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Abstract—Adaptive link selection for buffer–aided relaying can
provide significant performance gains compared to conventional
relaying with fixed transmission schedule. For fixed rate transmis-
sion, significant gains in error rate and/or throughput performance
have been observed compared to conventional relaying when
perfect channel state information (CSI) is available for link
selection. However, in practice, link selection may have to be
performed based on outdated CSI, because of infrequent feedback
of CSI. In this paper, we study the effect of outdated CSI on
the error rate performance of adaptive link selection for a three
node decode–and–forward (DF) relay network with fixed–rate
transmission. In particular, we propose two protocols for link
selection. The first protocol does not require knowledge of the
reliability of the CSI estimates whereas the second protocol does.
For both protocols, we provide a unified error-rate analysis in
terms of a decision threshold β, which can be adjusted to maintain
buffer stability. In particular, we obtain closed–form expressions
for the error rates, and derive asymptotic approximations which
reveal the diversity and coding gains. Since packet transmission
delay is unavoidable for opportunistic link selection, we analyze
the average delay considering both finite and infinite buffer size.
We also calculate the throughput for the proposed protocols.
The average delay and throughput are functions of the decision
threshold β which can be optimized to minimize the error rate
while satisfying average delay and/or throughput constraints.
Numerical results manifest that even with outdated CSI, adaptive
link selection provides a significant coding gain advantage over
conventional DF relaying. Furthermore, we show that a diversity
gain of two can be achieved for perfect CSI and the optimum error
rate can be approached with small delay and/or high throughput.

Index Terms—Cooperative diversity, link selection, buffer–aided
relaying, average delay, outdated CSI.

I. INTRODUCTION

Conventional decode–and–forward (DF) relay networks [2],
[3] employ half–duplex (HD) relays and a pre–fixed transmis-
sion schedule. As the link quality is not taken into account
for scheduling the transmissions, the end–to–end performance
is limited by the bottleneck link. However, if the transmitting
nodes can be selected opportunistically based on the link
quality, a better error rate and/or throughput performance is
expected compared to conventional relaying. This opportunistic
scheduling requires buffers at the relays such that the received
message can be stored until a good quality transmit channel is
observed [4].
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Over the last few years, there has been an increasing interest
in buffer–aided relaying protocols [5]- [15], in particular for
delay tolerant applications. Two buffer–aided relaying schemes
were proposed in [5], where the relay is allowed to receive
for a fixed number of time slots before it re–transmits to the
destination. These schemes show a throughput improvement
compared to receiving and re–transmitting in subsequent time
slots. A joint cross–layer scheduling and buffer–equipped relay
selection problem was considered in [6], where a considerable
throughput improvement was reported compared to relaying
without buffers. Throughput optimization for adaptive link
selection with buffer–aided relaying was studied in [7] and
[8] for adaptive and fixed rate transmission, respectively. The
authors in [9] observed that if some packet delay is tolerated,
the asymptotic throughput can be improved by exploiting relay
buffering and relay mobility. In [10], buffer–aided HD relaying
was shown to outperform ideal full duplex relaying in some
special cases, when the relay employs multiple antennas. We
note that [5]– [9] focused on throughput optimization only
and the error rate was not considered. In [11] and [12], relay
selection was considered, i.e., the relays with the best S → R
and the best R→ D channels were selected for reception and
transmission, respectively, but adaptive link selection was not
employed. The authors in [13] extended the work in [11] and
showed that joint relay and link selection can provide additional
diversity gains. In [14], the authors reported that buffering at the
relay is useful for achieving multihop diversity for independent
and identicaly distributed (i.i.d.) multihop links. The authors
in [15] proposed a packet selection based transmission scheme
for buffer–aided amplify–and–forward relaying and showed that
outage probability can be improved compared to traditional
relaying with fixed schedule. A critical requirement for the link
selection protocols reported in [7], [13]–[15] is the availability
of perfect channel state information (CSI) for link selection.
However, in practice, the CSI exploited for link selection may
be outdated because CSI may not be fed back frequently as it
incurs overhead. It is not clear from the literature whether the
protocols developed for perfect CSI would also yield optimum
performance when only outdated CSI is available. In particular,
if the reliability of the outdated CSI is known, we expect that
by exploiting this information for link selection, a better error
rate performance can be achieved. The impact of outdated CSI
for relay selection has been considered in [16]–[19]. However,
the effect of outdated CSI on link selection for buffer–aided
relaying has not been considered in the literature, yet.

On the other hand, one important aspect of all opportunistic
link selection protocols is the increased end–to–end delay.
Despite its importance, most of the previous works [11]–
[13] on link selection did not consider delay constrained
transmission. In [8], the authors proposed delay constrained
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link selection protocols for throughput optimization for fixed
and mixed rate transmission. In [20], the authors considered
fixed rate transmission and analyzed the coded error rate and
the delay of a buffer–aided relaying protocol operating over
frequency–selective channels. It was shown that full diversity
and minimum error rate are observed only when a large delay
can be tolerated. However, both [8] and [20] assumed perfect
CSI and the effect of the unavoidable delay in the feedback
link and/or infrequent feedback of CSI was not taken into
account. Furthermore, in [8] and [20], the average system
delay was calculated considering the queueing delay only.
However, as the buffer at the relay can become empty or
full, it is possible that successful transmission cannot always
take place and silent time slots may occur. This causes an
additional end–to–end delay which has not been investigated
for adaptive link selection yet. Moreover, it is not clear from
the available literature whether full diversity in terms of the
error rate performance can be realized if only a small delay
can be tolerated for buffer–aided link selection. However,
even though the objective is to analyze the error rate in this
work, a constraint on throughput is also important to ensure a
minimum end–to–end data rate. Hence, studying adaptive link
selection for a delay and throughput constrained buffer–aided
relay network with outdated CSI and a corresponding error–rate
analysis are of great practical value.

In this paper, we consider a three–node relay network where
the relay is equipped with a buffer. We propose two link selec-
tion protocols for buffer–aided DF relaying for the cases when
the reliability of the outdated CSI is known and not known,
respectively. To evaluate the proposed protocols, we analyze
the error rate, delay, and throughput as relevant performance
metrics. Similar to [20], we introduce a decision threshold β in
the link selection criterion which can be tuned to ensure stable
buffer operation. For both proposed link selection protocols,
we provide a unified end–to–end error rate analysis and derive
the corresponding diversity and coding gain expressions for
outdated and perfect CSI. Calculation of the error rate is not
affected by the silent time slots, which, however, influence
the delay and throughput. We derive an expression for the
average delay of the system considering both the delay due
to queueing at the buffer and the delay due to the silent time
slots caused by the proposed protocols. Moreover, we also
show that the silent time slots constitute outage events and
are responsible for a loss in throughput. Interestingly, the three
considered performance metrics are connected through and can
be controlled via the decision threshold for link selection,
β, and our analyses provide insight into this connection. We
also provide guidelines for choosing β for achieving buffer
stability and for minimizing the error rate for a target delay
and throughput constraint.

Notation: In this paper, E{·} and | · | denote statistical
expectation and the magnitude of a scalar or the cardinality of a
set, respectively. Q(x) = 1√

2π

∫∞
x
e−

u2

2 du is the Gaussian Q–
function and N (µ, σ2) denotes the Gaussian distribution with
mean µ and variance σ2. R+ denotes the set of positive real
numbers, “r.h.s.” denotes the right hand side, “w.r.t.” stands for
with respect to, and “ .=” denotes asymptotic equivalence.

II. SYSTEM MODEL

The considered system consists of a source terminal S, a
DF relay R which is equipped with a buffer, and a destination
terminal D. The direct link between S and D is not exploited
due to heavy attenuation and/or simplicity of implementation.
In our model, S and R transmit at a fixed rate determined by the
adopted modulation scheme and S has always data to transmit.
We assume uncoded transmission over flat–fading links and
each transmission frame consists of two phases: a handshaking
phase and a data transmission phase, cf. Fig. 1. Furthermore,
we assume that the link selection is performed by a control
unit (CU) which collects the CSI of both links and feeds the
result of the selection process back to the transmitting nodes.
Note that depending on the scenario, the source, the relay, the
destination or an external node can serve as the CU. During
the handshaking phase, the CSI required for link selection
is acquired by the CU and the decision regarding the link
selection is fed back to the nodes. Pilot symbols are inserted
between chunks of data symbols in the data transmission phase.
These pilots are used at the receiver, i.e., the relay or the
destination, to accurately estimate the channel for coherent
detection. To reduce the signalling overhead, the link selection
is performed only at the beginning of each frame. Hence,
the CSI used for link selection may become outdated during
the data transmission phase, and the link selection decision
may not be optimal for the transmitted data symbols. As the
data transmission phase can be longer than the handshaking
phase, the correlation between the channel states used for link
selection and data detection may change over time. However,
taking into account different correlation values during data
transmission would make the delay analysis in this paper highly
complicated. Hence, for convenience and to gain basic insight
for system design, we assume a fixed correlation value between
the channels used for link selection and the channels during data
transmission1. Note that, the channel gains in different frames
are assumed to be independent2.

A packet, consisting of data and pilot symbols, cf. Fig. 1, is
transmitted from S to R at time ts and at a later time tr > ts,
the decoded packet is re–transmitted from R to D. Here, each
buffer element at the relay contains one packet. To facilitate
the understanding of the analysis, in the sequel we refer to the
duration of each data transmission phase as ‘time slot’. In the
following, we present the CSI model, the assumptions regarding
the buffer operation, and the link selection schemes.

1The assumption of a fixed correlation value is accurate for time division
multiple access (TDMA) based relaying systems, where a relay is shared by
several users for forwarding their information to the base station. The relay
has separate buffers for all users to temporarily store the information. Without
loss of generality, we can assume a block of one ‘pilot’ and one contiguous
‘data symbols’ in Fig. 1 comprises transmission of one user and one frame
is composed of the handshaking phase and data transmission of all users in
TDMA mode. The information of each user is transmitted according to the
link selection decisions obtained at the beginning of transmission (i.e., during
the handshaking phase). In this set up, each user can be assumed to observe
a fixed correlation value for the channel estimates used for link selection and
data detection. However, correlation values used for different users may not be
the same, of course.

2Similar assumptions in the context of relay selection for outdated CSI were
made in [16].
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Fig. 1. Each frame consists of two phases: a handshaking phase and a data transmission phase.

