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Abstract—In this paper, we propose a novel cooperative di-
versity scheme for wireless systems employing the combination
of bit–interleaved coded modulation (BICM) and orthogonal
frequency division multiplexing (OFDM). The proposed scheme
utilizes an amplify–and–forward protocol where relays are as-
signed to multiple groups. Relays in the same group transmit
concurrently over disjoint sets of sub–carriers and relaysin dif-
ferent groups transmit in different time slots. We derive closed–
form expressions for the asymptotic worst–case pairwise error
probability and the diversity gain of the proposed cooperative
BICM–OFDM scheme. Based on the derived analytical results
we develop design guidelines for sub–carrier allocation, relay
grouping, and relay selection. Simulation results corroborate the
derived analytical results and confirm the effectiveness ofthe
developed optimization framework.

Index Terms—BICM, OFDM, Cooperative Diversity.

I. I NTRODUCTION

I N recent years, cooperative diversity techniques have at-
tracted considerable research interest due to their possi-

ble use in future cellular, ad–hoc, and sensor networks [1].
Because of its simplicity and low complexity, amplify–and–
forward (AF) relaying is one of the most popular coopera-
tive diversity techniques. The performance of cooperativeAF
relay systems has been extensively studied in the literature,
cf. e.g. [2]– [4], and various power allocation and relay
selection strategies have been proposed in [2], [3], [5], [6].
In [2]– [6], and in the majority of the existing literature,
frequency–flat fading channels and either uncoded transmis-
sion or channel capacities are considered. However, practical
broadband wireless communication systems are typically af-
fected by frequency–selective fading and employ non–ideal
channel coding schemes. A widely used approach to overcome
the negative effects of frequency–selectivity is orthogonal
frequency division multiplexing (OFDM). OFDM based AF
cooperative diversity systems have been studied in [7]– [9].
However, the impact of practical channel coding schemes on
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performance and system design was not investigated in [7]–
[9].

For point–to–point transmission, the combination of bit–
interleaved coded modulation (BICM) [10] and OFDM is
a popular approach to exploit the inherent diversity offered
by frequency–selective fading channels. In particular, itwas
shown in [11] that BICM–OFDM can extract the full diversity
offered by the wireless channel assuming that the adopted
code has a sufficiently large free distance. As a result, BICM–
OFDM forms the basis of the IEEE 802.11 and 802.16 families
of standards and most emerging wireless standards will also
adopt this technique. Hence, BICM–OFDM based cooperative
diversity schemes have tremendous potential for consideration
in next generation broadband wireless communication sys-
tems. To the best of our knowledge, the analysis, design, and
optimization of cooperative BICM–OFDM systems has not
been considered in the literature yet.

In this paper, we propose a BICM–OFDM based cooperative
diversity scheme, where the available relays are divided into
multiple groups. In the first time slot, after coding, interleav-
ing, mapping, and modulation, the source transmits a data
packet to the relays and the destination. The relays adopt an
AF protocol to forward the received signals to the destination
where relays in different groups transmit in different time
slots but relays in the same group transmit concurrently over
disjoint sets of OFDM sub–carriers. The destination combines
the signals received in the different time slots and performs
standard Viterbi decoding. We derive a closed–form expression
for the asymptotic worst–case pairwise error probability (PEP)
of the proposed cooperative diversity scheme. This expression
provides significant insight into the impact of system param-
eters such as the sub–carrier allocation, the number of relay
groups, the number of relays in a group, the free distance of the
code, and the frequency diversity of the links in the network.
The derived asymptotic PEP expression is exploited to develop
guidelines for sub–carrier allocation within a relay group,
optimal relay grouping, and relay selection. A related power
allocation problem was considered in [12]. Simulation results
confirm the validity of the derived analytical results and show
the effectiveness of the proposed optimization techniques.

The remainder of this paper is organized as follows. In
Section II, the system model for cooperative BICM–OFDM
is introduced. The analysis and optimization of the proposed
scheme are presented in Section III and Section IV, respec-
tively. In Section V, simulation results are provided, and some
conclusions are drawn in Section VI.

Notation: In this paper,E{·}, [·]T , [·]H , | · |, || · ||, and
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Fig. 1. Schematic block diagram of proposed cooperative diversity system.
Different line styles for the arrows indicate transmissionin different time slots.
Note that relays within the same group do not have to be geographically close
to each other and can be placed arbitrarily.

det(·) denote statistical expectation, transposition, Hermitian
transposition, the magnitude of a scalar or the cardinalityof a
set, theL2–norm of a vector, and the determinant of a matrix,
respectively.λm(X), 1 ≤ m ≤ rank{X}, denotes the non–
zero eigenvalues of matrixX andIM is theM ×M identity
matrix. d·c denotes rounding to the closest integer value and
a functionf(x) is o(g(x)) if limx→0 f(x)/g(x) = 0.

II. SYSTEM MODEL

The considered system consists of one source (S) terminal,
G groups of relays withKν relays in theνth group,1 ≤
ν ≤ G, and one destination (D) terminal, cf. Fig. 1. In the
following, we denote the set of groups byG , {1, 2, . . . , G}
and the set of relays in theνth group byKν . In this section,
we describe the processing required for cooperative BICM–
OFDM at the source, the relays, and the destination, cf. Fig.2.

