

Connected Vehicle Based Active Traffic and Demand Management

Dr. Tony Qiu, Assistant Professor University of Alberta

Introduction

Challenges and Opportunities for Research

Connected Vehicle ATDM Case Study

Conclusion

What is Connected Vehicle?

Definition

 Connected Vehicle is a suite of technologies and applications that use *wireless communications* and *multiple sensors* to provide connectivity

Objectives:

- To improve Safety, Mobility and Environment
- **Communications**:
 - Vehicle to Vehicle (V2V)
 - Vehicle to Infrastructure (V2I)
 - Vehicle to Vehicle and Infrastructure (V2VI)

Introduction

Connected Vehicle

Connected Vehicle is a multimodal initiative, and provides the feasibility to generate more comprehensive and accurate traffic state estimation

Active Traffic and Demand Management

 Active Traffic and Demand Management (ATDM) is the ability to dynamically manage recurrent and non-recurrent congestion based on prevailing traffic conditions.

Introduction

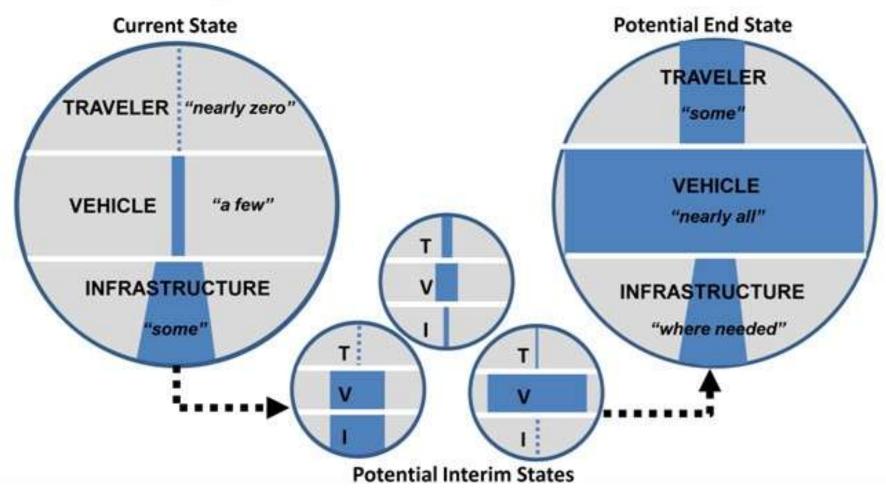
- Connected Vehicles based ATDM will build the wireless connectivity
 - among vehicles to enable crash prevention;
 - between vehicles and infrastructure to enable safety, mobility and environmental benefits; and
 - among vehicles, infrastructure, and wireless devices to provide continuous realtime connectivity to all system users.

Connected Vehicle Development

6

Three Major Steps

Connected Vehicle Development


7

- Dynamic Sensing (Upward-V2I, V2V)
 - Establish Data Sensing Environment (V2I, V2V)
 - Increase Market Penetration
 - New Application Development
- Active Control (Downward-I2V, V2V)
 - Establish Reliable I2V Control Environment
 - Active and Proactive Applications
- Integrated Coordination (Complete connection)
 - Complete upward/downward communications
 - Considering Interaction/Feedback/System Optimal
 - Integrated and System Application Development

Data Environment

8

Opportunities VS Challenges

Opportunities

- Data
 - Rich data environment
 - High resolution
 - Large sample size
- Control and Guidance
 - Bi-directional
 - Microscopic
 - User-specific
- Models
 - Real-time models
 - High-resolution models
 - Feedback models
 - System-optimal models
 - Integrated models

Challenges

- Data
 - Data noises
 - Multi-data sources
- Control and Guidance
 - High interaction
 - High sensitivity
 - User-specific
- Models
 - Changed nature of transportation system
 - Increased computation efficiency requirement
 - Interdisciplinary efforts

Opportunities VS Challenges

- Practice Theory
- Next Generation Traffic Models
 - Transportation research made major advances since Greenshields' fundamental diagrams model in 1935.
 - For young transportation researchers, it is easy to understand the details of a model than to understand the general trend and big picture of research.
 - We are at the edge of a new wave of transportation models with technological and theoretical advances in transportation.

Traffic Model Development

□ The first wave (1950s - 1980s)

- The completion of major freeway systems: US Interstate system, German Autobahn.
- Models to describe and manage increased traffic flow.
- □ The second wave (1980s 2000s)
 - The advances in information technologies.
 - Models taking the advantage of faster computers to collect, process, and use traffic data more efficiently.