A. CSI Model

We denote the flat–fading complex Gaussian channel gain be-
tween nodes A and B at time tz as hAB(tz), AB ∈ {SR,RD},
z ∈ {s, r}. γAB(tz) refers to the instantaneous SNR of link
A → B at time tz , where γAB(tz) , PA|hAB(tz)|2/N0,
PA and N0 denotes the transmit power of node A and the
additive white Gaussian noise variance, respectively. For the
rest of the paper, we drop the time index for convenience
and it is implicitly assumed that transmission of a packet over
the S → R link takes place earlier than the transmission of
the same packet over the R → D link. γAB is modelled as
an exponentially distributed random variable (RV) with mean
γ̄AB = PAσ

2
AB γ̄, AB ∈ {SR,RD}, where γ̄ , 1/N0 and

channel gain variance σ2
AB , E{|hAB |2}.

The outdated channel gain used for selection, ĥAB , is mod-
elled as [16]

ĥAB = ρABhAB +
√

1− ρ2
ABwAB , (1)

where wAB is a circularly symmetric complex Gaussian RV
having the same variance as hAB and ρAB is the correlation co-
efficient between ĥAB and hAB , which, following Jakes’ auto–
correlation model [21], is given by ρAB = J0(2πfd,ABTd).
Here, J0(·) denotes the zeroth order Bessel function of the
first kind, fd,AB denotes the Doppler shift on the A → B
link, and Td is the time difference between the link selection
process and data transmission. ρSR and ρRD can have different
values since the relative speeds of the relay with respect to the
source and the destination are not necessarily identical, which
causes the Doppler shifts to be different. The estimated SNR
is given by γ̂AB = PA|ĥAB |2/N0. Although γ̂AB and γAB
are not necessarily identical, they follow the same distribution
with average value γ̄AB . The joint probability density function
(PDF) of γAB and γ̂AB is given by [16]

fγAB ,γ̂AB (x, y) =
e
− x+y

γ̄AB(1−ρ2
AB)

γ̄2
AB (1− ρ2

AB)
I0

(
2
√
xyρAB

γ̄AB (1− ρ2
AB)

)
,

(2)
where I0(·) denotes the zeroth order modified Bessel function
of the first kind.

B. Operation of the Buffer

As the buffering capability at the relay is critical, a sta-
ble buffer operation has to be maintained throughout the
link selection procedure. For simplicity, we assume that the
transmission rates of source and relay, denoted by S0 and
R0, respectively, are equal. However, this can be generalized

and different transmission rates can be incorporated into the
analysis. The received packets at the relay are appended to the
queue regardless of decoding errors3. We assume the queue
operates in a First–In–First–Out (FIFO) mode4.

From queueing theory, we know that for stable operation of
the buffer, the length of the queue must not grow over time,
i.e., we require the departure rate D to be equal to or higher
than the arrival rate A, i.e., D ≥ A. For maximization of
the throughput, it was shown in [7] that the queue needs to
operate at the edge of stability, i.e., when A = D. However,
for error rate minimization, this condition may not be optimal,
as will be shown in Section IV. Furthermore, we can control
the arrival rate to limit the average delay. It was shown in [20]
that for fixed rate transmission, the average delay is infinite
when A = D holds. Hence, we need to operate the queue in
the region D > A to achieve a tolerable delay. Now, taking
the above considerations into account, we propose two link
selection protocols. Analytical expressions for A and D for
finite and infinite buffer sizes are presented in Section IV, where
we study the end–to–end delay for the system.

C. Link Selection Protocols
For the development of the proposed link selection protocols,

we assume the relay is equipped with a buffer of finite size.
Depending on whether the reliability of the CSI estimates ρAB ,
AB ∈ {SR,RD}, is known or not, we formulate two link
selection protocols. Protocol 1 depends on the instantaneous
outdated SNR only, whereas Protocol 2 considers both the
instantaneous outdated SNR and the reliability of the estimates.

1) Protocol 1: For M–ary phase shift keying (PSK), M–
ary quadrature amplitude modulation, M–ary frequency shift
keying, and high values of SNR, the symbol error rate (SER)
of the A→ B link can be expressed as [24]

PB(e) = EγAB{CQ(
√
ηγAB)}, (3)

3Allowing the relay to forward erroneous packets is delay efficient and is
not uncommon in the literature. For conventional DF relay networks, it was
shown in [22], [23] that with intelligent combining at the destination and/or
link adaptation, full diversity can still be achieved even if the relays forward
erroneous packets. Note that it is also possible that the relay appends packets
to the queue only if the decoding is successful. However, this assumption will
completely change the link selection procedure and delay analysis and is not
considered here.

4We note that the FIFO mode is appropriate if the packets do not have
individual delay requirements. If the packets do have individual delay require-
ments, packets with more stringent delay requirements can be moved to the
head of the queue to decrease their end–to–end delay. This does not affect the
error rate, delay, and throughput averaged over all packets, i.e., the analyses
presented in Sections III–V are still valid.
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TABLE I
LINK SELECTION PROTOCOLS.

Case Buffer status Link quality (Protocol 1) Link quality (Protocol 2) Selected link
1 Empty γ̂SR < βγ̂RD γ̂SR < l1 for Case a None

γ̂RD ≥ l2 for Case b
2 Not empty γ̂SR < βγ̂RD γ̂SR < l1 for Case a R→ D

γ̂RD ≥ l2 for Case b
3 full γ̂SR ≥ βγ̂RD γ̂SR ≥ l1 for Case a None

γ̂RD < l2 for Case b
4 Not full γ̂SR ≥ βγ̂RD γ̂SR ≥ l1 for Case a S → R

γ̂RD < l2 for Case b

where C and η are modulation dependent parameters. As
Q(
√
ηγAB) monotonically decreases with increasing γAB , ac-

tivating the link with the highest γAB minimizes the instan-
taneous error rate. However, due to buffer stability issues, we
cannot perform link selection based on instantaneous CSI only.
Instead, we select the S → R link when

γSR ≥ βγRD, (4)

otherwise, the R → D link is selected. Parameter β ∈ R+ in
(4) can be adjusted to balance the selection of both links to
ensure buffer stability. Furthermore, by tuning β, we can also
guarantee certain average delay and throughput constraints as
will be discussed in Section VI. However, in practice, perfect
CSI may not be available, and we have to rely on outdated CSI
for link selection. Hence, for outdated CSI, the S → R link is
selected when

γ̂SR > βγ̂RD, (5)

otherwise, the R→ D link is selected. Furthermore, the buffer
may be either empty or full at times. If an empty (full) buffer
is encountered and the R → D (S → R) link is selected, no
transmission takes place and a silent time slot results. Here,
unlike the protocol in [20], we do not force the source or the
relay to transmit during the silent time slots because in this
case, transmission would take place over the weaker link and
consequently, the error rate performance would degrade. We
summarize the proposed protocol in Table I.

2) Protocol 2: Now, we develop a link selection policy that
takes into account the reliabilities of the CSI in both links,
i.e., ρSR and ρRD. In particular, we develop a link selection
policy based on the error rates in both links conditioned on the
outdated CSI. The following Proposition provides an expression
for the conditional error rate.

Proposition 1: The error rate of the A → B link condi-
tioned on γ̂AB can be approximated as

PB(e|γ̂AB) ≈ 1

µAB
e
− γ̂ABρ

2
AB

γ̄AB(1−ρ2
AB

) , (6)

where µAB =
2

1−
√

γ̄ABη(1−ρ2
AB)

2+γ̄ABη(1−ρ2
AB)

.

Proof: Please refer to the Appendix A.

Now, we are ready to introduce the link selection criterion.
Again using parameter β, we select the S → R link if

PR(e|γ̂SR) is smaller than PD(e|βγ̂RD), i.e.,

1

µSR
e
− γ̂SRρ

2
SR

γ̄SR(1−ρ2
SR

) ≤ 1

µRD
e
− βγ̂RDρ

2
RD

γ̄RD(1−ρ2
RD

) , (7)

otherwise the R → D link is selected. Note that in (7), we
use β in such a way that the decision depends on a scaled
version of γ̂RD, similar to Protocol 1. The appropriate choice
of β will be discussed in Section VI. Here, β = 1 means
that the link is selected based on the ‘actual’ conditional error
rates. However, as argued for Protocol 1, we choose the value
of β such that buffer stability is maintained, and delay and/or
throughput constraints are satisfied. Even though (4) and (7) can
be identical for some special cases, as will be shown below, in
most cases different values of β may be required for the two
protocols to observe a target end–to–end delay or throughput.

After some manipulations from (7), we obtain the criterion
for selecting the S → R link as

γ̂SRρ
2
SR

γ̄SR(1− ρ2
SR)

+ log(µSR) ≥ βγ̂RDρ
2
RD

γ̄RD(1− ρ2
RD)

+ log(µRD).

(8)
We study (8) for the following two special cases: Case a)
µSR ≤ µRD and Case b) µSR > µRD. At high SNR, we
can further simplify the cases to: Case a) γ̄SR(1 − ρ2

SR) ≤
γ̄RD(1− ρ2

RD) and Case b) γ̄SR(1− ρ2
SR) > γ̄RD(1− ρ2

RD).
After some basic modifications, we summarize the condition
for selecting the S → R link as:
Case a)

γ̂SR ≥
γ̄SR(1− ρ2

SR)

ρ2
SR

(
βγ̂RDρ

2
RD

γ̄RD(1− ρ2
RD)

+ log

(
µRD
µSR

))
, l1,

(9)

Case b)

γ̂RD <
γ̄RD(1− ρ2

RD)

βρ2
RD

(
γ̂SRρ

2
SR

γ̄SR(1− ρ2
SR)

+ log

(
µSR
µRD

))
, l2,

(10)

otherwise the R → D link is selected, cf. Table I where
Protocol 2 is summarized.

Remark 1: If the links have the same average SNR and the
same reliabilities of the CSI estimates (symmetric links), i.e.,
γ̄SR = γ̄RD and ρSR = ρRD, we observe from (8) that the
selection rule simplifies to

γ̂SR > βγ̂RD, (11)

which is identical to Protocol 1 where only instantaneous
outdated CSI was considered for selection. Note that (11) also
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holds when {ρSR, ρRD} → 0 and the links have the same
average SNR.

Remark 2: When the reliability of the CSI estimates is high,
i.e., {ρSR, ρRD} → 1, the selection rule in (8) simplifies to (11)
as well. In this case, the selection rule depends on instantaneous
CSI only.

Remark 3: Note that β can be negative for Protocol 2 unlike
for protocol 1. When the reliabilities of the CSI estimates are
poor, {ρSR, ρRD} → 0, and γ̄SR < γ̄RD (cf. Case a, (9))
holds, a negative β is required to balance the selection of the
links. On the other hand, β ∈ R+ always holds for Case b in
Protocol 2.

Remark 4: For both protocols, we can observe from (5) and
(7)/(8) that an increase in β also increases the probability of
selecting the R→ D link over the S → R link.