A. Signal Model

The adopted relaying protocol comprisesG + 1 time slots.
In the first time slot, the source transmits and both the relays
and the destination receive unless stated otherwise. In the
(ν + 1)th time slot, theKν relays of theνth group transmit
concurrently over disjoint sets of sub–carriers, whereν ∈ G.
The source employs conventional BICM–OFDM [11], i.e.,
the output bitsck′ , 0 ≤ k′ < log2(M)N , of a binary
convolutional encoder with minimum free distancedf are
interleaved and Gray mapped onto symbolsX [k] ∈ X , k ∈ N ,
N , {0, 1, . . . , N − 1}, whereX denotes anM–ary symbol
alphabet such asM–ary phase–shift keying (M–PSK) orM–
ary quadrature amplitude modulation (M–QAM) and N is
the number of data sub–carriers in one OFDM symbol. The
transmitted symbols are assumed to have unit average energy,
i.e., E{|X [k]|2} = 1. The effect of the interleaver can be
modeled by the mappingk′ → (k, i), wherek′ denotes the
original index of coded bitck′ , andk and i denote the index
of symbolX [k] and the position ofck′ in the label ofX [k],
respectively. Assuming the worst–case error event of the code
spansd ≥ df consecutive bits, the interleaver ensures that at
least anyd consecutive bits at the output of the encoder are
mapped to different sub–carriers [11].
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Fig. 2. Block diagram of (a) source, (b) relay, and (c) destination.

Throughout this paper we assume conventional OFDM
processing at the source, the relays, and the destination and a
sufficiently long cyclic prefix (CP) to avoid interference be-
tween sub–carriers. Thus, the received signal at the destination
in the first time slot and thekth sub–carrier can be modeled
as

Y0[k] =
√

P0H0[k]X [k] + N0[k], k ∈ N , (1)

whereP0 is the average transmit power in each sub–carrier
at the source,N0[k] is zero–mean complex additive white
Gaussian noise (AWGN) with varianceσ2, andH0[k] is the
frequency response of theS → D channel. The frequency
response is given byH0[k] , w

H
0 [k]h0, where w0[k] ,

[1, wk, . . . , w(L0−1)k]T , w , e−j2π/Nt (Nt: total number of
sub–carriers, including both data and pilot sub–carriers), and
column vectorh0 (σ2

0 , E{hH
0 h0}) contains theL0 channel

impulse response (CIR) coefficients of theS → D channel.

The received signal at thejth relay of groupν, Rνj
, j ∈ Kν ,

ν ∈ G, in the kth sub–carrier in the first time slot can be
modeled as

Uνj
[k] =

√
P0H1,νj

[k]X [k] + Nνj
[k], k ∈ N , (2)

where Nνj
[k] is zero–mean complex AWGN with variance

σ2 and H1,νj
[k] , w

H
1,νj

[k]h1,νj
is the frequency response

of the S → Rνj
link. Here, column vectorh1,νj

(σ2
1,νj

,

E{hH
1,νj

h1,νj
}) contains theL1,νj

CIR coefficients of theS →
Rνj

link and w1,νj
[k] , [1, wk, . . . , w(L1,νj

−1)k]T .

In the (ν + 1)th time slot, relayRνj
selects a setNνj

⊆ N
of sub–carriers, amplifies the signal received on these sub–
carriers in the first time slot and sets the signals in the other
sub–carriers to zero, cf. Fig. 2(b). The sets of sub–carriers are
chosen such thatNνj

∩Nνi
= ∅, i 6= j, and

∑Kν

j=1 |Nνj
| = N .

The sub–carrier selection will be discussed more in detail in
Section IV-A. The signal received at the destination in sub–
carrierk ∈ Nνj

in the (ν + 1)th time slot is given by

Yν [k] = Aνj
[k]H2,νj

[k]Uνj
[k] + Nν [k], j ∈ Kν , ν ∈ G,

(3)
whereAνj

[k] denotes the amplification gain applied at relay
Rνj

in sub–carrierk ∈ Nνj
, Nν [k] is zero–mean complex

AWGN with varianceσ2, and H2,νj
[k] , w

H
2,νj

[k]h2,νj
is
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the frequency response of theRνj
→ D link. Here, column

vector h2,νj
(σ2

2,νj
, E{hH

2,νj
h2,νj

}) contains theL2,νj

CIR coefficients of theRνj
→ D channel andw2,νj

[k] ,

[1, wk, . . . , w(L2,νj
−1)k]T .

B. Amplification Gain

For the amplification gain,Aνj
[k], several choices have been

proposed in the literature. The most widely used gain is [2]

Aνj
[k] =

√
Pνj

P0|H1,νj
[k]|2 + σ2

, k ∈ Nνj
, j ∈ Kν , ν ∈ G,

(4)
which maintains a constant average transmit powerPνj

at relay
Rνj

in each sub–carrierk. As this choice does not usually
lead to a tractable mathematical analysis, it is customary in
the literature, e.g. [2], to approximate this relay gain as

Aνj
[k] =

√
Pνj

P0|H1,νj
[k]|2 , k ∈ Nνj

, j ∈ Kν , ν ∈ G, (5)

for performance analysis. It is well–known that for the high
SNR regime the gains in (4) and (5) yield practically identical
performances [2]. In this paper, we will also adopt the gain in
(4) but resort to the gain in (5) for the performance analysis
presented in Section III.

C. Diversity Combining and Decoding

We assume perfect synchronization, channel estimation, and
demodulation at the relays and the destination. From (1)–(3),
the received signal at the destination in sub–carrierk and time
slot ν can be modeled as

Yν [k] = Ψν [k]X [k] + Ñν [k], k ∈ N , ν ∈ 0 ∪ G, (6)

where, forj ∈ Kν ,

Ψν [k] ,

{ √
P0H0[k], k ∈ N , ν = 0,√
P0Aνj

[k]H1,νj
[k]H2,νj

[k], k ∈ Nνj
, ν ∈ G,

(7)
and

Ñν [k] ,

{
N0[k], k ∈ N , ν = 0,
Aνj

[k]H2,νj
[k]Nνj

[k] + Nν [k], k ∈ Nνj
, ν ∈ G.