Traffic Model Development

12

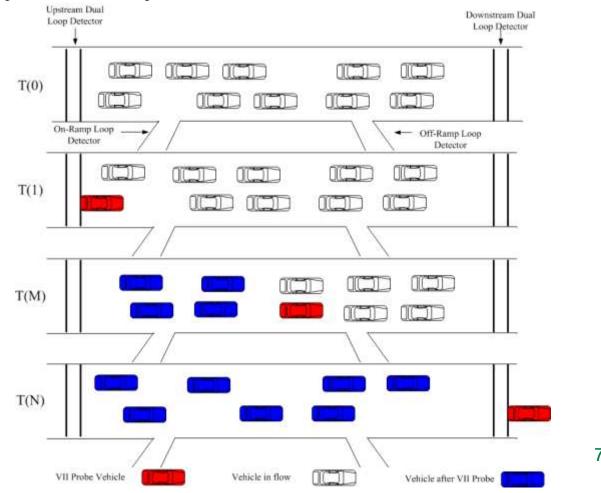
- New Generations of Traffic Models (2000s -Future)
 - Distributed and Cloud Computing, Smart Vehicle Technologies
 - Models to handle automated vehicles and userspecific control
 - Dynamic/Microscopic Traffic Control for Autonomous and Automated Vehicles

	1 st Generation	2 nd Generation	3 rd Generation	4 th Generation
	(1950s-1980s)	(1980s-2000s)	(2000s-?)	(?-Future)
Background	Understand	Estimating	Real-time	Automated
	Basic	Dynamic	characteristics	driving and
	Characteristics	characteristics	and control	control
Key	Empirical	Descriptive	Real-time	Automated
Characteristics	Static	Dynamic	Interaction	Integrated
Data	Survey	24 hours/7 days	24 hours/7 days	24 hours/7 days
Environment	Experimental	Historical	High-resolution	Full information
Issues	 Labor- intensive data collection. Not reliable for operations. 	 Limited spatial/temporal coverage Limited penetration rate 	 Data reduction Data fusion and integration Strong interaction 	 Integration with autonomous vehicles, System reliability and security

13

Evolution of Traffic Model

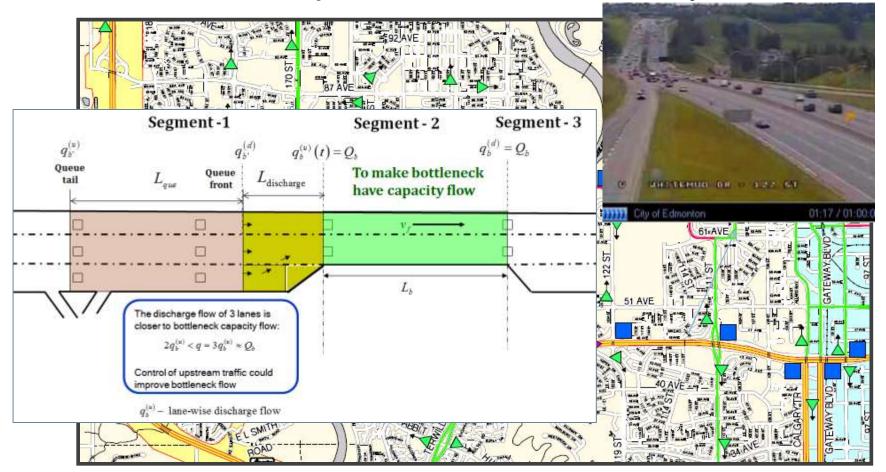
Case Study: CV Based ATDM


- Macroscopic Traffic State Estimation
 - Density
 - Speed (space mean)
- Driver's Response to Traffic Control
 - On Board Unit (I2V)
 - Message Broadcasting (V2V)
- Measurement of Effectiveness
 - Reduce travel time
 - Increase total traffic flow
 - Reduce collision

Case Study: CV Based ATDM

15

Freeway Density Estimation



Case Study: CV Based ATDM

16

Variable Speed Limit for Freeway Control

¹⁶ Whitemud Drive between 122 Street and 159 Street, Edmonton, Alberta

Model Prediction Control

17

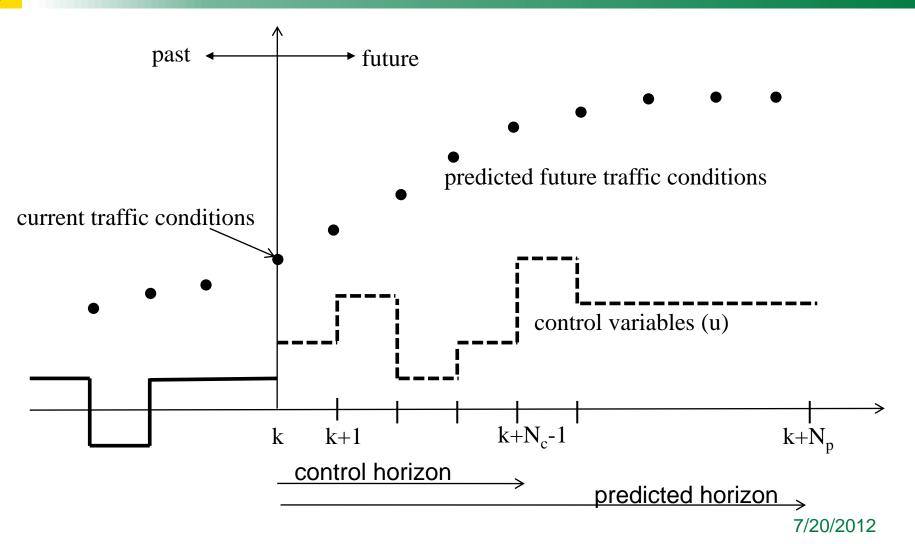
Speed Dynamics

 $au;\eta;\kappa$

$$\begin{split} v_{m,i}(k+1) &= v_{m,i}(k) + \frac{T}{\tau} \Big(& U_{m,i}(k) - v_{m,i}(k) \Big) + \\ & \frac{T}{L_m} v_{m,i}(k) \Big(v_{m,i-1}(k) - v_{m,i}(k) \Big) - \\ & \frac{\eta T}{\tau L_m} \frac{\rho_{m,i+1}(k) - \rho_{m,i}(k)}{\rho_{m,i}(k) + \kappa} \end{split},$$

