
Pruning Unaffected Code in
Equivalence Checking of Program Versions

Sahar Badihi∗, Yi Li†, and Julia Rubin∗
∗The University of British Columbia, Canada, †Nanyang Technological University, Singapore

Abstract—Symbolic execution is a powerful static analysis
technique which can be used for program equivalence checking.
Yet, due to complex programming constructs, such as loops
and non-linear arithmetic, scaling symbolic execution to real
systems remains a challenge. In this paper, we discuss two of
the most prominent approaches for dealing with the scalability
issue when considering equivalence of two subsequent versions
of a program. These approaches leverage the fact that program
versions are largely similar and prune parts of the code that
are not affecting the equivalence of the versions. We discuss
advantages and disadvantages of these approaches and outline
a solution that combines their advantages while mitigating the
disadvantages.

I. INTRODUCTION

Equivalence checking establishes whether two versions of a
program have identical behavior and is used in a variety of tasks,
such as determining the correctness of compiler optimizations
or code refactoring [1]. Functional equivalence – establishing
that two versions of a program produce the same output for
any identical input – is the most popular form of equivalence
used in practice [2].

Symbolic execution – a static program analysis technique
that uses symbolic rather than actual values as program inputs,
explores all possible program execution paths, and computes
the execution result of each path in terms of symbolic inputs –
is often used to implement equivalence checking. The core
idea behind the use of symbolic execution for functional
equivalence checking is to compute a program’s symbolic
summary, which captures the path conditions and effects of
each path [2]. For example, the method log in Figure 1a has
three parameters: currentTime, t, and length, two local variables:
val, and temp and a global variable old, which are represented
by six respective symbolic variables: CT , T , L, V , TMP, and O.
The method has several execution paths; the condition of the
path at Lines 4–6 is (CT -T<100) and the effect is (Ret=O+1).

The symbolic summary of each path is a conjunction of
formulas representing its path condition and effects at the end
of the path; the symbolic summary of a method is simply a
disjunction of all its path summaries. Comparing the symbolic
summaries of two methods can help determine their equivalence
or find a counterexample to demonstrate non-equivalence. More
specifically, the summaries of two methods S1 and S2 are
combined into a formula (¬(S1 ⇐⇒ S2)) and given to a
constraint solver, typically, SAT or SMT. If the formula holds,
there is an assignment that makes the two methods different,
i.e., an equivalence counterexample. Otherwise, there is no
such assignment and thus the methods are equivalent.

 
 

 

(a) Version 1

 
 

 
 
 
 
 
 
 

 
 

(b) Version 2
 

(c) Version 3

Fig. 1: Example program.

Limitations of symbolic execution are well-known: un-
bounded loops and recursion lead to a large number of paths
and the exact number of iterations is difficult/impossible to
determine statically. Thus, most techniques rely on a user-
specified bound for the number of iterations, e.g., two or five.
For the log method in Figure 1a, unrolling the for loop at Lines
8–9 with the bound of five produces five execution paths, each
with its corresponding condition and effect.

Bounded equivalence checking is not as accurate as full
equivalence checking as it might miss feasible behaviors, e.g.,
in the sixth execution of the loop. Complex expressions in
summaries, such as non-linear integer arithmetic, also hinder
equivalence checking as they lead to expressions in summaries
that are intractable for modern constraint solvers.

To deal with these problems, a variety of techniques leverage
information about changed code parts to simplify the produced
summaries [2], [3], [4], [5]. We discuss these techniques and
outline their limitations in Section II. We propose an approach
to mitigate some of these limitations in Section III.

II. ANALYSIS OF EXISTING SOLUTIONS

Differential symbolic execution (DSE). Person et al. [2]
is one of the first to use symbolic execution for program
equivalence checking. DSE uses uninterpreted functions, i.e.,
functions that are free to take any value, to encode code blocks
that are unchanged between two methods, to reduce the scope
of the analysis.

For example, consider the two versions of the log method
in Figures 1a and 1b, V1 and V2. The change between the
versions is the replacement of the “magic number” 1 at Line 5
of V1 with the global variable base introduced at Line 1 of V2.
In the “naïve” approach to constructing symbolic summaries
of these two methods, one needs to bound the loop (Lines 8–9)
to a user-specified depth, say five, producing summaries that
contain six clauses each: one for the if part of the log method
and five for the else part.

Yet, DSE identifies the common code block between the two
versions of these methods (Lines 8–11 in Figures 1a and 1b),



collects all variables that are defined or changed in the block,
e.g., val, temp, and old, and represents each as an uninterpreted
functions which accepts as inputs all variables that are used in
the block, e.g., length, val, and old. That is, the common code
in this example is represented by three uninterpreted functions,
UFval(L, V,O), UFtemp(L, V,O), and UFold(L, V,O). The
return statements (Line 12 in both figures), even if common,
are not converted to uninterpreted functions as they capture the
effect of the entire path and are required for the summary. The
equivalence checking formula produced by DSE then consists
of only two paths for the method log in each V1 and V2:
¬
((

(CT − T < 100 ∧O == 1 ∧Ret = 1+O )∨

(CT − T > 100 ∧ IP (L, V,O) ∧Ret = UFval(L, V,O) + UFtemp(L, V,O) )
)
⇐⇒(

(CT − T < 100 ∧B == 1 ∧O == 1 ∧Ret = B+O )∨

(CT − T > 100 ∧ IP (L, V,O) ∧Ret = UFval(L, V,O) + UFtemp(L, V,O) )
))

Even in the presence of uninterpreted functions, this formula
can be solved by an SMT solver because the solver uses the
equality logic of uninterpreted functions, i.e., it assumes that
given the same inputs, instances of the same function always
return the same value. In this case, the formula evaluates
to false, meaning that the two methods are equivalent. The
verification result produced by DSE is thus “stronger” and more
accurate than that of the “naïve” checker with loop bounding.