(8)

Here,Ñν [k] is the zero–mean effective noise at the destination
in sub–carrierk and time slotν with variance

σ2
ν [k] ,

{
σ2, k ∈ N , ν = 0,
(|Aνj

[k]|2|H2,νj
[k]|2 + 1)σ2, k ∈ Nνj

, ν ∈ G.

(9)

Following [10], [11], the bit metric for theith bit in the label
of X [k] is calculated as

mi
k[ck′ ] = min

X∈X i
c
k′

{ G∑

ν=0

|Yν [k] − Ψν [k]X |2
σ2

ν [k]

}
, (10)

whereX i
b denotes the subset of all symbolsX ∈ X whose

label has valueb ∈ {0, 1} in position i. The bit metrics are

de–interleaved and Viterbi decoded as usual [10], [11], cf.Fig.
2(c).

In some applications, the directS → D link is not exploited
because of heavy attenuation or because the destination does
not receive in the first time slot. In this case, the first term
(ν = 0) is omitted in the sum in (10).

III. PERFORMANCEANALYSIS

In this section, we derive an upper bound on the asymptotic
worst–case PEP of cooperative BICM–OFDM and investigate
the diversity gain of the system. The insights gained from the
proposed analysis will be exploited for system optimization
in Section IV. For the presented analysis, it is convenient to
define the average sub–carrier SNRs of theS → D, S → Rνj

,
and Rνj

→ D links asγ0 , P0σ
2
0/σ2, γ1,νj

, P0σ
2
1,νj

/σ2,
andγ2,νj

, Pνj
σ2

2,νj
/σ2, respectively, wherej ∈ Kν andν ∈

G. Furthermore, we assume mutually independent Rayleigh
fading for all links and introduce the normalized correlation
matricesC0 , E{h0h

H
0 }/σ2

0 , C1,νj
, E{h1,νj

h
H
1,νj

}/σ2
1,νj

,
and C2,νj

, E{h2,νj
h

H
2,νj

}/σ2
2,νj

, which are all assumed to
have full rank.

A. Asymptotic PEP

In this subsection, we analyze the worst–case PEP for
γ0, γ1,νj

, γ2,νj
→ ∞, j ∈ Kν , ν ∈ G. For this pur-

pose, we first define vectorsh1,ν , [hT
1,ν1

, . . . , hT
1,νKν

]T ,
h2,ν , [hT

2,ν1
, . . . , hT

2,νKν
]T , h1 , [hT

1,1, . . . , h
T
1,G]T , and

h2 , [hT
2,1, . . . , h

T
2,G]T . Assuming a code with free distance

df , the worst–case PEP of two codewordsc andĉ conditioned
on h0, h1, h2, can be expressed as [11]

P (c, ĉ|h0, h1, h2) = Pr





∑

k,df

mi
k[ck′ ] ≥

∑

k,df

mi
k[ĉk′ ]




, (11)

where the sum in (11) is overdf distinct sub–carriers
{k1, k2, . . . , kdf

}, which are determined by the interleaver,
and ck′ and ĉk′ denote bits in the codewordsc and ĉ,
respectively. The PEP in (11) can be upper bounded as [11]

P (c, ĉ|h0, h1, h2)≤
1

2
exp



−d2
min

4

∑

k,df

G∑

ν=0

|Ψν [k]|2
σ2

ν [k]



, (12)

wheredmin denotes the minimum Euclidean distance of the
signal constellationX . Averaging (12) overh0, h1,ν , h2,ν , ν ∈
G, we obtain the unconditional PEP in (13) as shown at the
top of the next page.

For convenience, letξ , d2
min/4. Using (7) and (9), I can

be written as [13]

I =
1

det(IL0
+ ξγ0W 0C0)

=
1

(ξγ0)
r0

∏r0

m=1 λm(W 0C0)
+ o

(
1

γr0

0

)
, (14)

whereW 0 ,
∑

k,df
w0[k]wH

0 [k] and r0 , rank{W 0C0} =



4

P (c, ĉ) ≤ 1

2
Eh0




exp



−d2
min

4

∑

k,df

|Ψ0[k]|2
σ2

0 [k]









︸ ︷︷ ︸

I

G∏

ν=1

Eh1,ν ,h2,ν




exp



−d2
min

4

∑

k,df

|Ψν [k]|2
σ2

ν [k]









︸ ︷︷ ︸

IIν

. (13)

min{df , L0} [11]. From (13), IIν can be written as

IIν = Eh1,ν ,h2,ν




exp



−ξ

Kν∑

j=1

∑

k,df,νj

|Ψν [k]|2
σ2

ν [k]








 , (15)

where df,νj
denotes the number of bits belonging to the

considered error event sent by relayRνj
, and consequently,∑Kν

j=1 df,νj
= df . Using (5), (7), and (9), we get (16) as shown

at the top of the next page from (15), where we exploited
the definitions of the average link SNRs and the fact that the
CIR coefficients of different links are mutually independent.
Although deriving an exact closed–form expression for IIνj

in
(16) does not seem feasible, adopting a similar approach as
was used for uncoded transmission and frequency–flat fading
in [2, Appendix], we derive the following asymptotic upper
bound in the Appendix

IIνj
≤ 1

(ξγ1,νj
)r1,νj

∏r1,νj

m=1 λm(W 1,νj
C1,νj

)

+
1

(ξγ2,νj
)r2,νj

∏r2,νj

m=1 λm(W 2,νj
C2,νj

)
, (17)

where W 1,νj
,

∑
k,df,νj

w1,νj
[k]wH

1,νj
[k], W 2,νj

,
∑

k,df,νj
w2,νj

[k]wH
2,νj

[k], r1,νj
, rank{W 1,νj

C1,νj
} =

min{df,νj
, L1,νj

}, and r2,νj
, rank{W 2,νj

C2,νj
} =

min{df,νj
, L2,νj

}.
Combining (13), (14), (16), and (17) and assuming the high

SNR regime,γ0, γ1,νj
, γ2,νj

→ ∞, j ∈ Kν , ν ∈ G, an
asymptotic upper bound for the worst–case PEP is obtained
in (18) as shown at the top of the next page. We note that if
the directS → D link is not exploited, (18) remains valid if
we set the term outside the double product equal to one.