Remark 5: Note that when β = 1, the rule in (7) of Protocol
2 only ensures that the link with the minimum error rate is
selected at any time slot. β = 1 does not guarantee that the
end–to–end error rate will be minimized, unless the links are
symmetric. The dependence of the error rate on β will be
discussed in detail in Sections VI and VII. For independent
and non–identically distributed (i.n.d.) fading with dissimilar
correlation coefficients, the value of β required for Protocol 2
to achieve a target delay or throughput may be different from
that for Protocol 1. In this work, we compare the performance
of the two protocols for a fixed delay or throughput, see Section
VII. We note that Protocol 2 may not always yield a lower error
rate compared to Protocol 1 over the feasible range of β.

Remark 6: From Table I, we observe that the proposed
protocols do not allow for transmission during silent time slots,
which occur if the buffer is full (empty) and the S → R
(R → D) link is selected for transmission, such that trans-
mission over a poor link can be avoided. On the other hand,
silent time slots degrade the throughput and the delay, as the
system is losing possible transmission opportunities. Hence,
under certain conditions, it may be beneficial to modify the
proposed protocols such that S (R) transmits if the buffer is
empty (full) when the S → R (R → D) link SNR is larger
than some pre–defined threshold. In Section VII, we discuss
this modification of the proposed protocols and simulate its
performance.

III. ERROR RATE ANALYSIS

In this section, we evaluate the end–to–end symbol error rate
(SER) of both proposed protocols. In our model, a symbol is
received in error at D if a) the S → R link causes an error
and the R → D link is error free, b) R receives the symbol
correctly but the R→ D link causes an error, and c) both links
cause errors but the errors do not cancel each other. Thus, the
end–to–end error rate can be formulated as

P̃ (e) ≤ PR(e)(1−PD(e)) + PD(e)(1− PR(e)) +PR(e)PD(e)

≈ PR(e) + PD(e) , P (e), (12)

where PR(e) and PD(e) denote the SER of the S → R and
R → D links, respectively. Here, P (e) is an upper bound
because the case where the errors in both links cancel is not

taken into account, and (12) is a tight approximation5 for high
SNR. Note that silent time slots do not contribute to the error
rate, which is similar to the DF relaying scheme in [25]. In
the following, we derive exact and asymptotic expressions for
P (e) in (12) for both considered protocols.

A. Protocol 1
The end–to–end error rate for Protocol 1 is provided in the

following proposition.
Proposition 2: For Protocol 1, the end–to–end error rate

P (e) is given by (13) at the top of next page. For γ̄SR = aγ̄,
γ̄RD = bγ̄, γ̄ → ∞, where a , PSσ

2
SR and b , PRσ

2
RD, we

obtain the following asymptotic expression for P (e)

P (e)
.
=

{
3C
4η2

(a+bβ)(b+aβ)
a2b2βγ̄2 , if ρSR = ρRD = 1

ASR
γ̄ + ARD

γ̄ , if ρSR < 1 or ρRD < 1
(14)

where ASR

,
C(a+ bβ)(1− ρ2

SR)

2aη(bβ + a(1− ρ2
SR))

, ARD ,
C(a+ bβ)(1− ρ2

RD)

2bη(a+ bβ(1− ρ2
RD))

.

(15)

Proof: Please refer to the Appendix B.
From the asymptotic expression for P (e) in (14), we can

obtain the diversity and coding gains, which are provided in
the following corollary.
Corollary 1: The diversity gain Gd is given by

Gd =

{
2, if ρSR = ρRD = 1
1, if ρSR < 1 or ρRD < 1

(16)

and the coding gain Gc is given by

Gc =

{ (
3C
4η2

(a+bβ)(b+aβ)
a2b2β

)−1/2

, if ρSR = ρRD = 1

(ASR +ARD)−1, if ρSR < 1 or ρRD < 1
(17)

Proof: The expressions for Gd and Gc can be easily
obtained by expressing P (e) in (14) in the form of (Gcγ̄)−Gd .

Hence, we observe that for perfect CSI, P (e) decays at
the rate of γ̄−2, i.e., buffer–aided relaying with link selection
achieves a diversity gain of two6 (which is the maximum
possible diversity gain as there are only two flat–fading links to
choose from), whereas for outdated CSI, only a diversity gain of
one is observed. This is because in the latter case the probability
of selecting the worst link becomes non–negligible which leads
to a diversity gain loss. Note that conventional half–duplex DF
relaying without link selection also achieves a diversity gain of
one [2]. However, it will be shown in Section VII that buffer–
aided relaying with adaptive link selection achieves a higher
coding gain compared to conventional DF relaying, even if the
CSI is outdated.

B. Protocol 2
If the reliability of the CSI estimates is known, we can exploit

this information in Protocol 2. As outlined in Section II-C2, we
5The term PR(e)PD(e) decays faster with increasing SNR than PR(e) and

PD(e), respectively.
6In terms of outage probability, a diversity gain of two was also observed

in [8] for fixed rate transmission.
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P (e) = C
γ̄SR

(
1−

√
γ̄SRη

2+γ̄SRη

)
− βγ̄RD

√
γ̄SRη

2+γ̄SRη
+ βγ̄RD

(
1 + 2

γ̄SRη
+

2ρ2
SR

γ̄SRη(1−ρ2
SR)+βγ̄RDη

)− 1
2

2γ̄SR

+ C
βγ̄RD

(
1−

√
γ̄RDη

2+γ̄RDη

)
− γ̄SR

√
γ̄RDη

2+γ̄RDη
+ γ̄SR

(
1 + 2

γ̄RDη
+

2βρ2
RD

γ̄SRη+βγ̄RDη(1−ρ2
RD)

)− 1
2

2βγ̄RD
(13)

P (e) =



C(1−ρ2
SR)(βρ2

RD(1−ρ2
SR)+ρ2

SR(1−ρ2
RD))

µSR(βρ2
RD+ρ2

SR(1−ρ2
RD)))

+ C

1−ρ2RD
µRD

−

(
µRD
µSR

)−1/ρ2SRρ2SR(1−ρ2RD)

µSR(ρ2
SR

+β(1−ρ2
SR

)ρ2
RD

)

1−

(
µRD
µSR

)1−1/ρ2
SRρ2

SR
(1−ρ2

RD
)

βρ2
RD

+ρ2
SR

(1−(1+β)ρ2
RD

)

, Case a

C

1−ρ2SR
µSR

−
β

(
µSR
µRD

)(−1+ρ2RD)/βρ2RDρ2RD(1−ρ2SR)

µSR(ρ2
SR

+(β−ρ2
SR

)ρ2
RD

)

1−
β

(
µSR
µRD

)(−1+ρ2
RD

)/βρ2
RDρ2

RD
(1−ρ2

SR
)

βρ2
RD

+ρ2
SR

(1−(1+β)ρ2
RD

)

+
C
(
µSR
µRD

)−1/β
(1−ρ2

RD)(βρ2
RD+ρ2

SR(1−(1+β)ρ2
RD))

µRD(βρ2
RD+ρ2

SR(1−βρ2
RD))

, Case b

(18)

study two possible cases: Case a) γ̄SR(1 − ρ2
SR) ≤ γ̄RD(1 −

ρ2
RD) and Case b) γ̄SR(1−ρ2

SR) > γ̄RD(1−ρ2
RD), and derive

the error rate expressions for each case separately7

Proposition 3: For Protocol 2, the end–to–end error rate
P (e) is given by (18). For γ̄SR = aγ̄, γ̄RD = bγ̄, γ̄ →∞, we
obtain an asymptotic expression for P (e) in (18) as

P (e)
.
=



3C
4η2

(a+bβ)(b+aβ)
a2b2βγ̄2 , if ρSR = ρRD = 1

A1,SR

γ̄ +
A1,RD

γ̄ , if ρSR < 1 , ρRD < 1, Case a
A1,RD

γ̄ , if ρSR → 1 , ρRD < 1, Case a
A2,SR

γ̄ +
A2,RD

γ̄ , if ρSR < 1 , ρRD < 1, Case b
A2,SR

γ̄ , if ρSR < 1 , ρRD → 1, Case b

(19)

where A1,SR

,
C(1− ρ2

SR)(βρ2
RD + ρ2

SR(1− (1 + β)ρ2
RD))

2bη(1− ρ2
RD)(βρ2

RD + ρ2
SR(1− ρ2

RD))
, (20)

A1,RD , C

1
2ηb −

ρ2
SR

(
b(1−ρ2RD)

a(1−ρ2
SR

)

)−1/ρ2SR

2ηa(ρ2
SR+β(1−ρ2

SR)ρ2
RD)

1−
ρ2
SR(1−ρ2

RD)

(
b(1−ρ2

RD
)

a(1−ρ2
SR

)

)1−1/ρ2
SR

βρ2
RD+ρ2

SR(1−(1+β)ρ2
RD)

, (21)

A2,SR , C

1
2aη −

βρ2
RD

(
a(1−ρ2SR)

b(1−ρ2
RD

)

)(−1+ρ2RD)/βρ2RD

2aη(ρ2
SR+(β−ρ2

SR)ρ2
RD)

1−
β(1−ρ2

SR)ρ2
RD

(
a(1−ρ2

SR
)

b(1−ρ2
RD

)

)(−1+ρ2
RD

)/βρ2
RD

βρ2
RD+ρ2

SR(1−(1+β)ρ2
RD)

, (22)

and A2,RD ,

C

(
a(1−ρ2

SR)

b(1−ρ2
RD)

)−1/β

(βρ2
RD + ρ2

SR(1− (1 + β)ρ2
RD))

2ηb(βρ2
RD + ρ2

SR(1− βρ2
RD))

. (23)

Proof: Please refer to the Appendix C.
The error rate expressions for both Cases a and b are in

closed form and can be readily evaluated. Following Corollary
1, we can easily obtain the diversity and coding gains for both

7From (9), we observe that the log term is positive (negative) for Case 1
(Case 2). Hence, the integration regions for γ̂SR and γ̂RD are quite different
for the two cases.

cases. We note that for both cases in Protocol 2, perfect CSI
yields the same error rate as Protocol 1, as expected, and a
diversity gain of two. Note that for perfect CSI, the conditional
error rate of the links is simply given by a Q–function, as
shown in (3), and, the rule in (4) holds.