However, when comparing V2 to the next revision of the
program, V3 in Figure 1c, where the return value at Line
12 was modified, DSE will consider Lines 1–2, 5, and 8–11
common. The variables used at these line will be represented
by uninterpreted functions, resulting in the summary specified
below:
¬
((

(CT − T < 100 ∧ IP (B,O) ∧Ret = UFval(B,O) )∨

(CT − T > 100 ∧ IP (L, V,O) ∧Ret = UFval(L,V,O) +UFtemp(L,V,O) )
)
⇐⇒(

(CT − T < 100 ∧ IP (B,O) ∧Ret = UFval(B,O) )∨

(CT − T > 100 ∧ IP (L, V,O) ∧Ret = UFval(L,V,O) +UFbase())
))

The first path in both versions will be judged equivalent due
to equality of uninterpreted function UFval(B,O). To solve the
second path, one needs to determine whether UFtemp(L, V,O)
can be equal to UFbase(), which requires full symbolic
summaries of these functions.
IMPacted Summaries (IMP-S). Instead of identifying com-
mon code blocks, Bakes et al. [3] propose a technique for
pruning program paths that are not impacted by the changed
code. It performs backward and forward program slicing to
identify all such statements, e.g., statements at Lines 8–13 in
Figure 1b. It then prunes all clauses of the full equivalence
checking formula that do not contain impacted statements. The
authors prove that such pruning grantees correct equivalence
checking result for any given bound.

For Figures 1a and 1b, the impacted statements are at Lines
1–2 and 4–6 only. Thus, the final equivalence formula given
below, again, evaluates to false, proving that the methods are
equivalent without performing any loop bounding.
¬
(
(CT − T < 100 ∧O == 1 ∧Ret = 1+O) ⇐⇒

(CT − T < 100 ∧B == 1 ∧O == 1 ∧Ret = B+O)
)

However, when comparing the methods in Figures 1b and 1c,
the statement at Line 9, inside the for loop, is impacted. IMP-S

thus cannot prove equivalence without bounding the loop, as
the “naïve” approach.

Both ModDiff [4] and CLEVER [5] perform path pruning
similar to IMP-S, scaling the analysis to work in an inter-
procedural manner, either bottom-up or top-down. They exhibit
behaviors similar to IMP-S for both examples in Figure 1.

III. PROPOSED IDEA

We observe that while IMP-S considers the statement in the
for loop of Figure 1c (Line 9) as impacted, it is not affecting
the equivalence of the methods as this statement is (a) common
and (b) has the exact same effect on symbolic summaries in
both versions of the method. As such, the value computed by
this statement can be represented by an uninterpreted function
without hindering the “solvability” of the final equivalence
checking formula. As discussed in Section II, that is not true
for all the common code, as representing values computed at
Lines 1 and 10 with uninterpreted functions will lead to an
unsolvable summary.

The main idea proposed in this paper is thus to identify
and represent with uninterpreted functions only common code
that is not affecting the summaries. To this end, first, all
impacted statements are calculated. Then, we identify all
impacted statements that are common between the versions.
This set of statements is further divided into two: affected
and unaffected. The unaffected statements can be represented
by uninterpreted functions, improving the scalability and
applicability of the equivalence checking process for cases
when impacted, common, unaffected statements contain loops
and non-linear arithmetic.

For the example in Figures 1b and 1c, such procedure will
produce the summary specified below, allowing us to establish
equivalence without bounding loops, which none of the existing
approaches can do.
¬
(
(CT − T > 100 ∧O == 1 ∧Ret = UFval(L,V,O) +O ) ⇐⇒

(CT − T > 100 ∧B == 1 ∧Ret = UFval(L,V,O) +B )
)

At the time of writing, we implemented a naïve process for
separating affected and unaffected statements: it first abstracts
all common impacted statements and then iterative refines
them when an SMT solver requires such a refinement. We
showed that the approach works on a number of examples.
As future work, we intend to explore more robust approaches
for making such distinction a priori, without reverting to an
SMT solver. We look forward to discussing this topic at the
FMCAD Student Forum.

REFERENCES

[1] B. Churchill, O. Padon, R. Sharma, and A. Aiken, “Semantic Program
Alignment for Equivalence Checking,” in Proc. of PLDI’19.

[2] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu, “Differential
Symbolic Execution,” in Proc. of FSE’08.

[3] J. Backes, S. Person, N. Rungta, and O. Tkachuk, “Regression Verification
Using Impact Summaries,” in Proc. of SPIN Workshop on Model Checking
of Software’13.

[4] A. Trostanetski, O. Grumberg, and D. Kroening, “Modular Demand-driven
Analysis of Semantic Difference for Program Versions,” in Proc. of SAS’17.

[5] F. Mora, Y. L. Li, J. Rubin, and M. Chechik, “Client-specific Equivalence
Checking,” in Proc. of ASE’18.


	Introduction
	Analysis of Existing Solutions
	Proposed Idea
	References