B. Diversity Gain

To get more insight into the system performance, we
investigate the diversity gain of cooperative BICM–OFDM.
Considering the caseγ0 = γ1,νj

= γ2,νj
= γ, we define the

diversity gain as the negative slope of the PEP in (18) as a
function of γ on a double–logarithmic scale. From (18) we
obtain the diversity gain as

Gd = r0 +

G∑

ν=1

Kν∑

j=1

min{r1,νj
, r2,νj

}

= min{df , L0} +

G∑

ν=1

Kν∑

j=1

min{df,νj
, L1,νj

, L2,νj
}. (19)

Eq. (19) reveals that the maximum diversity gain of the
proposed system is limited by either the free distance of the
code, the frequency diversity offered by the channel, or both.

In particular, for channels that are rich in frequency diversity,
i.e., L0 ≥ df andmin{L1,νj

, L2,νj
} ≥ df,νj

, j ∈ Kν , ν ∈ G,
we obtainGd = (G + 1)df . Eq. (19) also gives important
insight for system design. For example, if there is one group
with only one relay and theS → R1 andR1 → D channels
are rich in diversity withmin{L1,1, L2,1} ≥ df (we drop
index ν for convenience), the system achieves the maximum
diversity gainGd = r0+df with this single relay. On the other
hand, if theS → R1 and R1 → D channels are not rich in
diversity andmin{L1,1, L2,1} < df,1 = df , we can improve
the diversity gain by adding a second relay which transmits
every second bit of the coded bit stream. In doing so, we
decreasedf,1 by a factor of two (assumingdf,1 is even) and we
may achieve the maximum diversity gain provided that the new
df,1 anddf,2 = df − df,1 do not exceedmin{L1,1, L2,1} and
min{L1,2, L2,2}, respectively. Roughly speaking, by adding
more relays to theνth group, we decreasedf,νj

, j ∈ Kν , and
as a result make up for missing frequency diversity by adding
more spatial diversity. For example, in the extreme case, where
all S → Rνj

and Rνj
→ D channels are frequency flat,

df relays are needed in each group to achieve the maximum
diversity gain possible with a code with free distancedf . On
the other hand, by adding an additional group, we can increase
the diversity gain by up todf at the expense of a decrease in
spectral efficiency since an additional time slot is needed for
transmission.

Finally, we note that for the case where the directS → D
link is not used, (19) remains valid if we setr0 = L0 = 0.

IV. D ESIGN OFCOOPERATIVE BICM–OFDM SYSTEMS

In this section, we exploit the analytical results from
Section III for the design and optimization of cooperative
BICM–OFDM systems. In particular, we discuss sub–carrier
allocation, relay grouping, and relay selection. While the
proposed sub–carrier allocation scheme is based on the insight
gained from the diversity analysis in Section III-B, the other
optimization problems directly exploit the upper bound on the
asymptotic worst–case PEP. However, the PEP in (18) depends
on the sub–carriers involved in a particular error event since
W 0, W 1,νj

, and W 2,νj
depend on the sub–carriers. Since

this dependence is cumbersome for optimization, we first find

Φ0 , min
W 0∈W0

r0∏

m=1

λm(W 0C0), (20)

Φ1,νj
, min

W 1,νj
∈W1,νj

r1,νj∏

m=1

λm(W 1,νj
C1,νj

), (21)

Φ2,νj
, min

W 2,νj
∈W2,νj

r2,νj∏

m=1

λm(W 2,νj
C2,νj

), (22)
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IIν =

Kν∏

j=1

Eh1,νj
,h2,νj




exp



−ξ
∑

k,df,νj

γ1,νj
γ2,νj

|H1,νj
[k]|2|H2,νj

[k]|2
γ1,νj

|H1,νj
[k]|2 + γ2,νj

|H2,νj
[k]|2









︸ ︷︷ ︸

IIνj

, (16)

P (c, ĉ) ≤
1

(ξγ
0
)r0
∏r0

m=1
λm(W 0C0)

G∏

ν=1

Kν∏

j=1



 1

(ξγ1,νj
)
r1,νj

∏r1,νj

m=1
λm(W 1,νj

C1,νj
)

+
1

(ξγ2,νj
)
r2,νj

∏r2,νj

m=1
λm(W 2,νj

C2,νj
)



. (18)

where W0, W1,νj
, and W2,νj

are the sets of all possible
matricesW 0, W 1,νj

, andW 2,νj
, j ∈ Kν , ν ∈ G, respectively.

These sets are defined by the sub–carrier allocation at the
relays and the interleaver at the source and can be easily
determined. UsingΦ0, Φ1,νj

, and Φ2,νj
in (18) implies a

further upper bounding of the worst–case PEP.

A. Sub–carrier Allocation and Interleaver Design

The results on diversity in Section III-B show that the inter-
leaver and the the sub–carrier allocation should be designed
such thatdf,νj

and min{L1,νj
, L2,νj

} are matched to each
other for all relay groups and anyd consecutive bits at the
output of the encoder, whered ≥ df denotes the length of
the worst–case error event. Within thesed consecutive bits,
two codewords corresponding to the worst–case error event
differ in df bits. While there exist many different designs that
guarantee full diversity, we propose here two simple sub–
carrier allocation schemes, which can be combined with a
conventional rectangular interleaver withNrow = N rows and
Ncol = log2 M columns, i.e., the interleaver is chosen such
that coded bitsck′

1
and ck′

2
with |k′

1 − k′
2| ≤ d are mapped

onto different symbols. Note that the interleaver is independent
of the number of groups and independent of the number of
relays in a particular group which makes the design simple.
We assume in the following thatKν ≤ df , ν ∈ G, because
having more thandf relays in a group cannot increase the
diversity gain of the system.

