANET traffic congestion control
- Improve on previous work
- Design a scalable algorithm for the transportation of video over VANET
- Conducting analysis of video transportation

Objective and Motivation (2)

• TCP, TFRC and traditional AQM (e.g., RED) congestion control algorithms tend

-to cause severe oscillations and even instability

-not to perform well in wireless networks.

• The reasons are

-their controls are window-based

-implicit protocols in nature.

-can not provide the precise congestion information to the sources.

Objectives and Motivation (3)

- The explicit congestion control protocols (such as XCP, RCP and API-RCP) are able to
 - provide explicit and precise congestion signals to help sources regulate the sending rate.
 - prevent the network from severe degradation in big bandwidth-delay network.
- However, they have the following drawbacks.
 - potential mis-estimation of bottleneck bandwidth (such as in XCP and RCP) can cause significant performance problems, e.g., throughput fluctuations, utilization reduction, etc.
 - estimation of network parameters consumes CPU and memory resources in a router or a mobile node.

Outlines

- Introduction
- The IntelRate Controller
 - Introcution to IntelRate
 - Methodology
 - IntelRate Design
- Performance Evaluation
- Conclusion

Introduction to IntelRate (1)

The IntelRate controller [LiYa10]

- is fuzzy logic control-based
- can avoid the estimation of network parameters (e.g., bottleneck bandwidth, the number of flows)
- but maintains the advantages of the existing explicit congestion control protocols such as XCP, RCP and API-RCP.
- only depends on router IQSize (Instantaneous Queue Size)
 a parameter which can be accurately measured to gauge the traffic level in a router.

Introduction to IntelRate (2)

- The advantages not to estimate the network parameters
 - automatically adapt itself to the new network conditions regardless of parameter change
 - > avoid the large steady state error and instability

-introduced by the potential mis-estimations of network parameters

- > work better in dynamic network environment
- save CPU and memory resources -due to the parameter estimation tasks

[LiYa10] Jungang.Liu and Oliver Yang, "Design and evaluation of an intelligent rate controller for heterogeneous networks," *IEEE Globcom 2010*, Miami, U.S.A, Dec.6-10, 2010.

Methodology

- Incorporates
 - heuristic features of FLC (Fuzzy Logic Control)
 - queue size well reflects the onset of congestion
 - RSVP (Resource Reservation Protocol)

-by assuming every source has a desired sending rate.

- Use Opnet simulation to
 - evaluate the performance of the controller
 - verify the controller's effectiveness.

IntelRate Design (1)

- Controller inputs
 - $e(t) = q_0 q(t)$ $g(e(t)) = \int e(t)dt$
 - q_0 is the TBO (Target Buffer Occupancy)
 - q(t) is the IQSize
- Controller output

$$- y(t) = \sum_{i=1}^{M} u_i(t - \tau_i)$$

IntelRate Design (2)

- Fuzzy Logic Rule base
 - linguistic values of e(t) and g(e(t)) designate input values in an increasing order from "NV" to "PV".
 - linguistic values of *u*(*t*) designate the output values in an increasing order from "ZR" to "MX".
- Each rule is in a "If...Then..." format, e.g. (ZR, PS, BG)

Allowed Throughput u(t)		s(t) .								
		NV.1	NL.	NM.1	NS.1	ZR_{11}	PS. ₁	PM.,	PL.	PV.
g(e(t)).1	NV.1	ZR.1	ZR.1	ZR.1	; ZR.,	ZR.1	ES.,	VS.1	SM.1	MD.1
	NL.	ZR.1	ZR.1	ZR.1	¦ZR.1	ES.1	VS.,	SM.,	MD_{11}	BG.,
	NM.1	ZR.1	ZR.1	ZR.1	ES.	VS.1	SM	MD_{11}	BG.1	VB.
	NS.1	ZR.1	ZR.1	ES.1	i VS.	SM_{11}	MD.	BG.1	VB.1	EB.,
	ZR.1	ZR_{22}	ES.,	VS_{11}	¦SM.	MD_{11}	BG	VB.1	EB.,	MX.,
	PS. ₁	ES.1	VS.1	SM.1	MD_{1}	BG.1	VB.₁	EB.1	MX_{11}	MX.,
	\mathbf{PM}_{11}	VS_{11}	SM.1	MD_{11}	į BG.₁	VB.1	EB.,	MX.1	MX_{11}	MX.,
	PL.1	SM_{12}	MD_{c1}	BG.1	¦ VB.₁	EB.	MX.J	MX_{1}	MX_{11}	MX.
	PV.1	MD_{11}	BG.1	VB.1	EB.	MX.	MX_1	MX_{1}	MX_{1}	MX.,

Table 1: Rule Table for the IntelRate Controller +

14

IntelRate Design (3)

Membership function -the horizontal axis of e(t)and g(e(t)) is a function of q_0 .

- -the horizontal axis of u(t) is a function of D
 - the biggest desired rate
 among all the flows passing
 the router.

IntelRate Design (4)

Analsysis:

Why is the IntelRate Controller Superior to Other Controllers?