IV. DELAY ANALYSIS

In this section, we derive a closed–form expression for the
average delay of the considered buffer–aided relaying scheme,
which is valid for both protocols. In Fig. 2, we show the state
transition diagram for the queue operation at the relay for a
buffer of size L. PRD and PSR denote the probabilities of
selecting the R → D and the S → R links, respectively, and
PRD = 1−PSR holds. For convenience, we assume S0 = R0 =
1 in this section. If the buffer is empty (full), the source (relay)
does not transmit, unlike the operation in [20]. The arrival and
departure rates are given by A = (1 − PRD)(1 − Pfull) and
D = PRD(1 − Pempty), respectively, where Pfull and Pempty

denote the probabilities of full and empty buffer, respectively.
The expressions for PSR, PRD, Pfull, and Pempty will be
provided later.

In [8] and [20], the average delay of link selection schemes
for fixed–rate transmission was defined as the average time
it takes for a symbol to be received at the destination, once
the symbol was transmitted by the source. For the proposed
protocols, we may observe silent time slots depending on the
status of the buffer. The silent time slots, when no successful
transmission occurs, also contribute to the end–to–end delay.
These events account for the cases when the R → D link is
chosen while the buffer is empty, or the S → R link is chosen
when the buffer is full, so no successful transmission takes
place. In this work, we consider for the delay the time it takes
for a symbol that awaits transmission at the source until it is
received at the destination. Hence, we take into account both
the queueing delay and the delay due to silent time slots to
compute the average system delay T .

A. Queueing Delay

In the following proposition, we derive the queueing delay
TQ for the considered buffer operation.
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Fig. 2. State transition diagram for queue operation.

Proposition 4: For the considered protocols, the average
queueing delay for a buffer of size L is given by

TQ =
L(1− PRD)L(2PRD − 1) + PRD((1− PRD)L − PLRD)

PRD(2PRD − 1)((1− PRD)L − PLRD)
.

(24)
and for L→∞,

TQ =
1

2PRD − 1
, (25)

where PRD is the probability of selecting the R→ D link.
Proof: Following the Appendix of [20], we can easily

derive the steady state probability of the buffer being in state
Gi, denoted by PGi , i ∈ {0, . . . , L}, cf. Fig. 2. The average
queueing delay TQ of the queue is given by

TQ =
E{Q}
A

, (26)

where the average queue size, E{Q} =
∑
i iPGi , after some

manipulations, is obtained as E{Q}

=
1− PRD
2PRD − 1

PL+1
RD − (1− PRD)L(L(2PRD − 1) + PRD)

PL+1
RD − (1− PRD)L+1

,

(27)
and A = (1−PRD)(1−Pfull), where Pfull = PGL denotes the
probability of observing a full buffer and is given by

Pfull =
(2PRD − 1)(1− PRD)L

PL+1
RD − (1− PRD)L+1

. (28)

We use Pfull to calculate A, which we substitute, along with
E{Q} from (27), into (26) to obtain the expression shown in
(24). For L→∞, Pfull → 0 holds and we obtain the average
delay as shown in (25).

Remark 7: From (25), we observe that as PRD → 1 (i.e., the
departure rate is very high), TQ approaches the minimum value
of one, i.e., on average a packet experiences a queueing delay
of one time slot only. On the other hand, when PRD → 1

2

+

(i.e., when PRD → PSR), a large queueing delay results. This
is because departure rate and arrival rate are nearly equal which
causes a packet to be held in the buffer for a large number of
time slots. In general, for infinite buffer size, we need PRD ≥
PSR to ensure that the buffer is stable8.

B. Silent Time Slots

Note that for finite buffer size, the probability that the buffer
is full or empty is not zero. According to our protocol, we

8For S0 6= R0, we require R0PRD > S0PSR to ensure that the buffer is
stable. Furthermore, the arrival and departure rates are given by A = S0(1−
PRD)(1−Pfull) and D = R0PRD(1−Pempty), respectively, and the state
probabilities PGi depend on S0 and R0 as well.

do not force the source (relay) to transmit if the buffer is
empty (full), which in turn results in silent time slots, i.e., no
transmission takes place. Hence, the number of silent time slots
increases as Pempty and Pfull grow. There are two cases when
a silent time slot is observed: Case 1) the buffer is full and
the S → R link is selected, and Case 2) the buffer is empty
and the R → D link is selected. Note that Case 1 contributes
to the queueing delay, however Case 2 does not. Hence, the
delay incurred for Case 2 has to be computed separately. In
the following proposition, we provide an expression for the
average delay due to observing silent time slots TS for Case 2.

Proposition 5: For the considered protocols, the average
delay due to observing silent time slots for Case 2, i.e., the
buffer is empty and the R→ D link is selected, is given by

TS =
(2PRD − 1)PLRD

(1− PRD)(PLRD − (1− PRD)L)
(29)

and for L→∞,
TS =

2PRD − 1

1− PRD
. (30)

Proof: For the considered queue operation, Pempty is given
by

Pempty = PG0 =
PLRD(2PRD − 1)

PL+1
RD − (1− PRD)L+1

, (31)

and for L→∞, we obtain
Pempty = 2− 1

PRD
. (32)

For PRD → 1
2

+ and L → ∞, we note that Pempty → 0.
This is expected as both the links are selected with equal
probability and the buffer almost always contains packets in
steady state. On the other hand, if PRD → 1−, the buffer
would be empty most of the time as the departure rate is
very high, which in turn results in a large number of unused
time slots. We consider a sequence of the buffer statuses
{empty, empty, . . . , empty,not empty}, where we want to
calculate the average number of time slots the buffer remains
empty before R receives a packet. Here, the number of time
slots the buffer remains empty before S transmits follows a
geometric distribution with mean value Pempty/(1 − Pempty)
[26].

Plugging in the values for PG0
= Pempty from (31), we

obtain the expression for TS in (29). For L → ∞, TS in (30)
is easily obtained after plugging in Pempty from (32).

Remark 8: For PRD → 1
2

+, we note that TS → 0, as
expected. On the other hand, for PRD > PSR, TS increases
as the probability of observing silent time slots increases. Note
that when L→∞, silent time slots only occur when the buffer
is empty, as Pfull = 0 for any PRD > 1

2 .
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Corollary 2: For a buffer of size L, the average system
delay T in time slots9 is given by T = TQ + TS

=
L(1− PRD)L(2PRD − 1) + PRD((1− PRD)L − PLRD)

PRD(2PRD − 1)((1− PRD)L − PLRD)

+
(2PRD − 1)PLRD

(1− PRD)(PLRD − (1− PRD)L)
(33)

and for L→∞, T = TQ + TS

=
1

2PRD − 1
+

2PRD − 1

1− PRD
=

2− 5PRD + 4P 2
RD

(1− PRD)(2PRD − 1)
. (34)

Proof: By combining the expressions for TQ and TS from
Propositions 4 and 5, we can easily obtain T as shown in (33)
and (34).

To calculate the delay in (33) and (34), we obtain appro-
priate values for PRD according to the chosen protocol in the
following corollary.

Corollary 3: For Protocol 1, PRD is given by

PRD =
βγ̄RD

(γ̄SR + βγ̄RD)
, (35)

and for Protocol 2, PRD is given by

PRD =


1−

(
µRD
µSR

)1−1/ρ2SRρ2
SR(1−ρ2

RD)

βρ2
RD+ρ2

SR(1−(1+β)ρ2
RD)

, Case a

β
(
µSR
µRD

)(−1+ρ2RD)/βρ2RD (1−ρ2
SR)ρ2

RD

βρ2
RD+ρ2

SR(1−(1+β)ρ2
RD)

, Case b

(36)

Proof: For Protocol 1, we calculate PRD = 1−PSR in (35)
by using (74). For protocol 2, Case a, PRD = Pr(γ̂SR < l1) is
obtained from (82). Following a similar approach as for Case
a (cf. Appendix C), the expression for PRD = Pr(γ̂RD > l2)
shown in (36) can be obtained for Case b.

Combining (33) and (34) with (35) and (36), we obtain
closed–form expressions for the average delays for both finite
and infinite buffer sizes for both protocols. For example, for
Protocol 1, we obtain a simple expression for the average delay
for infinite buffer size as

T = −2γ̄2
SR − βγ̄SRγ̄RD + β2γ̄2

RD

γ̄2
SR − βγ̄SRγ̄RD

, (37)

where we use (34) and PRD from (35).
In Section VI, we discuss the choice of β and how delay

depends on PRD and β for both protocols and also focus on
optimization of the error rate for a target delay constraint.

Remark 9: As PSR and PRD are not affected by outdated
CSI10 in Protocol 1, the average delay in (37) holds for all
values of ρSR and ρRD. However, the delay for Protocol 2
depends on ρAB , AB ∈ {SR,RD}, which stems from the fact
that the link selection probabilities PSR = 1− PRD and PRD
are functions of ρAB , cf. (36).

Remark 10: We note that reordering the queue at the buffer
to give priority to individual packets does not affect the average
delay. In particular, if the queue is reordered, the total number
of packets remaining in the queue does not change and the

9Note that we assume that the queueing at the buffer and silent time slots
are the dominant sources of packet delay for the considered protocol, and other
forms of delay such as transmission delay are negligible.

10Recall that the actual and the outdated CSI follow the same distribution.

average queue size remains unchanged. As the arrival rate is
also unaffected by this, the average delay expressions presented
in this section are still valid, but the delivery of individual
packets will be faster or slower due to the reordering, of course.

V. THROUGHPUT ANALYSIS

In this section, we investigate the achievable throughput for
the proposed link selection protocols. It is obvious that we
achieve the maximum throughput when silent time slots are
avoided. This can be achieved when both links are selected with
equal probability. We denote this throughput as τ0. However,
in practice, we may want to choose β such that the R → D
link is selected more often than the S → R link in order to
achieve a finite delay, which in turn results in some silent time
slots. These silent time slots constitute outage events11 which
lower the system throughout. The throughput in the presence
of silent time slots is denoted as τ and is given by

τ = τ0(1− Fsilent), (38)

where Fsilent denotes the probability of observing a silent
time lot. For finite buffer size, we have Fsilent =
PemptyPRD + PfullPSR, whereas for infinite buffer size,
Fsilent = PemptyPRD. Recall from Section IV-B that A =
PSR(1−Pfull)R0 and D = PRD(1−Pempty)R0. The maximum
throughput12 τ0 = R0/2 can be achieved for infinite buffer size
if there are no silent time slots and both links are selected with
equal probability, i.e., PRD = PSR. Below, we calculate the
throughput for the two proposed protocols for both finite and
infinite buffer sizes.