In the proposed sub–carrier allocation schemes, the set of
data sub–carriersN is divided into a number of subsets which
are referred to aschunks. We consider two schemes for the
allocation of these chunks to the relays: 1) Uniform allocation
and 2) Non–uniform allocation.

1) Uniform Allocation : In this scheme, the relays uniformly
share the sub–carriers carryingd consecutive bits. For theνth
group withKν relays, the set of data sub–carriersN is divided
into Kν chunksCu

νj
, 1 ≤ j ≤ Kν , where each chunk contains

Nc,ν = N/Kν sub–carriers (we assume thatKν , ν ∈ G, is a
factor of N ). The chunk assigned to relayRνj

contains sub–
carriersCu

νj
, {j − 1, j − 1 + Kν, j − 1 + 2Kν , . . . , j − 1 +

(Nc,ν − 1)Kν}, j ∈ Kj , ν ∈ G. Note that the number of
chunks and the chunk size may be different for each group.

2) Non–uniform Allocation: Here, sub–carriers are allo-
cated to the relays in a group according to the frequency
diversity of the relay links. In this scheme, the set of data
sub–carriersN is divided into d chunks, where we assume
that d is a factor ofN and each chunk containsNc = N/d

sub–carriers. The chunks are defined asCi , {i − 1, i − 1 +
d, i−1+2d, . . . , i−1+(Nc−1)d}, 1 ≤ i ≤ d. Since onlydf out
of d consecutive bits at the output of the encoder contribute to
the diversity of the system, we first consider the allocationof
df out of d chunks. Considering theνth group, we first assign
each relay one chunk and the remainingdf − Kν chunks are
assigned to the relays according to the diversity orders of their
respective channels. For this purpose, we compute

ζνj
=

min(L1,νj
, L2,νj

)
∑Kν

κ=1 min(L1,νκ
, L2,νκ

)
, j ∈ Kν , (23)

which reflects how strong theS → Rνj
andRνj

→ D links of
relayRνj

are in terms of frequency diversity compared to the
links of the other relays in groupν. Next, for simplicity, we
order the relays according to theirζνj

values and re–label them
such thatRν1

is the relay with the largest value (ζν1
) and so on.

Now, we are ready to determine the number of chunks assigned
to the relays according to their rank. In particular, relayRν1

receives additionalNd
ν1

, dζν1
(df − Kν)c chunks, and has a

total of Nν1
= 1 + Nd

ν1
chunks. Similarly, relayRν2

receives
additionalNd

ν2
, dζν2

(df − Kν)c chunks, and has a total of
Nν2

= 1 + Nd
ν2

chunks. This procedure is continued until∑Kν

j=1 Nνj
= df . The remainingd − df chunks are allocated

in such away as to ensure that the maximum diversity order is
achieved for anyd consecutive bits and theNνj

, 1 ≤ j ≤ Kν ,
are incremented accordingly. This typically means that these
d− df chunks have to be allocated to the relay(s) whose links
offer the most frequency diversity. Which relay should transmit
which chunk(s) depends on the exact locations of thedf bits
that determine the free distance of the code within the span of
the d consecutive bits of the error event. These locations are
known a priori from the trellis structure of the code.

Example: To better illustrate the interleaving and sub–
carrier allocation among relays we consider an example.
We assumeN = 60 data sub–carriers, one group with
K = 3 relays R1, R2, and R3 (we drop group index
ν = 1 for convenience), 16–ary modulation, and a rate
1/2 convolutional code with generator polynomials(7, 5)8,
d = 6, and df = 5. The total number of coded bits is
N log2 M = 240. At the output of the interleaver, bits are
read as 0, 60, 120, 180, 1, 61,. . . ,239. For uniform allocation,
each relay is assigned a chunk ofN/K = 20 sub–carriers
with Cu

1 = {0, 3, 6, . . . , 57}, and so on, cf. Fig. 3. For non–
uniform allocation, we haved = 6 chunksCi, 1 ≤ i ≤ 6,
where C1 = {0, 6, 12, . . . , 54}, C2 = {1, 7, 13, . . . , 55},
and so on. Furthermore, assumingmin(L1,1, L2,1) = 5,



6

�
�

�
�

�
�

������������

�

������������

��

������������

�

������������

�

	��	���	���	

	


��
���
���





bit index

subcarrier index

� 	 



�������������


��


�������������


�


�������������


��

.

.

.

.

.

.

.

.

.

Fig. 3. Uniform sub–carrier allocation to 3 relaysR1, R2, and R3 for
d = 6, df = 5, 16–ary modulation, andN = 60 data sub–carriers in each
OFDM symbol.
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Fig. 4. Non-uniform sub–carrier allocation to 3 relaysR1, R2, andR3 for
d = 6, df = 5, 16–ary modulation,N = 60 data sub–carriers in each OFDM
symbol. HereL1,1 = L2,1 = 5, L1,2 = L2,2 = 2, andL1,3 = L2,3 = 1.
Bit and sub–carrier indices are similar to those in Fig. 3.

min(L1,2, L2,2) = 2, and min(L1,3, L2,3) = 1, we obtain
N1 = 4 (the additionald − df = 1 chunk is allocated to
R1), N2 = 1, and N3 = 1. For the considered 1/2 rate
code, all error events start at even indicesk′ of the coded
bit stream and the bit in the fourth position out of every 6
consecutive bits does not contribute to the free distance of
the code. For example, the1st possible worst–case error event
starts atk′ = 0 with the irrelevant bit atk′ = 3, the 2nd
possible worst–case error event starts atk′ = 2 with the
irrelevant bit atk′ = 5, and so on. To maximize diversity,
we have to allocate the chunks to the relays in such a manner
that

