Detection of Gradual Transitions through Temporal Slice Analysis
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Abstract

In this paper, we present approaches for detecting
camera cuts, wipes and dissolves based on the analysis
of spatio-temporal slices obtained from videos. These
slices are composed of spatially and temporally coher-
ent regions which can be perceived as shots. In the pro-
posed methods, camera breaks are located by perform-
ing color-texture segmentation and statistical analysis
on these video slices. In addition to detecting camera
breaks, our methods can classify the detected breaks as
camera cuts, wipes and dissolves in an efficient man-
ner.

1 Introduction

A video is physically formed by shots; a shot is
an uninterrupted segment of screen time, space and
graphical configurations. The boundary between two
shots is called camera break. There are three major
types of camera breaks: cut, wipe and dissolve. A
camera cut is an instantaneous change from one shot
to another; a wipe is a moving boundary line cross-
ing the screen such that one shot gradually replaces
another; a dissolve superimposes two shots where one
shot gradually lighten while the other fade out slowly.
Wipe and dissolve are normally referred to as gradual
transitions.

In the current literature, there are various algo-
rithms for detecting camera breaks [7, 10], in general,
we can categorize them as statistic-based, histogram-
based, feature-based, transformed-based, and motion-
based. Most existing algorithms can segment a video
sequence into shots correctly if the sequence has
smooth frame transitions within a shot and abrupt
spatial changes between shots. These algorithms are
insensitive to gradual transitions since the change be-
tween two consecutive frames is small. Furthermore,
methods based on the frame-to-frame difference met-
rics and feature analysis are computationally expen-
sive. Although spatial and temporal sub-sampling of
video frames are suggested to improve processing effi-

ciency [8], the success still depends on the choice of the
spatial window size and the temporal sampling step.
Smaller window size is sensitive to object and cam-
era motions while larger sampling step can easily skip
fragmented shots.

Recently, we have presented works on detecting
camera cut and wipe based on the analysis of two or-
thogonal slices [6]. The proposed video slicing is equiv-
alent to the conventional spatial sampling of video
frames, however, with the capabilities of revealing in-
teresting visual cues when these slices are cascaded
over times to form spatio-temporal images. These cues
include the different patterns of region boundaries cre-
ated by cuts and gradual transitions. By exploiting
the patterns, we can bridge the dichotomy between
detection and classification of camera breaks. In this
paper, we improve the previous results by using three
slices to correct the deficiency of missed detection. In
addition, we reformulate the existing dissolve detec-
tor [1] and propose a slice voting scheme for dissolve
detection.

2 The Concept of Video Slices

A glice is a 1D image taken from a frame; a spatio-
temporal image is a collection of slices in the sequence
at the same positions. Figure 1 shows three spatio-
temporal images that are taken for analysis. To save
computations, the images are extracted from DC im-
ages of I-frames, and the estimated DC images of P-
frames and B-frames [9].

Denote f4. as a M x N DC image, mathematically,
our approach projects fg. vertically, horizontally and
diagonally to three 1D slices v, h and d,
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where 0 <p < M or N, and > a, = 1. When j =0,
the middle row and column of f;. are taken to form
the slices. To ensure the smoothness of slices within
a shot, we set j = 1 and perform Gaussian smoothing
on the slices, where a = [0.2236,0.5477,0.2336]. By
cascading these slices over time, we acquire a 2D image
V formed by vertical slices, a 2D image H formed
by horizontal slices, and a 2D image D formed by
diagonal slices. Denote ¢ as the time coordinate and
(z,y) as the image coordinate, then H, V and D are
inx —t,y—tand z —t space respectively.

Figure 2 shows the projected DC spatio-temporal
images from MPEG videos. As seen in the figure,
each image contains several spatially uniform texture
regions, where each region is formed by the slices taken
from frames that belong to a same shot. The type of
camera breaks will affect the boundary shape of two
connected regions. Figure 3 illustrates various pat-
terns of spatio-temporal images. In general, a camera
cut results in vertical boundary lines; a wipe results in
slanted boundary lines; while a dissolve connects two
regions slowly and does not have a clear boundary.