For a buffer of finite size, we obtain from (28), (31), (38)

τ = τ0(1− PemptyPRD − PfullPSR)

= τ0
2(1− PRD)PRD(PLRD − (1− PRD)L)

(1− PRD)LPRD + PL+1
RD − (1− PRD)L

(39)

where we use PSR = 1−PRD. Note that τ = A holds as well
and (39) can also be obtained from

τ = R0(1− PRD)(1− Pfull)

= 2τ0(1− PRD)

(
1− (2PRD − 1)(1− PRD)L

PL+1
RD − (1− PRD)L+1

)
. (40)

For a buffer of infinite size, we obtain from (32), (38), (39),

τ = τ0(1−PemptyPRD) = 2τ0(1−PRD), when PRD ≥
1

2
,

(41)
or, τ = A = R0PSR = 2τ0(1 − PRD), as Pfull = 0 when
L→∞.

Remark 11: The maximum achievable throughput for finite
buffer size is less than that for infinite buffer size. We observe
that for PRD = 1/2, we have τ = τ0 (Pempty = 0 holds when
PRD = 1/2) in (41), whereas PemptyPRD + PfullPSR in (39)
is never zero for any value of PRD. This also relates to the
fact that we strictly need PRD ≥ 1/2 for infinite buffer size to
ensure stability, whereas finite size buffers are never unstable.

11Here, an outage event corresponds to no transmission, i.e., an unused time
slot.

12We note that for S0 6= R0, the maximum throughput is given by τ0 =
S0R0/(S0 +R0).
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τ = τ0

2βγ̄RD

(
1− βγ̄RD

γ̄SR+βγ̄RD

)((
βγ̄RD

γ̄SR+βγ̄RD

)L
−
(

1− βγ̄RD
γ̄SR+βγ̄RD

)L)
(γ̄SR + βγ̄RD)

((
βγ̄RD

γ̄SR+βγ̄RD

)L+1

−
(

1− βγ̄RD
γ̄SR+βγ̄RD

)L
+

βγ̄RD
(

1− βγ̄RD
γ̄SR+βγ̄RD

)L
γ̄SR+βγ̄RD

) , (42)

From (41), we observe that throughput monotonically de-
creases as PRD increases from 1/2 to 1. From Remark 4, we
can intuitively observe that throughput decreases if β increases
in the region PRD > 1

2 . Below, we discuss the achievable
throughput for the two proposed protocols and also compute
the decision threshold β to achieve maximum throughput τ0.
For Protocol 2 and finite buffer size, we do not show the final
closed–form throughput for brevity, but the expression can be
easily obtained using (39) and substituting PRD. We provide
the expressions for infinite buffer sizes for both cases.

A. Protocol 1
In the following corollary, we obtain end–to–end average

throughput for Protocol 1.
Corollary 4: For Protocol 1, throughput τ for buffer size

L is given by (42) and for L→∞

τ = τ0
2γ̄SR

γ̄SR + βγ̄RD
. (43)

Proof: Using (39), (41), and PRD from (35), we obtain
τ as shown in (42) and (43). We need β ≥ γ̄SR/γ̄RD in (43)
to ensure buffer stability and β = γ̄SR/γ̄RD yields maximum
throughput τ0. For finite buffer size, the value of β, which
minimizes PemptyPRD + PfullPSR, also maximizes τ in (42)
and is obtained numerically.

B. Protocol 2
For Protocol 2, the end–to–end throughput for infinite buffer

size is provided in the following corollary.
Corollary 5: For Protocol 2, throughput τ for L→∞ and

PRD ≥ 1/2 is given by τ =
2τ0

((
µRD
µSR

)1−1/ρ2SRρ2
SR(1−ρ2

RD)

βρ2
RD+ρ2

SR(1−(1+β)ρ2
RD)

)
,Case a

2τ0

(
1−

β
(
µSR
µRD

)(−1+ρ2RD)/βρ2RD (1−ρ2
SR)ρ2

RD

βρ2
RD+ρ2

SR(1−(1+β)ρ2
RD)

)
,Case b

(44)

Proof: Combining (36) and (41), we obtain the expressions
of τ for both cases, as shown in (44). From (36), we solve
PRD = 1/2 for β for Case a and obtain β = l3 which yields
τ = τ0, where l3 is given by

l3 ,

(
2
(
µRD
µSR

)1−1/ρ2
SR

− 1

)
ρ2
SR(1− ρ2

RD)

ρ2
RD(1− ρ2

SR)
. (45)

Here, β ≥ l3 ensures a stable buffer operation. For Case b, PRD
in (36) is non–linear in β. Hence, β is obtained numerically
for PRD ≥ 1/2.

Remark 12: From (42)–(44), we observe that for Protocol
1, the throughput does not depend on the reliability of the CSI
estimates, ρAB , AB ∈ {SR,RD}. However, for Protocol 2, it
does.

As a special case, we obtain the achievable throughput for
perfect CSI and infinite buffer size by replacing ρAB = 1 in
(44)

τ = τ0
2γ̄SR

γ̄SR + βγ̄RD
. (46)

As expected, the throughput for perfect CSI is identical to (43),
i.e., the throughput of Protocol 1. This is because both actual
and outdated CSI follow the same distribution.

VI. TRADE–OFF AND CHOICES FOR β

The parameter β has to be properly chosen to maintain
buffer stability and to obtain a trade–off among three relevant
performance metrics: error rate, delay, and throughput. In this
section, we study the dependence of the error rate, delay, and
throughput on β in detail 13. First, we discuss the convexity
and/or monotonicity of the performance metrics w.r.t. β, which
will be useful later when we optimize the error rate by tuning
β under delay and throughput constraints.

A. SER vs. β

For both protocols, P (e) is in general not convex in β,
except for ρSR = ρRD = 1 and high SNR14. The value of
β which yields minimum SER is not necessarily the same for
both protocols. Below, we discuss special cases when β = 1
results in the minimum SER.

Corollary 6: For perfect CSI, i.e., when ρAB = 1, β = 1
results in minimum SER at high SNR.

Proof: For γ̄SR = aγ̄, γ̄RD = bγ̄, γ̄ → ∞, where a and
b are positive constants, the asymptotic expression for P (e)
when ρAB = 1 is provided in (14). Taking the first derivative
of P (e) w.r.t. β yields

dP (e)

dβ
=

3C
(
β2 − 1

)
4abβ2γ̄2η2

. (47)

Solving dP (e)
dβ = 0, we obtain β = {1,−1}. As β = −1 is not

feasible, β = 1 holds.
Corollary 7: For symmetric links, i.e., ρSR = ρRD = ρ

and γ̄SR = γ̄RD, β = 1 results in minimum SER for both
protocols.

Proof: For γ̄SR = γ̄RD = γ̄, and ρSR = ρRD = ρ, i.e.,
µSR = µRD = µ, the expressions for P (e) in (18) are identical
for both cases. Taking the first derivative of P (e) of Case a in
(18) w.r.t. β yields

dP (e)

dβ
=

(β2 − 1)ρ4(2− ρ2)(1− ρ2)2

µ(1 + β − ρ2)2(−1 + β(−1 + ρ2))2
. (48)

13The choice of β is also affected by the transmission rates S0 and R0, if
they are unequal. As mentioned in Section II, in this paper, we assume identical
transmission rates and focus on how the optimal β is affected by the channel
fading statistics.

14From (14), for ρSR = ρRD = 1 we obtain Pe = 3C
4η2γ̄2 (a

2+b2

ab
+ 1
βab

+
β
ab

), where the sum inside the parenthesis is convex in β ∈ R+.
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Solving dP (e)
dβ = 0, we obtain β = {1,−1}. As β = −1 is

not feasible, β = 1 holds. Using (13), similar results can be
obtained for Protocol 1.

We can intuitively justify Corollary 7 as follows: The link
selection criterion for symmetric links is given by (11). β = 1
means that the link will be selected based on the instantaneous
CSI only, i.e., the link is selected based on max(γ̂SR, γ̂RD).
Hence, given that the reliabilities of the CSI estimates of the
two links are identical, this rule implies that selecting the
strongest link in terms of the outdated instantaneous SNR is
optimal.

For other cases, we find the β yielding minimum SER for the
two protocols numerically. For a particular set of γ̄AB and ρAB ,
∀AB, the value of β which provides minimum SER can be
different for the two protocols. However, note that the value of
β, which achieves minimum SER, may not always be a feasible
choice because it may incur buffer instability and entail a large
delay and/or low throughput.

B. Delay vs. β

In practice, there may be a limit on the tolerable system
delay. Unless mentioned otherwise, we assume infinite buffer
size in this section and provide some insight on the delay
performance of the considered protocols. To ensure buffer
stability, we need to operate in the region PRD ≥ 1/2, which
shrinks the search space for the optimal β minimizing the
SER. However, from Section IV, we know that PRD = 1/2
introduces infinite delay, because both links are selected with
equal probability. Below, we examine the behaviour of the
average delay as a function of β in the region PRD > 1/2.
The following proposition holds for both protocols.

Proposition 6: For infinite buffer size, the delay T is
convex in PRD for PRD > 1/2. A minimum delay of
Tmin = 1 + 2

√
2 time slots can be observed when PRD = 1√

2
.

Proof: From (34), we obtain

dT

dPRD
=

2P 2
RD − 1

(2PRD − 1)2(1− PRD)2
, (49)

d2T

dP 2
RD

=
2

(1− PRD)3
+

8

(2PRD − 1)3
, (50)

where d2T
dP 2
RD
≥ 0, when PRD ≥ 1

2 . Hence, T is convex in
PRD, when the R → D link is selected more often than the
S → R link. Furthermore, solving for dT/dPRD = 0, we
obtain PRD = 1/

√
2 and this results in Tmin = 1 + 2

√
2.

Furthermore, to obtain a target delay T , we solve for PRD
in (34)

PRD = {PRD,1, PRD,2}

=

{
5 + 3T −

√
T 2 − 2T − 7

4(T + 2)
,

5 + 3T +
√
T 2 − 2T − 7

4(T + 2)

}
.

(51)

Note that PRD,1 ≤ 1/
√

2 ≤ PRD,2 holds and both values
of PRD are valid since both {PRD,1, PRD,2} ensure buffer
stability, i.e., they are larger than 1/2 because in (51)

lim
T→∞

5 + 3T −
√
T 2 − 2T − 7

4(T + 2)
=

1

2
(52)

holds.

Next, we study the delay as a function of β. It is difficult,
if not impossible, to analytically prove the convexity or quasi–
convexity of T ( cf. (33)) in β and obtain a closed–form solution
for β for any buffer size L. However for some special cases,
we can prove the convexity of the delay for the two protocols,
as discussed in the following propositions. We also calculate
the value of β which yields minimum delay. For Protocol 2,
we only show results for Case a because in Case b, PRD is
highly non–linear in β, and it is difficult to prove convexity of
the delay in β or solve for β analytically to achieve a target
delay.

