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Abstract
In this work we describe a methodology for develop-
ing simple and robust power models using performance
monitoring events for AMD Quad-core systems running
OpenSolarisTM. The basic idea is correlating power con-
sumption of a benchmark program with its performance
(a measure of performance monitoring events). By using
applicable model selection and model assessment tech-
niques, we developed a simple and robust 2-predictor
linear power model, which was shown to predict the
power consumption of a testing set of benchmarks with
better than 95% accuracy on average after being trained
on a different set of benchmarks. Unlike previous power
models, our model works across multiple CPU frequen-
cies and relies on only two performance events available
on most modern CPUs.

1 Introduction
The objective of this paper is to present a methodology
for developing simple and robust system power models
by correlating system power consumption with perfor-
mance monitoring events. Knowledge of system power
consumption is needed by system administrators to mon-
itor system power statistics, by operating system design-
ers to develop power-aware scheduling algorithms and
dynamic power management policies. Unfortunately,
hardware sensors for observing power consumption are
not available in most modern systems. Therefore, sys-
tem designers are relying on temperature sensors for
observing power consumption. However, because of
the thermal inertia in microprocessor packaging, detec-
tion of temperature changes may occur significantly later
than the power events that caused them [1]. Therefore,
it is extremely helpful to use a measure of performance
counters as a proxy of power consumption instead of the
inaccurate power observations from the temperature sen-
sors.

Although various power models based on perfor-
mance event counters have been demonstrated by other
researchers [1–5], we improve on the previous work by
(1) providing a detailed methodology for deriving a per-
formance model for the target hardware, (2) developing
a single model that works for all available CPU frequen-
cies in the system (previous work required a different

model for each frequency), and (3) developing a model
that works well with only two performance events (pre-
vious work relied on many more events). Through exten-
sive validation on SPECCPU benchmarks, we show that
the models developed based on our methodology can es-
timate power consumption with better than 95% average
accuracy. That is, on average the measured power values
are within five percent of the estimated values.

One of the goals for our future work is to develop
algorithms for smart Dynamic Voltage and Frequency
Scaling (DVFS) based on our power prediction method-
ology. Therefore, we focused on predicting the power
consumption of the CPU/memory subsystem, which is
most sensitive to changes in the CPU frequency. We
started by selecting 8 CPU performance events that were
used in models described in previous work. Then, we
derived a simple 2-predictor model (based on CPU un-
haulted cycles and last level cache misses) by applying
statistical model selection and model assessment tech-
niques. Through extensive experimentation we found
that this model has a better prediction accuracy on
the standard industry benchmarks (those that stress the
CPU/memory subsystem): SPECCPU 2000, SPECCPU
2006, and SPECjbb2005. Also, since fewer predictors
are used, the derived model is less prone to over-fitting
and is more likely to be robust on the new data. As a re-
sult, our methodology has a good portability across mod-
ern x86 hardware platforms since all of them are likely
to have the two event counters we chose.

This paper is structured as follows: Section 2 gives
a brief description of related work, Section 3 explains
the methodology and the experimental environment, and
also presents our results. Finally, Section 4 presents con-
clusions and discusses future work.

2 Related Work
The idea of predicting power consumption from perfor-
mance events is not new. Bellosa et al. [3] developed a
CPU power model for thermal management with 8 pre-
dictors in a Pentium 4 system. Bircher et al. [1] devel-
oped power models for each subsystem (CPU, Memory,
IO, Disk) of an Intel XScale System. Gilberto Contr-
eras et al. [2] developed different models for different
CPU frequencies in an Intel PXA255 system. Stoess



et al. [4] and Lee et al. [5] developed power models
for hypervisor-based virtual machines and for run-time
temperature sensing in high-performance processors re-
spectively. Snowdon et al. [6] developed 4-predictor
power models for an Intel PXA255 system. Canturk
Isci et al. [7] developed techniques to characterize power
phases using performance event counters and showed
that techniques using performance counters provide bet-
ter power behavior than code-oriented techniques.