The IntelRate controller	The existing explicit congestion					
-the design uses the <u>nonlinear</u> control	controllers					
principle	-such as XCP, RCP or API-RCP					
- its gain parameters can vary over	-their designs use the classical linear					
time	PI principle					
$u(t) = \mathbf{K}_{fP}(t) e(t) + \mathbf{K}_{f}(t) g(e(t)) + K_c$	- their gains are fixed.					
	$u(t) = \mathbf{K}_{\mathbf{P}} e(t) + \mathbf{K}_{\mathbf{I}} g(e(t))$					

This is why the IntelRate controller without evaluating network parameters can adapt itself to the new network conditions upon the parameter changes.

Outlines

- Introduction
- Our New Scheme: IntelRate
- Performance Evaluation
 - Simultation Setup
 - Robustness to Sudden Traffic Change
 - Comparison with XCP
- Conclusion

Simulation setup (1)

Simulation Settings

- OPNET modeler is used to evaluate the performance of the IntelRate controller.
- Simulation topology (multimedia streaming scenario)
 - 5 source–destination pairs (r_i are the vehicles and s_i are the multimedia sources.)
 - IEEE 802.11 WiFi with 11Mbps wireless bandwidth
 - The backhaul network has 1Gbps bandwidth and propagation delay of 100ms
 - The wireless side of the Road Side Unit is a bottleneck
 - TBO (Target Buffer Occupancy) in bottleneck is set to 60 packets for the IntelRate controller

Robustness to Sudden Traffic Change (1)

- In the first 50 seconds,
 - only video flows 1, 2 and 5 in operation.
- At t=50s,
 - Flow 3 joins in the traffic
- At t=100s.
 - Flow 4 joins in the traffic
- At t=200s.
 - Flow 2 withdraws traffic

Robustness to Sudden Traffic Change (2)

Parameter settings:

- Packet size is 360 bytes.
 - In the first 50 seconds, - only video flows 1, 2 and 5 in operation.
- At t=50s,

- Flow 3 joins in the traffic

• At t=100s.

– Flow 4 joins in the traffic

At t=200s.

- Flow 2 withdraws traffic

Time(Second)

- In the first 50s, Flow 1,2 and 5 share the 11Mbps bandwidth, the sending rate of each is about 3.3Mbps.
- At t=50s, after Flow 3 joins in, the sending rate of Flow 1,2 and 5 decreases and now 4 flows share the 11Mbps bandwidth, the sending rate of each is about 2.75Mbps.
- At t=100s, after Flow 4 joins in, the sending rate of Flow 1,2,3 and 5 decreases and now 5 flows share the 11Mbps bandwidth, the sending rate of each is about 2.2Mbps.
- At t=200s, after Flow 2 withdraws, the sending rate of Flow 1, 3,4 and 5 increases and 4 flows share the 11Mbps bandwidth again, the sending rate of each is about 20 2.75Mbps.

Robustness to Sudden Traffic Change (3)

IQSize (Instantaneous Queue Size) performance :

Parameter settings:

- Packet size is 360 bytes.
 - In the first 50 seconds, - only video flows 1, 2 and 5 in operation.
- At t=50s,
 - Flow 3 joins in the traffic
- At t=100s.
 - Flow 4 joins in the traffic
 - At t=200s.
 - Flow 2 withdraws traffic
- The IQSize is well controlled and operating at the TBO of 60 packets
- The traffic dynamics at t=50s,100s or 200s are reflected by the IQSize
- The fluctuation of the IQSize at t=50s,100s or 200s is small and can settle back to TBO of 60 packets very quickly
- Demonstrate good stability.

Comparison with XCP (1)

Recall that XCP needs to estimate the bandwidth, and the IntelRate controller need not do so.

Simulation parameter settings:

- The same settings as the last experiment.
- The bottleneck bandwidth dynamics has a Rayleigh distribution
- The XCP design parameters are the same as the values adopted in the XCP paper (*SIGCOMM 2002*), i.e., α =0.4 and β =0.226.

Comparison with XCP (2)

• Observation on Sending Rate

- IntelRate flows well follow the fluctuations of wireless link bandwidth. The time points at A and B show two typical examples.

- XCP flows does not follow the bandwidth fluctuations.

Comparison with XCP (3)

- Observation on IQSize
 - The IntelRate IQSize stably operates around the TBO of 60 packets
 - The XCP IQSize oscillates around 300-900 packets.

Comparison with XCP (4)

Analysis:

- The mis-estimation of wireless bandwidth due to the efficiency equation of XCP

$$\phi = \alpha \cdot (c - y(t)) - \beta \cdot Q/d)$$

- The IntelRate is based on the heuristic expert knowledge so that
 * the source is able to find a new rule according to the queue size variation and thus
 - * adapting itself to the new bandwidth condition.

Outlines

- Introduction
- Our New Scheme: IntelRate
- Performance Evaluation
- Conclusion

Concluding Remarks

- Designed the IntelRate controller
- We have shown that it
 - relies on only the IQSize and does not need estimate the network parameters
 - saves computation resources in bottleneck nodes in terms of computation and memory.
 - achieves better performance upon bandwidth variations and shows more robust queue performance.

L'Université canadienne Canada's university

Thanks!

Q&A