Proposition 7: For infinite buffer size, delay T is convex
in β for β > γ̄SR/γ̄RD in Protocol 1 and for β > 2d−c

g in
Protocol 2 Case a, where {c, d, g} are positive constants and
defined as

c , ρ2
SR(1− ρ2

RD), d ,

(
µRD
µSR

)1− 1

ρ2
SR

ρ2
SR(1− ρ2

RD),

g , ρ2
RD(1− ρ2

SR). (53)

Furthermore, β = (1 +
√

2)ξ, where ξ , γ̄SR/γ̄RD ∈ R+ and
β = (2+

√
2)d−c
g results in a minimum delay of Tmin = 1+2

√
2

time slots for Protocol 1 and Protocol 2 Case a, respectively.

Proof: From (37), we obtain

T =
β

ξ
+

2ξ

−ξ + β
, (54)

where the r.h.s. of (54) is convex15 in β only if β > ξ. On the
other hand, PRD for Protocol 2 Case a is given by (36), which
can be simplified as

PRD = 1− d

c+ gβ
, (55)

where {c, d, g} are defined above. Now, delay T in (34) can
be expressed as

T =
c− d
d

+
gβ

2d
+

2d

−2d+ c+ gβ
, (56)

where, using a similar argument as for Protocol 1, the r.h.s. of
(56) is convex in β only if β > 2d−c

g . Furthermore, calculating
dT/dβ = 0 from (54) and (56), we obtain β∗ = (1 +

√
2)ξ

and β∗ = (2+
√

2)d−c
g for Protocol 1 and Protocol 2 Case a,

respectively, which satisfy the condition d2T/dβ2|β=β∗ > 0.
Plugging in β∗ into T , we obtain Tmin = 1 + 2

√
2 time slots.

Note that both β > ξ and β > 2d−c
g in Proposition 7

correspond to PRD > 1/2. Recall from Section II that PRD
monotonically increases with β. Exploiting Proposition 6, we
can calculate the value of β corresponding to PRD,1 and
PRD,2 to achieve a target delay T for both protocols by using
appropriate expressions of PRD as function of β (cf. Corollary
3 where PRD is shown as a function of β). We refer to them

15Note that r/(s+ x) is convex in x for r > 0 and x ∈ (−s,∞).
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as β1 and β2. For Protocol 1, we obtain β ={ ξ
2

(T+ 1+
√
−7− 2T + T 2)︸ ︷︷ ︸
β1

,
ξ

2
(T+1−

√
−7− 2T + T 2)︸ ︷︷ ︸
β2

}
,

(57)

where β1, β2 > ξ, as T >
√
−7− 2T + T 2. (58)

Similarly, for Protocol 2 Case a, we obtain β =

{
−c+ d+ d(T −

√
−3− 2T + T 2)

g︸ ︷︷ ︸
β1

,

−c+ d+ d(T +
√
−3− 2T + T 2)

g︸ ︷︷ ︸
β2

}
, (59)

where

β1, β2 >
2d− c
g

, as T >
√
−3− 2T + T 2. (60)

Remark 13: Both β1 and β2 in (58) and (60) ensure stable
buffer operation and β1 ≤ β∗ ≤ β2 holds. The intuitive reason
for having two solutions for the same delay is because as
PRD → 1

2

+, i.e., β → ξ+ for Protocol 1 or β → 2d−c
g for

Protocol 2 Case a (PRD → 1−, i.e., β � ξ (Protocol 1)
or β � 2d−c

g for Protocol 2 Case a, TQ increases and TS
decreases (and vice–versa). This inverse behaviour of the two
delay components with respect to β also explains why an aver-
age system delay below a certain value, i.e., Tmin = 1 + 2

√
2

in our case, is not possible.
Next, in the following Proposition, we focus on L = 1 as a

special of the finite buffer size.
Proposition 8: For L = 1, the delay is convex in β ∈ R+

for Protocol 1 and in β > d−c
g for Protocol 2 Case a. A

minimum delay of Tmin = 3 time slots is achieved when
PRD = 1

2 or β∗ = ξ (Protocol 1) and β∗ = 2d−c
g .

Proof: Substituting L = 1 in (33), we obtain

T =
1

PRD
+

PRD
1− PRD

=
β

ξ
+
ξ

β
+ 1, (61)

where PRD = β
ξ+β is used, cf. Corollary 3. Clearly, T is convex

in β ∈ R+. Furthermore, solving dT/dβ = 0, we obtain β =
{−ξ, ξ}. Discarding β = −ξ, we get d2T/dβ2|β=ξ = 2

ξ2 > 0.
Hence, β∗ = ξ or PRD = 1

2 yields the minimum T . After
plugging this value into (61), we obtain Tmin = 3. Similarly,
for Protocol 2 Case a, we obtain

T =
c

d
+
gβ

d
+

d

c− d+ gβ
, (62)

where T is convex in β if β > d−c
g . Following a similar ap-

proach as adopted for Protocol 1, we can show that β∗ = 2d−c
g

yields the minimum delay of Tmin = 3.
Remark 14: In views of Proposition 7 and 8, we conjecture

that the minimum achievable delay increases from three to 1 +
2
√

2, as the buffer size increases from one to ∞. We validate
this claim in Section VII.

For other values of L, we obtain β numerically to achieve a
target delay. As PRD is a non–linear function of β for Protocol
2 and Case b, cf. (36), it is difficult to obtain a closed–form
expression for β. We exploit the monotonicity of PRD in β, cf.
Remark 4, and we calculate β1 and β2 numerically for a target
delay T , by using (36) and (51), for Case b.

C. Throughput vs. β

From (41) in Section V, we observe throughput τ decreases
monotonically with PRD, as expected. Note that PRD = 1

2
yields the maximum throughput τ0, and as PRD → 1−,
τ approaches zero. Furthermore, considering Remark 4, we
conclude that τ monotonically decreases with β.

The following Corollaries provide some insight, regrading
the achievable throughput if the end–to–end delay is minimized.

Corollary 8: For infinite buffer size and T = Tmin =
1 + 2

√
2, the achievable throughput is τ = (2−

√
2)τ0.

Proof: We observed from Proposition 6 that PRD = 1/
√

2
yields the minimum delay. Plugging PRD = 1/

√
2 into τ =

τ0(2−2PRD) (cf. (41)), we obtain τ = (2−
√

2)τ0 = 0.5858τ0.

Corollary 9: For L = 1 and T = Tmin = 3, the achievable
throughput is τ = τ0/2.

Proof: We observed from Proposition 8 that PRD = 1/2
yields the minimum delay for L = 1. From (39), we obtain
τ = 2τ0(1 − PRD)PRD for L = 1. Plugging in PRD = 1/2,
we obtain τ = τ0/2.

The values of β corresponding to Corollaries 8 and 9, are
derived in Propositions 7 and 8 for Protocol 1 and Protocol
2 Case a, respectively. For Protocol 2 Case b, we calculate β
numerically, as indicated before.

Remark 15: From Corollary 9, we observe that for the
proposed protocols, the maximum achievable throughput for
L = 1 is half the value that can be obtained if a buffer of
infinite size is employed. In other words, as the buffer size
increases, we expect an increase in the throughput.

D. Optimization of SER

In practice, there may be constraints on the minimum achiev-
able throughput and the maximum end–to–end delay. Here, we
formulate an optimization problem for β and our objective is
to minimize the SER for a maximum allowable delay Tmax and
a minimum required throughput τmin, i.e.,

min
β

P (e) (63)

s.t.

{
T ≤ Tmax

τ ≥ τmin
,

We cannot adopt tools from convex optimization here, as
P (e) is not convex in β in general. However, we perform
a simple one–dimensional search over β within the range
specified by the delay and throughput constraints, and minimize
P (e) over this range. Let {β1, β2} yield delay T = Tmax,
where β2 > β1 holds, cf. (58), (60). We assume β = β3

results in τ = τmin, cf. (42)–(44) and β = β4 corresponds
to PRD = 1/2, i.e., τ = τ0. Then, we search in the interval
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Fig. 3. BER vs. SNR (γ̄) performance without delay constraints. P1 and P2
refers to Protocol 1 and Protocol 2, respectively.

max{β4, β1} ≤ β ≤ min{β2, β3}. Hence, we transform the
problem as

min
βl≤β≤βu

P (e), (64)

where βl , max{β4, β1} and βu , min{β2, β3}. If β3 < β1,
then the delay and throughput constraints cannot be simulta-
neously satisfied. This could happen when only a very small
delay can be afforded ({β1, β2} → β∗) while a very high
throughput is required (β3 → β4). For infinite buffer size
βl = β1 holds as β1 > β4 is valid. However, for finite buffer
size, we may have β1 < β4. Recall from Proposition 8 and
Corollary 9 that for L = 1, the value of β which yields
minimum delay also provides maximum throughput. In view
of the discussions above and Section V, we can obtain βl and
βu analytically for some cases (e.g., infinite buffer size and
Protocol 1 or Protocol 2 Case a), in other cases, we have to
obtain them numerically. In Section VII, we show an example
for the considered optimization problem.

VII. SIMULATION RESULTS

In this section, we illustrate the performance of the link se-
lection schemes for outdated and perfect CSI for the considered
three node network. Each node transmits a BPSK modulated
(C = 1, η = 2) symbol and the average delay is expressed
in time slots, unless otherwise stated. Note that, τ0 = 1/2
holds for the adopted modulation scheme. We assume equal
power allocation PS = PR = P . First, we study the BER
as a function of the transmit SNR γ̄ , P/N0 with/without
delay constraints and assume γ̄RD = γ̄ and infinite buffer
sizes, unless otherwise mentioned. Next, for delay constrained
transmission, we investigate the performance of a modified link
selection protocol, which aims to improve throughput and delay
by allowing threshold–based transmission during silent time
slots. Finally, we focus on the dependence of BER, delay, and
throughput on β, and constrained BER optimization.
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Fig. 4. BER vs. SNR (γ̄) performance with delay constraints.