Based on this observation, we claim that the task
of detecting camera breaks is equivalent to the task of
segmenting image into regions; and therefore, we can
reduce video segmentation problems to image segmen-
tation problems. Furthermore, by investigating the
orientation of boundary lines, we can classify cuts and
wipes. Although dissolves do not create clear bound-
ary lines, we can still apply statistical analysis to de-
tect the breaks.

Previously proposed wipe detectors [2, 11] and dis-
solve detectors [1, 4] are based on statistical analysis,
these approaches normally fail in detecting the exact
begin and end frames of gradual transitions, in addi-
tion, suffers from difficulties in distinguishing wipes,
dissolves and motions. In contrast, our wipe detector
can identify the exact durations of wipe sequences as
long as the two end points of slanted boundary lines
are detected. A robust region segmentation algorithm
can release the incapabilities in distinguishing wipes,
dissolves and motions. Nevertheless, our dissolve de-
tector also encounters problem on detecting the exact
dissolve boundaries.

3 Camera Cut and Wipe Detection

In this section, we propose a Markov energy model
to locate cuts and wipes based on the color and texture
discontinuities happen at the boundaries of regions.

horizontm] slices weytical slices diagonalslices

Figure 1: Three video slices taken from an image volume
along the temporal dimension.

(a) Three shots connected by two cuts

(b) Two shots connected by a wipe

(c) Two shots connected by a dissolve

Figure 2: Samples of horizontal spatio-temporal images.
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Figure 3: The image patterns created by camera breaks.
Various wiping directions: [-to-r (left-to-right); r-to-1
(right-to-left); #-to-b (top to bottom); b-to-top (bottom-
to-top).

3.1 Feature Computing

Denote H = [H,,H,, Hy,,H)], V = [V;.,V,,V},, V}/]
and D = [D,, D,, Dy, D,] as the spatio-temporal im-
ages in (r, g, b) color space! to and y luminance space.
The approach computes edge information by

Elly = GD, g * H; (4)

where * is a convolution operator and i € {r,g,b}.
GD, ¢ is the first derivative Gaussian along the z-axis
given by

_ T _
GD0,0($7y) = _;Ga,e(‘ray) (5)
Goo(z,y) = Go(z.y)
where 2’ = x cosf +ysinfd and yl = —zxsinf +ycosb;
— 2 2
G,(z,y) = exp{—LFL} is a Gaussian filter con-

trolled by a smoothing parameter o.

The texture feature is computed based on Gabor
decomposition [5]. The idea is to decompose images
into multiple spatial-frequency channels, and use the
real components of channel envelopes to form a feature
vector. The complex Gabor images are,

~

TUa::a'y:G = GU’x70'y:9 * Hy (6)

The Gabor filter Gax,ay,g(x,y) = Gax,ay (x,,y,) is ex-
pressed as,
2 2

~
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where j = /=1, W = v/u? 4+ v? and (u,v) is the cen-

ter of the desired frequency.

INote that MPEG uses YCrCb color space; our method
converts the YCrCb to RGB components

Jexp{—3(S+ L)} exp 2nj1Wa)

Since a wipe normally lasts for one to two sec-
onds (about 45 frames), we empirically set § =
{0°,45°,135°}. In addition, we set u = v = 0.4 and
fix the values of o, 0, and o, as a result, the color-
texture feature is a twelve dimensional feature vector.
3.2 Image Segmentation

We employ Markov energy model to describe the
contextual dependency of spatio-temporal images for
segmentation purpose. The probability that a pixel
triple n = (nn, nv,ma) at H(k,t), V(k,t) and D(k,t) is
on the region boundary ¢ of two connected regions is

p(n € EH,V,D) =p(n € {HN,VN,Dn)  (8)

where Hy, Vy and Dy are a 3 x 3 neighborhood
system shown in Figure 4. Based on the neighborhood
system, we define eight connected components C =

{C1,Cs,...,Cs} (see Figure 5) to characterize 7.
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Figure 4: The neighborhood system of a pixel z in Vy
(the figure is also applicable to Hy and Dy.)
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Figure 5: The connected components defined on the
neighborhood system.