Our work is different from the previous studies in
terms of the following contributions:

• It demonstrates the use of a statistical methodology
for developing simple (with few predictors) power
models across different CPU frequencies and dif-
ferent benchmarks using appropriate model selec-
tion and model assessment techniques.

• We show how to develop a single model for all
frequencies supported by the CPU. Therefore, it is
frequency-agnostic: a feature that is not presented
in the previous work.

• Our methodology for model derivation is designed
to be portable across most modern x86 hardware
platforms. That is, the same performance events
are to serve as inputs to the model, regardless of the
platform. So far we have demonstrated this porta-
bility between AMD Shanghai (server) and Phe-
nom (desktop) systems, and our next goal is to ap-
ply it to a wider range of hardware platforms.

3 Methodology
The basic ideas behind the methodology we used for de-
riving the power prediction models are described below.

Step 1: Develop a multiple linear regression model
with all reasonable predictors (performance mon-
itoring events supported by the system) across all
CPU frequencies.

Step 2: Assess the model with “leave-one-out cross-
validation“ (CV) test (whose details are described
later in the paper) and also against a separate test
data set, and measure prediction accuracy with any
reasonable metric.

Step 3: Rank the accuracy of predictors using “Relative
Importance Measures” (RIM) (or any other statisti-
cal technique designed for this purpose).

Step 4: Perform model selection by choosing the most
effective predictors, develop a model, and assess it
as described in step 2.

Step 5: Based on the trade-off between prediction accu-
racy and the number of predictors, either choose the
model obtained in step 4 or choose different predic-
tors based on their ranking in step 3.

The “model selection” (steps 3 to 5) significantly
reduces the multi-collinearity [9, 10] in the model in-

Table 1: Performance Events
Event Description
instructions The number of instructions retired. This

counter includes exceptions and interrupts.
unhalted
cycles

The number of cycles that the CPU is not in
a halted state.

mispredicted
branches

The number of branch instructions retired, of
any type, that are not correctly predicted.

branch
instructions

The number of branch instructions retired.

L2-cache
misses

The number of memory access requests that
missed in the L2 cache. The AMD processors
used in our experiments have a separate L2
cache for each CPU core.

L3-Cache
misses

The number of L3 cache misses for accesses
from each core. All cores share the L3-cache
(last level cache) in the AMD systems.

dispatch
stalls

The number of processor cycles when the de-
coder was stalled for any reason.

micro-ops The number of micro-ops retired.

puts. Multi-collinearity refers to a situation in which two
or more predictors in a multiple regression model are
highly correlated. The best regression models are those
in which the predictor variables each correlate highly
with the dependent (outcome or target) variable but cor-
relate only minimally with each other. Such a model is
often called “low noise” and is expected to be statisti-
cally robust [10].

Table 2: Eight predictors and their short names

instructions/tick (inst) unhalted-cycles/tick (unhalted)
mispre-branches/tick (mispred) retired-branches/tick (retired)
L2 misses/tick (L2) L3 misses/tick (L3)
dispatch stalls/tick (stalls) retired micro-ops/tick (uops)

Table 3: AMD Quad-core 10h Family systems
System CMOS CPUfrequency

(GHz)
L3 Memory

Shanghai 45nm 2.6, 1.9, 1.4, 0.8 6MB 4GB
Phenom 65nm 2.4, 1.2 2MB 2GB

Experimental Setup and Benchmarks: We instru-
mented two AMD Quad-core 10h family processor
based systems (shown in Table 3) equipped with
OpenSolarisTMfor our experiments. We tested our
methodology through extensive experimentation on
SPECCPU benchmark programs. All together, a total
of 31 benchmarks were selected for the experiments: 22
SPECCPU 2000 integer and floating-point benchmark
programs, 8 SPECCPU 2006 benchmark programs, and
SPECjbb2005. As these benchmarks only exercise CPU
and memory, the variation in the power consumed by



CPU/memory subsystem can be measured by measuring
the whole-system power (in watts) taken from the power
supply unit. We use “benchmark program” and “work-
load” interchangeably throughout this paper. We chose
the eight performance monitoring events shown Table 1
as a compilation of events used by other researchers in
the field.

