CASS: Context-Aware Slice Summarization for
Debugging Regression Failures

Sahar Badihi
University of British Columbia, Canada
shrbadihi @ece.ubc.ca

Abstract—Troubleshooting regression failures is a common yet
time-consuming task for developers. Program slicing techniques
aim to streamline this process by identifying relevant program
statements, reducing the code developers need to inspect. By
surveying over 50 practitioners from eight countries, we identified
two main limitations in existing slicing-based approaches for
debugging regressions. First, to minimize the number of statements
presented to developers, these approaches often exclude contextual
information essential for fully understanding the failure. Second,
to maintain information propagation within the slice, they include
lengthy computations that are unnecessary for understanding the
failure. We further use these observations to propose a new slicing
approach for debugging regression failures, named CASS. Our
evaluation shows that CASS better aligns with developers’ needs
while producing more concise slices than existing techniques.

I. INTRODUCTION

Regression failures occur when software changes uninten-
tionally break existing functionality [1], requiring significant de-
bugging effort. Developers often need to review large amounts
of code to identify the root cause of failures. Fault localization
approaches assist developers by identifying failure-causing
statements. Spectrum-based [2], [3] and delta-debugging-
based [4], [5] approaches focus on automatically pinpointing
such statements. However, isolating these statements without un-
derstanding their relationship to the failure, does not effectively
aid debugging [6], [7], [8]. Slicing-based approaches address
this limitation by capturing the dependencies and information
flow between the produced subset of statements, aligning with
developers’ mental models during debugging [9], [10], [11],
[12]. Single-program slicing approaches, such as dicing [9],
chopping [13], and thin slicing [14], aim to minimize the slice
size while retaining relevant failure analysis information.

Dual-version slicing techniques, such as DUALSLICE [15]
and INPRESS [16], focus on regression failures by analyzing
both the base and regression versions of a program. While
effective in shortening slices by removing identical information
from both versions, they risk omitting critical contextual
information needed to build an accurate mental model of
dependencies between slice statements, eliminating one of
the main benefits of slicing-based techniques.

As part of this work, we conduct a comprehensive study
with 55 experienced software developers to better understand
what information is important when debugging regression
failures. The results show that participants indeed highly value
the contextual information omitted by dual-version slicing
techniques for understanding regression failures. They also

found that most statements preserved in dual slices provide
context for changes rather than directly causing failures.

Based on these observations, we further propose a novel
slicing approach named CASS (Context-aware Slice Summa-
rization). Our evaluation shows that CASS concisely retains the
contextual statements necessary for understanding the failure
while accurately summarizing propagation-related code blocks
that are less important from the developers’ perspective.

II. DUALSLICE AND ITS LIMITATIONS

Consider, for example, two versions of a program, P; and P,
in Figure la — a simplified version of the Lang-18 failure from
the Defects4] dataset [17]. The figure shows dynamic execution
traces of passing (P;) and failing (P,) executions, with the code
changed between the two versions highlighted in red (line 10).
The assertion in line 7 checks if getFormat matches format.
In P, 3-digit years are set as "yyyy", passing the assertion.
In P,, an updated condition causes year to be assigned "yy",
altering the value of "result" and leading to the failure.

A classic backward dynamic slice [18] inspects control and
data dependencies to identify executed statements, directly or
transitively, affecting a variable of interest. DUALSLICE [15] is
a symmetric slicing technique that begins by aligning the traces
and then focuses only on their differences. Specifically, it retains
unmatched statements (without corresponding instances in the
other trace), e.g., the statement in line 13 in P;, and matched
statements (producing different values), e.g., statements in lines
15, 17, and 18. It omits matched statements with identical data
values, e.g., statements in lines 2-6. Unlike classical slicing,
DUALSLICE computes transitive dependencies across both
traces, adding aligned statements from the other trace to capture
missing information that could explain the failure. Figure 1b
illustrates the slices produced by DUALSLICE.

While DUALSLICE reduces the number of statements devel-
opers examine, it misses essential context. For example, the
variable format used in line 7 in Figure 1b is never defined
and, even more challenging, the value of date is also omitted,
further complicating debugging (especially in larger and more
complex software). This technique assumes the relevance of
statements without validation, relying on reduction rates alone.

INPRESS [16] further minimizes dual slices by summarizing
common code blocks. However, similar to DUALSLICE, it omits
essential contextual information (e.g., lines 2—6 in Figure 1b)
needed to understand the failure. Due to space limitations, this
paper focuses on the DUALSLICE approach.