Agsuming Hy, Vy and Dy are independent, we
rewrite (8) as,

p(n|H, V, D) = p(ny[HN)p(0:|VN)p(naDN)  (9)

and p(nr), p(n), p(n4) are the probability of 14, 7, 74
on a region boundary of H, V and D respectively. By



Markov-Gibbs equivalence, we have

pln) = 5 v {=Un)} (10)

where Z is a normalizing constant, i € {h,v}, and
U(n;) is a energy function. The energy

ceC

is the weighted sum of potential energy T'.(1;) over all
connected components, where ) - 3. = 1.

For classification and segmentation purpose, we fur-
ther define three types of energy: Ucut(1:), Uwipe- (1),
Uwipe+ (n:). For simplicity, we focus on image H, first.
Let n} as a pixel locates at the (k,¢) of H, image, we
have
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Ul will give low energy if n; is located at the re-
gion boundary as a result of a camera cut. Similarly,
Usbipe- and Usipe+ will give low energy if n; is located
at the region boundary as a result of a camera wipe.
The values of U;Z.pe_ and U;ipeJr depend on whether
a boundary has negative or positive gradient.
Let m1 = (kp,, tn,) and 72 = (kp,, ty,) be the neigh-
bors of n}, such that {n:,n},n2} forms a connected
component C;. The potential energy is

FTCi (77;) = ZHEgg(kvt) - Egg(km:tm)‘ +
0

|Efg(k=t) _Efg(knwtmﬂ} (13)

I'?, and T'¢, are computed in a similar way; and T'Y,
is computed by

Fyoi (77}1{) = Z{|T0m70’y’0(k7t) - T0m7‘7y’0(k7727t772)| +
[

|T0m’0y,9(k=t) - Tam,ayﬂ(km:tm)‘} (14)

where 1/ locates at the (k,t) of H, and {m,n;,n2}
forms a connected component C;. Subsequently, we
define

Uewt () = 0 _max Ul (n}) + ewU%,(nf)  (15)
j€{r.g;b}

where a. and a; are two parameters for weighting
color and texture features. Similar approach is use
to compute Uyjpe+ and Uype—. Figure 6 shows the
segmentation results with a, = a; = 0.5, the white
lines which indicate the presence of low energy run
across the boundaries of connected regions.

(a) Ucut of horizontal slices

(b) U

wipe

_ of horizontal slices

Figure 6: Segmentation results for images shown in Fig-
ure 2.

4 Dissolve Detection

A dissolve connects the boundaries of two shots
smoothly; as a result, the connected shots share a
smooth boundary region in the spatio-temporal im-
age. Globally the image is composed of two regions
with different visual surface; locally they exhibit a
smooth transition from one region to another. Our
goal is to segment the image into three portions: two
regions representing successive shots and one narrow
region representing the dissolve duration.

Denote D(z,y,t) as the intensity function of frames
superimposed by two shots having intensity func-
tions Sy (z,y,t) and So(x,y,t) respectively. Suppose
D(z,y,t) starts at ¢; and ends at ¢5, then

Sl(x:yat) t<ty
(1—a(t)Si(z,y,t) + a(t)Sa(z,y,t) t1 <t <ty
Sz(l‘,y,t) t >t
(16)
where a(t) = tt;_ttll varys linearly with ¢ in the range

[0,1]. Denote u;(t) be the mean intensity of a slice
during the interval t; < ¢t < ¢y in a spatio-temporal
image i, then

pilt) = i + (U2 (8) = g (@)alt)  (17)

where ,ufj is the mean intensity of a slice that belongs
to shot j and i € {H, V,D}. Taking the first deriva-



tive pu;(t) = d“ét(t), we have
So S1
) J2(t) — ut(t
1) = Hi2 () — 1 (1) (18)
to — 1

Assuming ufl (t) and ufz (t) remain unchanged during
dissolves, yu;(t) is a constant value.