∑Kν

j=1 dνj
= df is satisfied for all possible worst–case

error events. For the considered case, this is accomplished
by assigning chunksCn

1 = {C2, C4, C5, C6}, Cn
2 = {C1}, and

Cn
3 = {C3} to R1, R2, andR3, respectively, cf. Fig. 4. With

this allocation of chunks,R1, R2, andR3, respectively, carry

3, 1, and 1 bits of the relevantdf = 5 bits that define the free
distance of the code for any possible worst–case error eventof
lengthd = 6 and the resulting diversity gain isGd = r0+5. In
contrast, for the uniform allocation, two relays carry two bits
and the third relay carries three bits and which relay carries
three bits depends on the position of the considered error event
in the data packet. Thus, the diversity gain is onlyGd = r0+4
in this case.

B. Relay Grouping

Relay grouping addresses the following question: Assuming
we haveK relays available and can affordG+1, G ≥ 2, time
slots for transmission, how should we assign the relays to the
G groups? Since the ultimate goal is to minimize the error
rate, we base the relay grouping criterion on (18) and (20)–
(22), which leads to the following cost function

Jrg =

G∏

ν=1

Kν∏

j=1

(
1

(ξγ1,νj
)r1,νj Φ1,νj

+
1

(ξγ2,νj
)r2,νj Φ2,νj

)
.

(24)
The optimum relay grouping is obtained from

Θ? = arg min
Θ⊆F

Jrg, (25)

where F is the set of all possible groupings of∑G
ν=1 Kν = K relays into G groups, andΘ is one

element of F . For example, if there areG = 2
groups andK = 3 relays, R1, R2 , R3, then F ,

{{(R1), (R2, R3)}; {(R2), (R1, R3)}; {(R3), (R1, R2)}},
where the relays inside parenthesis belong to the same group.
Note that the order of the groups does not affect performance,
i.e., {(R1), (R2, R3)} is equivalent to{(R2, R3), (R1)}.

C. Relay Selection

Another interesting problem is relay selection, where only
a subset of the available relays is selected for transmission
in order to reduce complexity. For simplicity, we assume that
there is only one relay group in this section and drop the
group indexν = 1. Considering again the derived analytical
expression for the worst–case PEP, the cost function for relay
selection is chosen as

Jrs(D) =
∏

j∈D

(
1

(ξγ1,j)
r1,j Φ1,j

+
1

(ξγ2,j)
r2,j Φ2,j

)
, (26)

whereD is a subset ofK and, since only the relays inD
transmit, we have now

∑
j∈D df,j = df . In the following, we

consider two different relay selection problems.
1) Best Relay Subset Selection:In this case, we are

interested in finding that subsetD? ⊆ K which achieves the
optimal performance without limiting the number of relays in
D. The corresponding selection criterion is

D? = arg min
D⊆K

{Jrs(D)}. (27)

The size of D? strongly depends on the SNRs and the
frequency diversity of the involved links, cf. Section V.

2) Best Relay Selection:In practice, we may want to limit
the number of relays that can be chosen in order to limit the
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signaling overhead required for synchronization and channel
estimation. In the extreme case, we may limitD in (27) to
have only one element, which leads to the best relay selection
problem. For high SNR, the best relay selection criterion
according to (27) simplifies to a max–min selection criterion

j? = arg max
j∈K

{min{(ξγ1,j)
r1,j Φ1,j , (ξγ2,j)

r2,j Φ2,j}}, (28)

wherej? is the index of the best relay. For the special case
of frequency–flat fading, we haver1,j = r2,j = 1 and
Φ1,j = Φ2,j , and (28) is equivalent to the conventional max–
min criterion [14] developed for uncoded transmission over
frequency–flat channels. However, for the general case of
frequency–selective fading, (28) achieves a superior perfor-
mance compared to the conventional max–min criterion.

V. SIMULATION RESULTS

In this section, we present Monte–Carlo simulation resultsto
illustrate the performance of cooperative BICM–OFDM and to
support the analytical results and design guidelines developed
in Section III and Section IV, respectively. Throughout this
section we adopt the rate1/2 convolutional code with gener-
ator polynomials(7, 5)8, worst–case error event lengthd = 6,
and free distancedf = 5, 16–QAM modulation with Gray
labeling, andNt = 64 sub–carriers of whichN = 60 are data
sub–carriers. The sub–carrier allocation and the interleaver
are designed as outlined in Section IV-A. Unless specified
otherwise, we employ uniform sub–carrier allocation, assume
SNR γ̄ = γ̄1,νj

= γ̄2,νj
, j ∈ Kν , ν ∈ G, and the directS → D

link is not exploited. The coefficients of the CIRs of all links
are independent, identically distributed (i.i.d.) Rayleigh fading.

We first discuss the diversity gain of the proposed system
before we present results for various system design problems.
Where appropriate, we drop group indexν for convenience.