Data Collection: We sampled the performance coun-
ters with a 300 millisecond time interval using the cpu-
track command [16], and we used a data acquisition sys-
tem (equipped with the power meter Extech #380801)
to measure the power samples every 300 milliseconds.
We tried sampling rates higher than 300 milliseconds but
that increased the sampling jitter. For simplicity we set-
tled on sampling every 300 milliseconds.

The cputrack command allows one to read only four
events at a time as there are only four counters in the
AMD processor (which can count any events we spec-
ify). We ran each benchmark eight times, first four times
for the first four events and the next four times for the re-
maining four events. The eight runs for each benchmark
were then combined into 4 runs, each containing data for
all eight performance events. We derived the predictors
(inputs for the model) by dividing the total number of
events counted with each counter by the execution time
of the workload in terms of clock ticks. The clock tick
used here is a frequency-independent metric: the dura-
tion of the clock tick equals the length of the processor
cycle when the processor runs at the highest frequency.

Each run is considered as a data point. It is repre-
sented by a 9-tuple containing 8 predictors and the ob-
served power as the target variable. We gathered data
for 22 SPECCPU 2000 benchmark programs at four fre-
quency levels (shown in Table 3), giving us 352 (22*
4 frequency levels * 4 runs) total Shanghai data points.
Likewise, we gathered data for the Phenom system. Phe-
nom system supports two CPU frequency levels, giving
us 176 (22*2 frequency levels*4 runs) total Phenom data
points.

Developing the Power Model: We used the R
lm() [12] method to develop the power models based
on the collected data. The R is a programming language
for statistical computing and the lm() method is used
to fit linear regression models (derive the optimal inter-
cept and coefficients that multiply the input variables).
Phenom and Shanghai 8-predictor models derived based
on the collected SPECCPU 2000 data are shown below.
Here ‘Sh’ and ‘Ph’ represent the target parameter power
of Shanghai and Phenom models respectively, and the
predictors are shown as single and double letters of the
short names as per Table 2.
Sh = 56 + (3.5 ∗ in) + (40 ∗ un) + (−183 ∗ m) + (−4 ∗
r) + (53 ∗ L2) + (705 ∗ L3) + (−13 ∗ s) + (−4 ∗ u)
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Figure 1: PAAE of the Shanghai 8-predictor model in
the CV test on SPECCPU 2000
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Figure 2: PAAE of the Shanghai 8-predictor model
tested on SPECCPU 2006 and SPECjbb2005

Ph = 65 + (19 ∗ in) + (51 ∗ un) + (−298 ∗ m) + (12.5 ∗
r) + (−298 ∗ L2) + (2089 ∗ L3) + (−18 ∗ s) + (−25 ∗ u)

Model Assessment: We used the leave-out-one cross-
validation (CV) [8] test to assess the prediction qual-
ity of the model derived on the SPECCPU 2000 bench-
marks. In this test, the function approximator is trained
on all the data except for one point and a prediction is
made for that point. We also performed model assess-
ment by testing the model against new test data: SPEC-
CPU 2006 and SPECjbb2005 benchmarks. The total
system power measured across all the frequencies and
the benchmarks varies between 66W and 94W.