P

Py

P

public static void main(String[] args){

© assert(format, getFormat(date));

public static void main(String[] args){
String format = “yyyyMMdd”;
Date date = new Date();
date.year = “003

@ assert(format, getFormat(date));

public static void main(Stringl] args){
String format = “yyyyMMdd”;
Date date = new Date();
date.year = “003";

© assert(format, getFormat(date));

Py P, Py
1 | public static void main(String(] args){| | 1 | public static void main(String[] args){ 1 | public static void main(String[] args){
2 String format = “yyyyMMdd”; 2 String format = “yyyyMMdd”; 2
3| Date date = new Date(); 3 Date date = new Date(); 3
4 date.year = “003”; 4 date.year = “003"; 4
5 date.month = “01"; 5 date.month = “01”; 5
6 | date.day="10"; 6 | date.day="10"; 6
7 | @ assert(format, getFormat(date)); 7 |@ assert(format, getFormat(date)); 7 | @ assert(format, getFormat(date));
8|} 8 |} 8 |}
9 | public String getFormat(Date date){ || 9 | public String getFormat(Date date){ 9 | public String getFormat(Date date){
10| if (date.yearlength() == 2) 10 | if (date.year.length() < 4) 10 | if (date.year.length() == 2)
11 1 year = “yy”; 11
12| else 12 12| else
13 vear = “yyyy”; 13 13 year = “yyyy”;
14 int token = date.month.length(); 14 int token = date.month.length(); 14
15| result = year+getMonth(token); 15 | result = year+getMonth(token); 15 | result = year+getMonth(token);
16| tokenLen = date.day.length(); 16 | tokenLen = date.day.length(); 16
17| result = result+getDay(token); 17 | result = result+getDay(token); 17| result = result+getDay(token);
18 return result; 18 return result; 18 return result;
19} 19 |} 19|}

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

O N LA WN e

}
public String getFormat(Date date){

}
public String getFormat(Date date){

}
public String getFormat(Date date){

©
©
©

10 | if (date.year.length() < 4) 10| if (date.year.length() == 2) 10 | if (date.year.length() < 4)
1 year = “yy”; 1 11 year = “yy”;

12 12| else 12

13 13 year = “yyyy”; 13

14 14 14

15| result = year+getMonth(token); 15 15

16 16 16

17| result = result+getDay(token); 17| result = Funcl(year); 17 | result = Funcl(year);

18 return result; 18 return result; 18 return result;

19|} 19} 19 |}

(a) Execution Traces for P; and Ps.

(b) DUALSLICE for P; and Ps.

(c) CASS for P; and Ps.

Fig. 1: Running Example: a Simplified Lang-18 Failure.

III. STUDY ON DEBUGGING REGRESSION FAILURES

To gather insights into the information developers need to

efficiently debug regression failures, we conducted a large-scale
study involving 55 experienced software developers from eight
countries. The study used an interactive online questionnaire
and was approved by the ethics board in our institution.
Program Subjects. We randomly selected 6 failures, four from
the widely-used Defects4J [17] benchmark and two from our
collected set of real-world client-library upgrade failures. As
the execution traces were large (20,125 statements on average),
we simplified the code snippets, preserving the changes and
failures while removing implementation details.
Study Questionnaire. After collecting background and de-
mographics, each participant was assigned one of the six
subjects. We showed participants two program traces, similar to
Figure 1a, and asked them first to explain the failure. Next, they
selected statements they considered relevant for understanding
the failure, followed by providing a rationale for their selection.
Findings. Most study participants (44 out of 55, 80%) deemed
at least one of the context statements (e.g., line 2) essential
for understanding the failure. Moreover, the majority of the
participants (42 out of 55, 78%) did not pick any of propagation
statements kept by DUALSLICE (e.g., statements in lines 15
and 17) as relevant.

IV. CONTEXT-AWARE SLICE SUMMARIZATION

Based on the observations from our study, we design CASS,
a slicing-based approach that better fits the developers’ needs.
The output produced by CASS on our running example is
shown in Figure lc. Unlike DUALSLICE, which excludes
statements with the same data values from the slice, CASS
retains these statements, ensuring the slice remains free
of undefined variables (e.g., format in line 7). However,
analysis of developers’ responses reveals that not all contextual
statements are equally important. For example, statements in
lines 5-6 were not selected by the majority of participants.
CASS defines context as the transitive closure of all definitions
flowing into the changed statements and the test assertion.

Additionally, CASS abstracts computational code blocks
that propagate information between the changed statements,
summarizing them with high-level input-output functions !.

I'The summarization algorithm builds on our previous work, INPRESS [16],
with several design and implementation modifications omitted for simplicity.

These functions represent outputs as variables needed for
subsequent computations and inputs as dependencies from
earlier variables in the slice. This summarization removes
unimportant internal computations while preserving the critical
flow of information. In summary, CASS preserves essential
context while minimizing irrelevant details, offering developers
a more focused view of the failure.

Evaluation. To demonstrate CASS’s effectiveness, we com-
pared it to DUALSLICE. We evaluated precision (the proportion
of retained statements that are relevant) and recall (the
proportion of relevant statements that are correctly retained)
across the six study subjects. CASS achieved 84% precision
and 92% recall, significantly outperforming DUALSLICE (62%
precision, 71% recall), as shown in Table I. These results
indicate that CASS not only retains relevant statements but
also minimizes the inclusion of irrelevant ones.