Diversity Gain: First, we consider a system withK = 2
relays distributed over one group and two groups, respectively.
We assume that the CIRs of allS → Rj andRj → D links
have identical lengthsLi,j = L for i ∈ {1, 2}, j ∈ {1, 2}.
Fig. 5 shows the bit error rate (BER) vs. SNR̄γ for different
CIR lengthsL. First, we consider the case were both relays
are placed in a single group (solid lines). For the uniform
sub–carrier allocation in Section IV-A, consecutive bits in one
error event are transmitted via different relays. Thus, of the
df = 5 bits that determine the free distance of the code,
one relay carries 3 bits (e.g.df,1 = 3) and the other relay
carries 2 bits (e.g.df,2 = 2). Fig. 5 confirms that forL = 1,
we obtain a diversity gain ofGd = min{df,1, L1,1, L2,1} +
min{df,2, L1,2, L2,2} = 1 + 1 = 2 as expected from our
analysis in Section III-B. ForL = 2 this gain increases to
Gd = 2 + 2 = 4 and for L ≥ 3 the maximum achievable
diversity gain (withoutS → D link) of Gd = df = 5 is
attained. The additional performance gain when increasing
L from 3 to 4 can be attributed to the lower correlation
between sub–carriers for larger CIR lengths resulting in larger
eigenvaluesλm(·) in (18). Now, we consider the case where
the relays are placed in two different groups (dashed lines).
As expected, Fig. 5 shows that potentially a higher diversity
gain can be achieved with two groups compared to one group
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Fig. 5. BER vs. SNR of cooperative BICM–OFDM with two relays in one
group and two groups, respectively. No directS → D link, equal SNRs for
all links, and uniform sub–carrier allocation.

at the expense of a decrease in throughput. In particular, for
L = 3 and L = 4, Gd is limited to df = 5 for the single
group, but increases to6 and8 for two groups, which have a
maximum diversity gain ofGd = 10, which would be attained
for L ≥ 5 (not shown in the figure). In contrast, forL = 1
andL = 2, respectively, the single group and the two groups
achieve the same diversity gain. Nevertheless, two groups still
achieve an SNR gain of about 5 dB compared to one group
because of the noise averaging facilitated by the receptionof
multiple copies of the transmitted signal.

Next, in Fig. 6, we compare the performance of uniform
and non–uniform sub–carrier allocation for a system with one
group containing two relays. We assumeL1,j = L2,j = Lj,
j ∈ {1, 2}, and consider three cases:L1 = 1, L2 = 4 (Case
1), L1 = 2, L2 = 3 (Case 2), andL1 = L2 = 3 (Case
3). First, we consider uniform allocation, where for all three
cases, depending on where in the codeword the worst–case
error event starts,R1 carries 2 or 3 bits (i.e.,df,1 = 2 or
df,1 = 3) andR2 carries the remainingdf,2 = df − df,1 bits.
Hence, considering the worst case, we obtain from (19)Gd =
2 + 1 = 3, Gd = 2 + 2 = 4, and Gd = 5 for Cases 1, 2,
and 3, respectively. In contrast, for non–uniform sub–carrier
allocation, independent from where in the codeword the worst–
case error event starts, the bits are assigned such thatdf,1 = 1
and df,2 = 4 in Case 1,df,1 = 2 and df,2 = 3 in Case 2,
anddf,1 = 3 and df,2 = 2 or df,1 = 2 and df,2 = 3 in Case
3, cf. Section IV-A. Thus, non–uniform sub–carrier allocation
achieves the maximum diversity order ofGd = 5 in all cases.
This clearly illustrates the benefits of matching the sub–carrier
allocation to the frequency diversity of the channel. For Case
3, the diversity gains for uniform and non–uniform allocation
are identical but uniform allocation seems to lead to a lower
correlation between sub–carriers resulting in larger eigenvalues
λm(·) in (18) and thus, in a superior BER performance.

Relay Grouping: Next, we consider the problem of assign-
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Fig. 6. BER vs. SNR of cooperative BICM–OFDM with two relays in one
group. No directS → D link and equal SNRs for all links.

ing five relaysRj , j ∈ {1, . . . , 5}, to two groups. We assume
L1,i = L2,i = 1 for i ∈ {1, 2, 3, 4}, L1,5 = L2,5 = 5, and
equal SNRs for all links. In Fig. 7, we show the BER for those
three assignments which achieve the highest performance. The
assignments considered in Fig. 7 are:(R1, R2) in group 1 and
(R3, R4, R5) in group 2 (Choice 1),(R1, R2, R3) in group
1 and(R4, R5) in group 2 (Choice 2), and(R1, R2, R3, R4)
in group 1 andR5 in group 2 (Choice 3). For this scenario
and at SNR = 20 dB, we obtain from (24)Jrg = 10−4.99,
Jrg = 10−5.17, and Jrg = 10−5.88 for Choices 1, 2, and
3, respectively. Thus, Choice 3 is adopted according to the
criterion in (25), which is also verified by the results shown
in Fig. 7. This result is intuitively pleasing since Choice 3
yields highest diversity gain (Gd = 9) among all possible
relay groupings.

Relay Selection:In Fig. 8, we consider the optimal relay
selection problem for a cooperative BICM–OFDM system
without direct S → D link and with a single group. In
particular, we consider the case where the number of se-
lected relays is not fixeda priori. We assume thatK = 5
relays are available for selection withL1,j = L2,j = 2,
γ̄1,j = γ̄2,j = γ̄ (dB) for j ∈ {1, 2, 3} andL1,j = L2,j = 3,
γ̄1,j = γ̄2,j = γ̄ + 2 (dB) for j ∈ {4, 5}. We assume that a
maximum of three relays can be selected for cooperation. In
Fig. 8, we show the four selections which achieve the highest
performance:(R2, R3, R4), (R3, R4, R5), (R1, R2, R3), and
(R4, R5). All these combinations provideGd = 5. Assuming
a target SNR of 20 dB, we obtainJrs(2, 3, 4) = 10−3.96,
Jrs(3, 4, 5) = 10−4.53, Jrs(1, 2, 3) = 10−3.78, andJrs(4, 5) =
10−4.55, i.e., the proposed relay selection criterion in (27)
would indeed select relaysR4 and R5, which also yield the
best performance according to Fig. 8. Interestingly, in this
case, it is preferable to select only two relays for cooperation
instead of the maximum allowed three relays, since these
two relays enjoy more frequency diversity and a higher SNR
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Fig. 7. BER vs. SNR of cooperative BICM–OFDM for different relay group-
ings. No directS → D link, equal SNRs for all links, uniform sub–carrier
allocation,L1,i = L2,i = 1 for i ∈ {1, 2, 3, 4}, andL1,5 = L2,5 = 5.
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Fig. 8. BER vs. SNR of cooperative BICM–OFDM with selection of three
or less ofK = 5 relays. No directS → D link and uniform sub–carrier
allocation.