The percentage average absolute prediction error
(PAAE) [1] was computed for each data point in the test
set:

PAAE =

PN
i=1

|Mi−mi|
mi

N
× 100 (1)

where N = 4 since we collected four data points for
the SPECCPU 2000 benchmark, M is the modeled (pre-



dicted) value and m is the measured value.
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Figure 3: PAAE of the Phenom 8-predictor model in the CV
test on SPECCPU 2000
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Figure 4: PAAE of the Phenom 8-predictor model tested on
SPEC CPU2006 and SPEC jbb2005

As shown in Figures 1 and 2, the Shanghai 8-predictor
power model has a better than 96% accuracy for most
of the benchmarks in the CV test on SPECCPU 2000 as
well as on the new test data. As shown in Figures 3 and 4
shows that the Phenom 8-predictor model has 95% pre-
diction accuracy on average for most of the benchmarks.

Model Selection: Finding the Best Predictors In this
section we describe the steps that we followed to se-
lect the best model from the 28 different models that
could be formed using a subset of the 8 initially cho-
sen predictors. The RIM relaimpo() [11] method
was used to rank the predictors in terms of their effec-
tiveness by computing the R-square value for each pre-
dictor (a higher value implies a greater effectiveness).
As shown in Figure 5, the RIM method shows (in terms
of R-squared) that L3 and unhalted are the most impor-
tant predictors. We also used all-subsets-regression [13]
method to find the best model among the 28 models, and
it showed that the model with unhalted cycles and L3-
cache misses (last-level cache misses) is the best model.
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Figure 5: Ranking of predictors for the Phenom power
model using the RIM (lmg) method
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Figure 6: PAAE of the Shanghai 2-predictor model in
the CV test on SPECCPU 2000

This makes sense from a computer architecture point
of view. Power consumption depends on the CPU clock
frequency and on the degree of utilization of the CPU
pipeline exhibited by a particular workload. The num-
ber of the CPU unhalted cycles correlates with the CPU
frequency (the higher the frequency the more unhalted
cycles occur per unit of time), while the L3 cache misses
correlate with the pipeline utilization (a memory access
occurs for each last level cache miss, which idles the
CPU pipeline). Therefore, these two events are good
heuristics for estimating the power consumption of the
CPU/memory subsystem.

Next, we developed models with these two predictors,
shown in equations (2) and (3) for the Shanghai and the
Phenom platforms:

PShanghai = 56 + (31 ∗ un) + (677 ∗ L3). (2)

PPhenom = 65 + (33 ∗ un) + (1667 ∗ L3) (3)

Figures 6 and 7 show that the Shanghai 2-predictor
model provides a greater than 96% prediction accuracy
in the CV and the test-data tests for most of the bench-
marks, and it also outperforms the 8-predictor model for
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Figure 7: PAAE of the Shanghai 2-predictor model
tested on SPECCPU 2006 and SPECjbb2005
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Figure 8: PAAE of the Phenom 2-predictor model tested on
SPEC CPU2006 and SPEC jbb2005

some of the selected benchmarks. Figure 8 shows that
the Phenom 2-predictor model also provides a greater
than 95% prediction accuracy on the test data for most
of the benchmarks. Its accuracy in the CV tests is similar
to that of the 8-predictor model.

The benefit of using the two predictors discovered us-
ing the RIM relaimpo() method can also be seen
using the multicollinearity tests. We used the “Variance
Inflation Factor” (VIF) method [9,10] to observe the cor-
relation strength among the predictors. If VIF > 5,
then the variables are highly correlated. VIF test on
the 8-predictor model shows that VIF > 30 for most
of the predictors. However it showed that there is no
multi-collinearity problem in the 2-predictor models as
VIF = 1. From these VIF tests, we conclude that the
2-predictor model is likely to be more robust than the
8-predictor model (does not overfit the training data and
has a better expected prediction accuracy on the new test
data)

Figures 9, 10, 11 and 12 show the visual summary of
how the 2-predictor and the 8-predictor models perform
on different benchmarks and show that the 2-predictor
model actually outperforms the 8-predictor model on

Figure 9: Twenty two benchmarks (of SPECCPU 2000
in CV test), plotted as points with the PAAE of Shang-
hai 8-predictor model as the x-axis and the PAAE of the
Shanghai 2-predictor model as the y-axis.