Similarly, let o;(¢) be the variance of a slice during
a dissolve in a spatial temporal image i, then

oi(t) (19)
= (071 (t) + 02 ()02 (t) — 207 (B)alt) + 02 (1)

where of’ (t) is the variance of a slice that belongs to
shot j and i € {H,V,D}. If ¢ (t) and ¢ (t) remain
constant, o;(t) is a concave upward parabola during
t <t <t

The proposed dissolve detection algorithm com-
putes (18) and (19) of a spatio-temporal image, and
then records the periods that have approximately
constant mean values and concave upward parabola
curves for 15 < ¢, —t; < 45. The assumptions in (18)
and (19) will be seriously violated if there are vigor-
ous motions during dissolves; however, in most cases
dissolves involve only still to moderate motions. Un-
der this scenario, we employ a voting scheme where a
frame f(t) € D(z,y,t) if

S Gloil), uit) > 2 (20)

i€{H,V,D}
where G : R x R — {0, 1} is a logical operator.

5 Experimental Results

We conduct experiments to evaluate the perfor-
mance of the proposed methods. The tested videos
consist of slow to fast camera motions, fast and large
moving objects. A wipe spans about 40 frames; while
a dissolve crosses about 30 frames.

Tested Cut Wipe Dissolve
Video DIM|F|DIM[F||D|M]F
syn.mpg 5 0 0 7 1 0 5 0 0
ba.mpg 45 | 1 0 2 0 1 4 2 2
gf2mpg || 44| 3 | O 0 0] 4 8 9 | 3
gf3mpg || 51| 3 | O 0 0 0 4 0| 2
recall 0.95 0.90 0.54
precision 1.00 0.62 0.71

Table 1: Camera break detection results. D: correct de-
tections; M missed detections; F': false alarms.

Table 1 shows the experimental results of the pro-
posed detection methods. For all correctly detected
wipes and dissolves, at least 10 frames of the actual
sequences are covered. To investigate the tolerance
and accuracy of gradual transitions detection, we fur-
ther perform recall-precision to evaluate the results.
Denote A; as the number of frames due to action i; B;
as the number of detected frames in class i; C; as the
number of correctly detected frames in class ¢, then

recall; = % (21)
precision; = % (22)

where i € {cut, wipe, dissolve}, recall; and precision;
are in the interval of [0,1]. Low recall values indicate
the frequent occurrence of missed detections, while low
precision show the frequent occurrence of false alarms.

Through the experiments, our cut detector?.
achieves approximately 0.95 and 1.00 for recall and
precision measures respectively. The missed cuts are
due to low texture contrast between two adjacent
shots. The wipe detector can locate most of the wipe
sequences, however, suffers from false detection if a
particular region in the spatio-temporal image resem-
bles a wipe pattern. The false alarms may be further
pruned by examining the existence of a moving line
through the first and second AC coefficients of sus-
pected wipe frames. Figure 7 further shows the spatio-
temporal images of the detected and missed camera
wipes. The miss detection is due to the unclear ver-
tical region boundary in the vertical slices. The dis-
solve detector is sensitive to the underlying motions
of a sequence; the detector can robustly detect dis-
solve sequences of slight or no motions (see Figure 8
for an illustration), however, will result in missed de-
tections if the motions violate the distribution shapes
of equations (18) and (19).

6 Conclusion

We have proposed methods on detecting and clas-
sifying camera cuts, wipes and dissolves based on the
analysis of video slices. Our methods reduce the video
segmentation problems to image segmentation prob-
lems, in additions, process frames directly in MPEG
domain, resulting in significant speed up. In contrast
to most of the previous empirical studies which detect
any arbitrary frame in a wipe or dissolve as a break
point, we detect a shot sequence as a break point; and

2The cut detector will also perform pruning by investigating
the DCT coefficients and motion vectors of suspected cut frames
(about 5% of total frames). The detail is presented in [6].
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Figure 7: Camera wipe detection.
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Figure 8: Analysis of dissolve sequences of slight motion
on a horizontal spatio-temporal image.

hence, further perform recall-precision analysis to rat-
ify the accuracy. In future, we will study the possibil-
ity of estimating image and motion features directly
from slices for video database indexing and retrieval.
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