A. BER vs. SNR

In Fig. 3, the BER vs. SNR (γ̄) is shown when link selection
is performed without any delay constraints, i.e., when PRD =
1/2 and maximum throughput τ0 is observed. We consider two
values of ξ = γ̄SR/γ̄RD ∈ {1, 2} in Fig. 3. Here, β is chosen
such that PRD = 1/2, cf. Section VI. A wide range of values
for {ρSR, ρRD} are considered. We also show the analytical
results along with simulation results to corroborate the claims
made in Section III. In Fig. 3, “approx.” and “asymptotic” refer
to (13) and (14) for Protocol 1 and (18) and (19) for Protocol
2. For perfect CSI, we observe a diversity gain of two, as
predicted in Section III. When the CSI is outdated, a loss in
diversity occurs, and all BER curves for ρSR, ρRD < 1 exhibit
a diversity gain of one at high SNR, similar to conventional
(conv.) DF relaying, where the relay receives and transmits
in consecutive time slots. A higher coding gain compared
to conventional DF relaying is observed for perfect CSI and
outdated CSI, especially when the actual and outdated CSI are
strongly correlated. We compare Protocol 1 with Protocol 2 for
the case when the ρSR and ρRD are dissimilar and differ by a
large margin, e.g., ρSR = 0.3, ρRD = 0.9. Protocol 2 exploits
this dissimilarity by incorporating it into the link selection rule
and achieves superior performance (close to 2dB coding gain)
compared to Protocol 1 at high SNR.

In Fig. 4, the BER vs. SNR (γ̄) is shown when link selection
is performed for delay constrained transmission. We consider
i.i.d. fading here, i.e., ξ = 1. β is adjusted to account for the
delay constraint, cf. Section VI-B. Here, we assume perfect CSI
(i.e., ρSR = ρRD = 1), and focus on the merits of the proposed
protocol in delay constrained transmission compared to other
existing buffer–aided relaying protocols for the same average
delay. We show here results for T = {4, 6} and compare with
two existing buffer–aided relaying schemes. In Scheme 1 [5],
the relay receives for T time slots, before it transmits for T
time slots. In Scheme 2 [20], there is no silent time slots and
the source (relay) is forced to transmit if the buffer at the relay
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TABLE II
MODIFIED LINK SELECTION PROTOCOL 1 WITH THRESHOLD–BASED TRANSMISSION IN SILENT TIME SLOTS.

Case Buffer status Link quality Selected link
1a Empty γ̂SR < βγ̂RD AND γ̂SR > θγ̄SR S → R
1b Empty γ̂SR < βγ̂RD AND γ̂SR ≤ θγ̄SR None
2 Not empty γ̂SR < βγ̂RD R→ D
3a full γ̂SR ≥ βγ̂RD AND γ̂RD > φγ̄RD R→ D
3b full γ̂SR ≥ βγ̂RD AND γ̂RD ≤ φγ̄RD None
4 Not full γ̂SR ≥ βγ̂RD S → R

TABLE III
THROUGHPUT AND DELAY OBSERVED WITH DIFFERENT SNR THRESHOLDS. BPSK TRANSMISSION, γ̄SR = 0.2γ̄ , γ̄RD = γ̄ , AND γ̄ = 15 DB ARE

ASSUMED. THE MAXIMUM THROUGHPUT IS τ0 = 0.5 AND ξ = 0.2 IS VALID.

β SNR threshold θ Throughput τ Delay T BER

0.6

0.1 0.483 2 0.01171
1 0.355 2.81 0.004

10 0.251 3.93 0.0032
∞ 0.25 4.0 0.003

1.5

0.1 0.478 1.376 0.01403
1 0.303 2.545 0.0044

10 0.117 6.548 0.004
∞ 0.11 7.8 0.004
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Fig. 5. BER vs. SNR (γ̄) for different threshold values, θ ∈ {0.1, 2, 3,∞}.
Note that φ is not needed here (cf. Table II), as a full buffer cannot occur
because of the assumed infinite buffer size.

is empty (full). In Scheme 2, β is calculated using (35) and
[20, Eq. (39)]) to achieve a target delay T . Similar to the
proposed scheme, the relays in Schemes 1 and 2 forward the
detected bits to the destination, regardless of decision errors at
the relay. We observe that for both T = 4 and T = 6, the
proposed protocol achieves full diversity, whereas Schemes 1
and 2 achieve a diversity gain of one only, as the best link is
not always exploited because of forced transmissions. On the
other hand, the proposed scheme suffers from a throughput loss

compared to Schemes 1 and 2, where always either the source
or the relay transmits and an effective average throughput of
τ0 = 1/2 is achieved, as there are no silent time slots. For
T = 4, the throughput for the proposed scheme is 66% of τ0
for β = 2, whereas for T = 6, it increases to 82% of τ0 for
β = 1.4416.

B. Threshold–based Transmission

Next, we consider a modification of Protocol 1, which allows
for a threshold–based transmission during the silent time slots,
thus improving throughput and delay at the expense of a
degradation of the error rate performance, cf. Table II. In the
modified protocol, transmission during a silent time slot is
allowed if the outdated instantaneous link SNR is larger than a
scalar times the average SNR 17. A similar modification can be
applied for Protocol 2, but is not shown here. We study the case
of β > ξ = γ̄SR/γ̄RD (so that silent time slots are observed)
and infinite buffer size. θ and φ are the scaling parameters in
the threshold for the S → R and R → D links, respectively,
cf. Table II. Hence, θ = φ = ∞ denotes the original scheme
proposed in Section II.

In Fig. 5, we show the simulated BER for different SNR
thresholds, θ = {0.1, 2, 3,∞}, for i.i.d. channels, perfect CSI,
and adopt β = 2 and ξ = 1. For θ = {2, 3}, the BER is slightly
worse than for θ = ∞, i.e., no threshold–based transmission
during silent time slots. On the other hand, for θ = {2, 3,∞},
throughputs of τ = {0.42, 0.34, 0.33} are observed, i.e., lower

16The values of β are obtained from (57). Note that (57) has two solutions
for β for achieving a target delay T . We choose the solution for β that yields
larger throughput.

17We note that alternatively a threshold which is a power of the average
SNR could be adopted, i.e., γAB ≥ γ̄cAB , where c is a positive constant.
However, this modification does not affect the maximum achievable diversity
gain (which is two).
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Fig. 6. Average delay vs. β for two protocols. Results are shown for different
choices of ξ = γ̄SR/γ̄RD . For ξ = 0.5, delay results for Protocol 2 are
shown for ρSR = 0.9 and ρRD = 0.6. Delay results for finite buffer sizes
L ∈ {1, 3} are shown for Protocol 1, when ξ = 2. Square markers denote
simulated results.

threshold values yield a higher throughput due to the reduced
number of silent time slots at the expense of an increased BER.

This behaviour can also be observed in Table III, where
we show the throughput and delay of threshold–based trans-
mission for i.n.d. fading. A lower value of θ implies that S
transmits more often when silent time slots are observed due
to empty buffers. As θ increases, the delay and throughput
performances of the modified protocol approach those of the
original scheme. Hence, we conclude from Fig. 5 and Table III
that with an appropriate choice of the threshold, improved delay
and throughput performances can be achieved for threshold–
based transmission at the expense of a small loss in the BER
compared to the case where threshold–based transmission is
not applied.

C. Performance Trade–offs

In Fig. 6, we show that low average delay can be obtained by
the proposed protocols for both finite and infinite buffer sizes.
In particular, we show that for both i.i.d. and i.n.d. fading, a
delay as low as 1 + 2

√
2 ≈ 3.81 time slots can be observed

by choosing β properly for infinite buffer size, as predicted
in Section IV. We observe a sharp rise in the average delay
when β → γ̄SR

γ̄RD
for infinite buffer size, i.e., TQ becomes very

large. This fact was also alluded to in [20] for the queueing
delay. Another interesting observation is that for finite buffer
sizes, average delays lower than 1 + 2

√
2 can be achieved, and

for L = 1, a minimum delay of three time slots is observed,
cf. Proposition 8. This result is supported by the fact that the
average queueing delay is proportional to the average queue
size, which, with appropriate selection of β, can be made
smaller for a finite size buffer than for an infinite buffer size.
We also note from Fig. 6 that the delay is convex in β over the
considered region, as shown in Section VI. Note that the delay
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Fig. 7. BER vs. β for the proposed protocols. Case 1) 2γ̄SR = γ̄RD = 0.5γ̄,
ρSR = ρRD = 1, Case 2) 3γ̄SR = γ̄RD = 0.75γ̄, ρSR = 0.9, ρRD = 0.7,
Case 3) γ̄SR = 2γ̄RD = γ̄, ρSR = 0.7, ρRD = 0.9. γ̄ = 20 dB is assumed
and square markers denote simulated results.

vs. β curves shift to the left (right) of that for ξ = 1 when
ξ < 1 (ξ > 1). This is because increasing β also increases
the probability of selecting the R → D link (cf. Remark 4)
and when the R → D link is stronger, i.e., ξ < 1, we require
smaller values of β to achieve a certain delay compared to the
cases when ξ ≥ 1, and vice–versa.

In Fig. 7, we show BER vs. β for both protocols for i.i.d.
and i.n.d. links. We consider three cases, as specified in the
caption of Fig. 7. We observe that when β = 1, the lowest
BER is achieved for perfect CSI (Case 1), cf. Section VI-A.
In other words, when β approaches one (i.e., link selection
is performed based on the instantaneous link quality only),
the BER performance improves. We also show the asymptotic
approximation for the error rate for Case 1 (dotted line) which
is convex as claimed in Section VI-A. For i.n.d. fading with
dissimilar correlation coefficients, β 6= 1 yields minimum
BER. For Case 2, (9) holds for Protocol 2 which yields better
performance compared to Protocol 1. For Case 3, (10) holds
for Protocol 2. Note that for some values of β, Protocol 1
results in a lower BER compared to Protocol 2, even though
the minimum of the BER for Protocol 2 is lower than that
of Protocol 1. However, if we want to compare the BERs
of the two protocols for a certain target delay or throughput,
different values of β are needed (cf. Remark 5). For example,
in Case 3, β = 2 (β = 0.88) yields maximum throughput
for Protocol 1 (Protocol 2) and β = 3.5 (β = 1.4) yields an
average delay of T = 4.41 time slots for Protocol 1 (Protocol
2). Note that Protocol 2 yields a lower BER for this target
delay and throughput. On the other hand, for large delay and/or
low throughput, Protocol 1 may yield similar or lower BER
compared to Protocol 2. For example, β = 10 (β = 3.3)
corresponds to 33% of maximum throughput for Protocol 1
(Protocol 2), and both protocols perform similarly in terms of
BER.



15

2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

τ/
τ 0

 

 

L = 1
L = 2
L = 5
L = ∞

Protocol 2: Case 1

Protocol 2: Case 2

Protocol 1

Fig. 8. Normalized throughput vs. β for the two considered protocols for
different buffer sizes L ∈ {1, 2, 5,∞}. Protocol 1: ξ = 1, Protocol 2 Case
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In Fig. 8, we show the normalized throughput vs. β for the
two proposed protocols and different buffer sizes. We observe
that the maximum normalized throughput for L = 1, is 0.5, and
it increases to 1 for increasing buffer size. As β increases, the
probability of selecting the R→ D link PRD increases which
corresponds to a decrease in the throughput.