TABLE I: Comparing Techniques

[Subjects [Metrics H Trace [DUALSLICE[CASS]
6 Study Precision 31% 62% 84%
Subjects Recall 100% 1% 92%

ailures |Size (Reduct. X 0)| 1, % o
[278 Failures [Size (Reduct.)[[36,025 (0%)[1,398 (92%)[185 (97 %)

In addition to precision and recall, we evaluated the effort
required to inspect slices by calculating the reduction rate over
278 failures from Defects4J, presented in the third row of
Table I. The reduction rate measures the percentage decrease
in slice size (#Slice) compared to the full trace (#T), calculated
as: #L=ASlice CASS achieved an average reduction rate of
97%, reducing the number of steps for developers to inspect
from 36,025 to 185. Interestingly, despite including contextual
statements, CASS achieves a slightly higher reduction rate with
significantly fewer statements (185 vs. 1,398) in comparison
to DUALSLICE. This demonstrates that CASS aligns with
developer preferences and offers a manageable set of statements
for debugging, making it both efficient and practical.

V. CONCLUSION

This paper investigates the effectiveness of existing slicing
techniques, such as DUALSLICE, for debugging regression
failures. A study with 55 participants from eight countries
revealed key limitations, leading to the development of CASS,
a new approach that better aligns with developer preferences
while reducing the inspection effort.

[1

—

[2]

[3]

[4

=

[5

=

[6]

[7]

[8

=

[9]

REFERENCES

H. Agrawal, J. R. Horgan, E. W. Krauser, and S. A. London, “Incremental
Regression Testing,” in Proc. of the Conference on Software Maintenance
(ICSM), 1993, pp. 348-357.

J. A. Jones, M. J. Harrold, and J. T. Stasko, “Visualization for Fault
Localization,” in Proc. of the International Conference on Software
Engineering Workshop on Software Visualization (ICSE-SV), 2001.

R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An Evaluation of
Similarity Coefficients for Software Fault Localization,” in Proc. of the
International Symposium on Dependable Computing (PRDC), 2006, pp.
39-46.

A. Zeller, “Yesterday, My Program Worked. Today, It Does Not. Why?”
ACM SIGSOFT Software Engineering Notes, vol. 24, no. 6, pp. 253-267,
1999.

A. Zeller, “Isolating Cause-effect Chains from Computer Programs,”
in Proc. of the International Symposium on Foundations of Software
Engineering (FSE), 2002, pp. 1-10.

C. Parnin and A. Orso, “Are Automated Debugging Techniques Actually
Helping Programmers?” in Proc. of the International Symposium on
Software Testing and Analysis (ISSTA), 2011, pp. 199-209.

X. Xie, Z. Liu, S. Song, Z. Chen, J. Xuan, and B. Xu, “Revisit of
automatic debugging via human focus-tracking analysis,” in Proc. of
the International Conference on Software Engineering (ICSE), 2016, pp.
808-819.

E. Soremekun, L. Kirschner, M. Bohme, and M. Papadakis, “Evaluating
the Impact of Experimental Assumptions in Automated Fault Localiza-
tion,” in Proc. of the International Conference on Software Engineering
(ICSE). 1EEE, 2023, pp. 159-171.

M. Weiser and J. Lyle, “Experiments on Slicing-based Debugging Aids,”

[10]

[11]

[12]

[13

—_

[14]

[15]

[16]

[17]

(18]

in Workshop on Empirical Studies of Programmers (ESP), 1986, pp.
187-197.

M. A. Francel and S. Rugaber, “The Value of Slicing While Debugging,”
Science of Computer Programming, vol. 40, no. 2-3, pp. 151-169, 2001.
S. Kusumoto, A. Nishimatsu, K. Nishie, and K. Inoue, “Experimental

Evaluation of Program Slicing for Fault Localization,” Empirical Software
Engineering (ESE), vol. 7, no. 1, pp. 49-76, 2002.

E. Soremekun, L. Kirschner, M. Bohme, and A. Zeller, “Locating Faults
with Program Slicing: An Empirical Analysis,” Empirical Software
Engineering (ESE), vol. 26, no. 3, pp. 1-45, 2021.

N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating Faulty Code Using
Failure-inducing Chops,” in Proc. of the International Conference on
Automated Software Engineering (ASE), 2005, pp. 263-272.

M. Sridharan, S. J. Fink, and R. Bodik, “Thin Slicing,” in Proc. of
the International Conference on Programming Language Design and
Implementation (PLDI), 2007, pp. 112-122.

H. Wang, Y. Lin, Z. Yang, J. Sun, Y. Liu, J. S. Dong, Q. Zheng, and
T. Liu, “Explaining Regressions via Alignment Slicing and Mending,”
IEEE Transactions on Software Engineering (TSE), 2019.

S. Badihi, K. Ahmed, Y. Li, and J. Rubin, “Responsibility in Context:
On Applicability of Slicing in Semantic Regression Analysis,” in 2023
IEEE/ACM 45th International Conference on Software Engineering
(ICSE). 1EEE, 2023, pp. 563-575.

R. Just, D. Jalali, and M. D. Ernst, “Defects4]: A Database of Existing
Faults to Enable Controlled Testing Studies for Java Programs,” in Proc.
of the International Symposium on Software Testing and Analysis (ISSTA),
2014, pp. 437-440.

B. Korel and J. Laski, “Dynamic Program Slicing,” Information Process-
ing Letters, vol. 29, no. 3, pp. 155-163, 1988.