compared to the remaining three relays. Thus, adding another
relay toR4 andR5 can only degrade performance since sub–
carriers would have to be taken away from the “strong”R4

andR5 and given to a “weaker” relay.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we have proposed a novel cooperative BICM–
OFDM scheme where groups of relays assist a source in
communicating with a destination. Relays in the same group
transmit concurrently over disjoint sets of sub–carriers and
relays in different groups transmit in different time slots. We
have derived closed–form expressions for an upper bound on
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A ≤
∫

||h1,νj
||2≤ε

∫

h2,νj

exp



−ξ
∑

k,df,νj

γ1,νj
γ2,νj

|wH
1,νj

[k]h1,νj
|2|wH

2,νj
[k]h2,νj

|2
γ1,νj

L1,νj
ε + γ2,νj

|wH
2,νj

[k]h2,νj
|2



 p1(h1,νj
)p2(h2,νj

)dh1,νj
dh2,νj

. (34)

the asymptotic worst–case PEP and the achievable diversity
gain of the considered system. Based on these analytical
results, we have developed design criteria for sub–carrierallo-
cation to relays, relay grouping, and relay selection. Simulation
results have corroborated our analytical findings and confirmed
the effectiveness of the proposed design guidelines.

Interesting topics for future work include the design and
optimization of such generalized cooperative BICM–OFDM
systems, where each relay is allowed to transmit in multiple
time slots.1

APPENDIX

From (16), we obtain

IIνj
=

∫

h1,νj

∫

h2,νj

f(h1,νj
, h2,νj

)p1(h1,νj
)p2(h2,νj

)dh1,νj
dh2,νj

,

(29)
where

f(h1,νj
, h2,νj

)

= exp

(
− ξ

∑

k,df,νj

γ
1,νj

γ
2,νj

|wH
1,νj

[k]h1,νj
|2|wH

2,νj
[k]h2,νj

|2

γ1,νj
|wH

1,νj
[k]h1,νj

|2 + γ2,νj
|wH

2,νj
[k]h2,νj

|2

)
,

(30)

andp1(h1,νj
) andp2(h2,νj

) are the probability density func-
tions of h1,νj

and h2,νj
, respectively. Recall thath1,νj

and
h2,νj

are zero–mean Gaussian random vectors with covariance
matricesC1,νj

and C2,νj
, respectively. For the asymptotic

regime of high SNR,γ1,νj
, γ2,νj

→ ∞, decision errors only
occur if ||h1,νj

||2 → 0 and/or ||h2,νj
||2 → 0 [15]. Thus, an

asymptotic upper bound for IIνj
is given by

IIνj
≤ A + B, (31)

where

A ,

∫

||h1,νj
||2≤ε

∫

h2,νj

f(h1,νj
, h2,νj

)p1(h1,νj
)p2(h2,νj

)

×dh1,νj
dh2,νj

, (32)

B ,

∫

h1,νj

∫

||h2,νj
||2≤ε

f(h1,νj
, h2,νj

)p1(h1,νj
)p2(h2,νj

)

×dh1,νj
dh2,νj

, (33)

where ε → 0+ denotes a small positive number and the
region {h1,νj

, h2,νj
: ||h1,νj

||2 ≤ ε, ||h2,νj
||2 ≤ ε} is

contained in bothA and B. Applying Schwarz’s inequality,
|wH

1,νj
[k]h1,νj

|2 ≤ L1,νj
ε, in (32), we obtain (34) as shown

1The authors would like to thank one of the anonymous reviewers for
pointing out the possibility of allowing relays to transmitin multiple time
slots.

at the top of this page. For|wH
2,νj

[k]h2,νj
|2 6= 0, we have

lim
ε→0+

lim
γ1,νj

,γ2,νj
→∞

(
γ2,νj

|wH
2,νj

[k]h2,νj
|2

γ1,νj
L1,νj

ε + γ2,νj
|wH

2,νj
[k]h2,νj

|2

)
=1.

(35)
Exploiting (35) and noting that the contribution of vectors
h2,νj

fulfilling |wH
2,νj

[k]h2,νj
|2 = 0 to the integral in (34)

is zero, we can simplify (34) to

A ≤
∫

h1,νj

∫

h2,νj

exp



−ξ
∑

k,df,νj

γ1,νj
|wH

1,νj
[k]h1,νj

|2




× p1(h1,νj
)p2(h2,νj

)dh1,νj
dh2,νj

. (36)

Since the integrand in (36) is independent ofh2,νj
, similar to

(14), we obtain

A ≤ 1

det(IL1,νj
+ ξγ1,νj

W 1,νj
C1,νj

)

=
1

(ξγ1,νj
)r1,νj

∏r1,νj

m=1 λm(W 1,νj
C1,νj

)
+ o

(
1

γ
r1,νj

1,νj

)
.

(37)

Similarly, from (33), we obtain

B ≤ 1

det(IL2,νj
+ ξγ2,νj

W 2,νj
C2,νj

)

=
1

(ξγ2,νj
)r2,νj

∏r2,νj

m=1 λm(W 2,νj
C2,νj

)
+ o

(
1

γ
r2,νj

2,νj

)
.

(38)

Combining (31), (37), and (38) yields (17).
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