In Fig. 9, we study BER optimization for Protocol 2 with
delay and throughput constraints. We assume infinite buffer size
and γ̄SR = 2γ̄RD = γ̄, ρSR = 0.6, ρRD = 0.9. For opti-
mization, we assume Tmax = 6 time slots and τmin = 0.8τ0,
cf. Section VI-D. For comparison, we have shown the BER
for three other cases where β is chosen to: a) minimize BER
without any delay or throughput constraints (min–BER), b)
minimize delay (min–delay), i.e., when T = 1 + 2

√
2 time

slots, and c) maximize throughput, i.e., when PRD = 1/2 and
τ = τ0. The chosen channel parameters correspond to Case
b of Protocol 2, cf. Section (II-C). In Fig. 9, at γ̄ = 20
dB, β = 1.614 (β = 0.80) is numerically obtained for
PRD = 1/

√
2 (PRD = 1/2) which corresponds to minimum

delay Tmin = 1 + 2
√

2 (maximum throughput τ0 = 1/2).
On the other hand, for min–BER, we obtain β = 0.4 which
minimizes P (e) in (18) for Case b for γ̄ = 20 dB. In Fig.
9, the error rate for min–BER is calculated analytically and
shown for comparison purpose only, as we cannot operate at
β < 0.8018 to avoid buffer instability. Hence, min–BER serves
as a lower bound for other protocols. At γ̄ = 20 dB, the value
of β which gives the optimal BER (opt–BER) in Fig. 9 is 1.1,
for which T = 5 and τ = 0.8τ0 are obtained. Note that min–
delay and max–throughput BERs correspond to τ = 0.5τ0 and
T =∞, respectively. We observe that opt–BER is very close to

18β < 0.80 would cause PRD < 1/2, i.e., the S → R link would be
chosen more often than the R→ D link.
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Fig. 9. BER vs. SNR (γ̄) optimization for infinite buffer size, under different
objectives. For min–BER, min–delay, max–throughput, β is chosen to achieve
the minimum BER, minimum delay, and maximum throughput, respectively.
For opt–BER, β is chosen to minimize BER for a target delay and throughput
constraint.

min–BER and lower than the min–delay and max–throughput
BERs.

VIII. CONCLUSIONS

In this paper, we studied adaptive link selection for both
perfect and outdated CSI for a three node network where the
relay was equipped with a buffer. In particular, we proposed
two link selection protocols based on the availability of the
reliability information of the CSI estimates. We provided a
unified error rate analysis for outdated and perfect CSI and
showed that for perfect CSI, a diversity gain of two can be
achieved, even if only a small delay can be tolerated. When the
links are asymmetric, Protocol 2, which exploits the reliability
information of the CSI estimates of the links, can result in
a lower error rate compared to Protocol 1, for a certain target
delay or throughput. We also provided closed–form expressions
for the average delay and throughput for the proposed protocols
for both finite and infinite buffer sizes. We showed that the
decision threshold β can be chosen to satisfy different objec-
tives, such as achieving minimum delay, maximum throughput,
and minimum SER under minimum throughput and maximum
delay constraints. Our results demonstrate that by appropriately
choosing the value of β, it is possible to maintain buffer
stability and operate close to the optimal SER at low delay
with only a slight loss in throughput.

Interesting topics for future work include the analysis of
the proposed modified protocol, which allows for threshold-
based transmission during silent time slots, and the extension
of the proposed protocols to multi-relay networks where relays
forward only correctly regenerated bits.
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PR(e) = C
γ̄SR

(
1−

√
γ̄SRη

2+γ̄SRη

)
− βγ̄RD

√
γ̄SRη

2+γ̄SRη
+ βγ̄RD

(
1 + 2

γ̄SRη
+

2ρ2
SR

γ̄SRη(1−ρ2
SR)+βγ̄RDη

)− 1
2

2γ̄SR
. (75)

APPENDIX A
PROOF OF PROPOSITION 1

We calculate the error rate conditioned on the outdated CSI
as

PB(e|γ̂AB) = C

∫ ∞
x=0

∫ ∞
w=
√
xη

fγAB |γ̂AB (x|y)
1√
2π
e−

w2

2 dwdx,

(65)

where fγAB |γ̂AB (x|y) is given by [18]

fγAB |γ̂AB (x|y) =
e
− x+ρ2ABy

γ̄AB(1−ρ2
AB)

γ̄AB (1− ρ2
AB)

I0

(
2
√
xyρAB

γ̄AB (1− ρ2
AB)

)
.

(66)
From (65), we obtain∫ ∞

w=
√
xη

1√
2π
e−

w2

2 dw =
1

2
erfc

(√
xη

2

)
. (67)

Now, combining (65)–(67), evaluating the following integral

C

∫ ∞
x=0

e
− x+ρ2ABy

γ̄AB(1−ρ2
AB)

γ̄AB (1− ρ2
AB)

I0

(
2
√
xyρAB

γ̄AB (1− ρ2
AB)

)
1

2
erfc

(√
xη

2

)
dx

(68)
in closed–form is difficult, if not impossible. Hence, we ap-
proximate the Bessel function in (66) as

I0

(
2
√
xyρAB

γ̄AB (1− ρ2
AB)

)
≈ 1 +

(
ρAB
√
xy

(1− ρ2
AB)γ̄AB

)2

, (69)

which simplifies the calculation, and leads to the simple high
SNR approximation for PB(e|γ̂AB) as shown in (6).

APPENDIX B
PROOF OF PROPOSITION 2

For a RV V ∈ N (0, 1), PB(e), B ∈ {R,D}, can be
expressed as [24]

PB(e) = EγAB
{C

2
Pr
{
γAB <

V 2

η

}}
= C

∫ ∞
0

FγAB (
v2

η
)fV (v)dv, (70)

where FU (u) denotes the cumulative distribution function of
U and fV (v) = 1√

2π
e−

v2

2 .
Conditioned on the event γ̂SR > βγ̂RD, the average error

rate of the S → R link is given by

PR(e) = E{CQ(
√
ηγAB)|γ̂SR > βγ̂RD}

=
E{CQ(

√
ηγAB) ∩ γ̂SR > βγ̂RD}

Pr(γ̂SR > βγ̂RD)
. (71)

As mentioned in Section II-A, perfect CSI is assumed available
for decoding at the receiver; only the link selection procedure
has to rely on imperfect CSI. Now, for the numerator in (71),
we obtain J1

, E{CQ(
√
ηγAB) ∩ γ̂SR > βγ̂RD}

= C

∫ ∞
v=0

∫ v2

η

x=0

∫ ∞
y=0

∫ y
β

z=0

fγSR,γ̂SR(x, y)fγ̂RD (z)

× fV (v)dz dy dx dv, (72)

where fγ̂RD (z) = (1/γ̄RD)e−z/γ̄RD , and fγSR,γ̂SR(x, y) is
given in (2). After evaluating the integrals in (72), we obtain

J1 = C
γ̄SR

(
1 −

√
γ̄SRη

2+γ̄SRη

)
− βγ̄RD

√
γ̄SRη

2+γ̄SRη

2(γ̄SR + βγ̄RD)

+
Cβγ̄RD

2(γ̄SR + βγ̄RD)

√
1 + 2

γ̄SRη
+

2ρ2
SR

γ̄SRη(1−ρ2
SR

)+βγ̄RDη

. (73)

Furthermore, for the denominator in (71), we obtain

PSR , Pr(γ̂SR > βγ̂RD) =

∫ ∞
y=0

∫ ∞
x=βy

fγ̂SR(x)fγ̂RD (y)dx dy

=
γ̄SR

γ̄SR + βγ̄RD
. (74)

Now, combining (71), (73) and (74), we obtain PR(e) in (75).
Similarly, we can derive the expression for PD(e). Combining
PR(e) and PD(e), we obtain P (e) in (13). The error rate for
perfect CSI can be obtained by setting ρSR = ρRD = 1 in
(13). This concludes the proof.

APPENDIX C
PROOF OF PROPOSITION 3

Here, we provide the proof of Proposition 3. In particular,
we provide the derivation for Case a. The expressions for Case
b can be obtained following a similar approach and are omitted
here. We obtain the unconditional error rate PR(e) by averaging
PR(e|γ̂SR) (cf. (6)) as PR(e)

= Eγ̂SR,γ̂RD{P (e|γ̂SR ≥ l1)} =
E{PR(e, γ̂SR ≥ l1)}

Pr(γ̂SR ≥ l1)
=

J2

PSR
,

(76)

where J2 is given by

J2 = E{PR(e, γ̂SR ≥ l1)}

= C

∫ ∞
z=0

∫ ∞
y=l1

1

µSR
e
− yρ2SR
γ̄SR(1−ρ2

SR
) fγ̂SR(y)fγ̂RD (z)dydz,

(77)

where l1 was defined in (9). Evaluating the integrals in (77),
we obtain J2 as

J2 = C
ρ2
SR

(
µRD
µSR

)−1/ρ2
SR

(1− ρ2
SR)(1− ρ2

RD)

µSR(βρ2
RD + ρ2

SR(1− ρ2
RD))

. (78)

Similar to (74) for Protocol 1, we obtain PSR, the probability
of selecting the S → R link, for Protocol 2 and Case a as
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PSR , Pr(γ̂SR ≥ l1) =
ρ2
SR

(
µRD
µSR

)−1/ρ2
SR

(1− ρ2
RD)

βρ2
RD + ρ2

SR(1− (1 + β)ρ2
RD)

.

(79)

Similarly, the unconditional error rate of the R → D link is
obtained as

PD(e) =
E{PD(e, γ̂SR < l1)}

Pr(γ̂SR < l1)
=

J3

PRD
, (80)

where J3

,C
∫ ∞
z=0

∫ l1

y=0

1

µRD
e
− βzρ2RD
γ̄RD(1−ρ2

RD
) fγ̂SR(y)fγ̂RD (z)dydz

= C

(
1− ρ2

RD

µRD
−

(
µRD
µSR

)−1/ρ2
SR

ρ2
SR(1− ρ2

RD)

µSR(ρ2
SR + β(1− ρ2

SR)ρ2
RD)

)
. (81)

Next, the probability of selecting the R → D link PRD =
Pr(γ̂SR < l1) for Protocol 2 and Case a) is obtained as

PRD = Pr(γ̂SR < l1) = 1−

(
µRD
µSR

)1−1/ρ2
SR

ρ2
SR(1− ρ2

RD)

βρ2
RD + ρ2

SR(1− (1 + β)ρ2
RD)

.

(82)
Now, combining (76)–(82), the end–to–end unconditional SER

can be obtained as shown in (18).
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