Density Dynamics

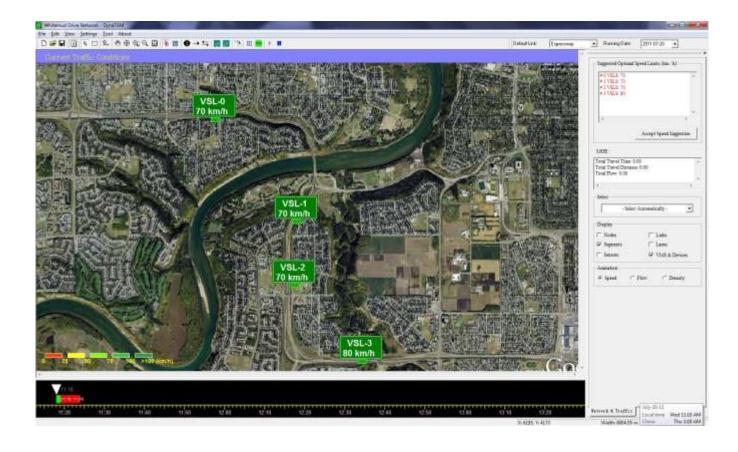
 $\rho_{m,i}(k+1) = \rho_{m,i}(k) + \frac{T}{L_{m,i}\lambda_{m,i}}(\rho_{m,i-1}(k)v_{m,i-1}(k) - \rho_{m,i}(k)v_{m,i}(k) + r_m(k) - s_m(k))$


Flow

$$q_{m,i}(k) = \rho_{m,i}(k) v_{m,i}(k) \lambda_m$$

Model Prediction Control

18



Variable Speed Limit

19

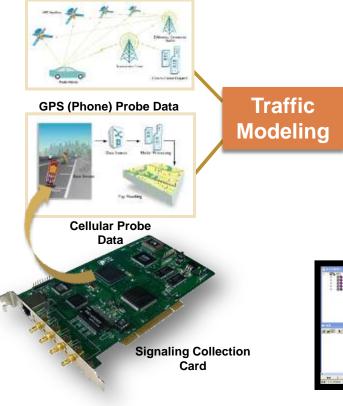
DynaTAM: Dynamic Tool for Active Traffic Management – used in Traffic Management Centre in City of Edmonton

CV Test Bed - ACTIVE

20

- ACTIVE: Alberta Cooperative Transportation Infrastructure and Vehicles Environment
- ACTIVE: Traffic Data and Control
- ACTIVE Partners
 - City of Edmonton
 - Alberta Transportation
 - Transport Canada
 - University of Alberta
 - Other Industry Partners

CV Test Bed - Applications



- Connected Vehicle Based Data Applications
 - Cellular Probe Based Speed Monitoring
 - Antoney Henday Drive
 - Other 4 corridors
 - Cellular Probe Based OD Estimation
 - Multimodal
 - Edmonton and Calgary, Edmonton airport
- Connected Vehicle Based Control Applications
 - Freeway Variable Speed Limit Control
 - Whitemud Drive
 - Adaptive Signal Control Considering Capacity Dynamics
 - Transit Bus Priority Control
 - Driver Guidance via Variable Message Signs
 - Enhance Winter Roadway Maintenance Efficiency

CV Based Traffic Monitoring

Cellular Network

- Map Match Engine
- Sample Filtering Engine
- Data Fusion Engine
- State Estimation Engine
- State Prediction Engine
- Parameter Calibration
 Engine

Real-time Traffic Data

CV Test Bed - ACTIVE

23

Phase 1: Anthony Henday Drive from Manning Drive NW to the Yellowhead Trail and the Whitemud Drive from 156 Street to 122 Street (2012 July-2014 March)

Phase 2: Anthony Henday Drive from Manning Drive NW to Yellowhead Trail, to Gateway Blvd from Yellowhead Trail to 170 street, Whitemud Dr. and 75 Street (2014 April-2016 March)

Yellowhead Trail

Anthony Henday Dr

Edmonton City

the (Blatchfor)

Field: Armor

Phase 3: Cover most of the major roads in Edmonton Metro area. (2016 April -2018 March)

Conclusion

- Connected Vehicle is approaching us, and it potentially will make transportation smarter!
- The involvement of public sectors, private sectors and academic institutes are required!
- More challenges and opportunities in the ITS field!

Intelligent Transportation System Research Lab

THANKS **QUESTION?**