Figure 10: Nine benchmarks (SPECCPU 2006 and
SPECjbb2005 as new test data), plotted as points with
the PAAE of Shanghai 8-predictor model as the x-axis
and the PAAE of the Shanghai 2-predictor model as the
y-axis.

some of the benchmarks. The two regions (shown as
shaded and non-shaded in the figures) represent the 2-
and the 8-predictor models. The x-coordinate of each
dot represents PAAE of the 8-predictor model and the
y-coordinate represents PAAE of the 2-predictor model
when fitted to the same benchmark. If the dots mostly lie



Figure 11: Twenty two benchmarks (of SPECCPU 2000
in CV test), plotted as points with the PAAE of Phenom
8-predictor model as the x-axis and the PAAE of the Phe-
nom 2-predictor model as the y-axis.

in the 2-predictor model region, then its PAAE is larger
than that of the 8-predictor model on this set of bench-
marks, and vice versa.

For example, Figures 9 and 11 show that in the
CV test, the dots are evenly distributed in both the
regions, which means that the 2-predictor model per-
forms approximately the same as the 8-predictor one for
both Shanghai and Phenom. Figure 10 shows that the
Shanghai 8-predictor model performs better than the 2-
predictor model for 6 benchmarks out of 9 on the new
test data. On the other hand, Figure 12 shows that the
Phenom 2-predictor model performs better than the 8-
predictor model for 6 benchmarks out of 9. This demon-
strates that the 2-predictor models are as good as the 8-
predictor models, portable, and likely to be more robust.

The figures also show that the power models built for
the Shanghai are more accurate than those built for the
Phenom, which can be explained by the fact that Shang-
hai has a larger last-level cache than Phenom. As a re-
sult, benchmarks running on Shangai will generally ex-
perience fewer cache misses, and hence the variation in
their power consumption will be smaller, which allows
statistical models to fit the power data more closely for
Shanghai than for Phenom.

4 Conclusions and Future Research
We presented a methodology for developing simple
(with a smaller number of most significant predic-
tors) and robust power models across different CPU
frequencies and different benchmarks using applicable

Figure 12: Nine benchmarks (SPECCPU 2006 and
SPECjbb2005 as new test data), plotted as points with
the PAAE of Phenom 8-predictor model as the x-axis and
the PAAE of the Phenom 2-predictor model as the y-axis.

model selection and model assessment techniques. This
methodology was tested on the Shanghai (server) and
Phenom (desktop) AMD platforms, and the models esti-
mated power consumption with 95% accuracy for most
of the selected benchmarks.

By deriving a good model with just 2 predictors (un-
halted cycles and L3-cache miss events), our methodol-
ogy showed another strength in terms of portability, as
these two events are available on all modern x86 hard-
ware platforms. It is obvious that instrumentation with
8 performance monitoring events is costlier than instru-
mentation with 2 performance monitoring events. More-
over, since only four performance monitoring registers
are available on the AMD Phenon and Shanghai ma-
chines, we cannot monitor more than four events at a
time on these machines. Therefore, it is clear that build-
ing power models with four or less predictors is simpler
and more accurate than building models with more than
four predictors on this kind of machines.

One important limitation of the models we developed
using the two predictors mentioned above is that they
are expected to work well only for the workloads that
stress CPU and main memory. However, other events
that reflect the usage of disk, I/O, chipset, etc. can be
added to the original set of predictors. After that, the
model selection technique described in Section 3 can be
directly applied to find the best model for predicting the
power consumption of any particular component or the
total system’s power consumption.

In the future, we plan to develop power models for



workloads that also use I/O devices (disk and network)
and test the portability of this methodology to other plat-
forms (Intel, etc). The Shanghai and Phenom models
give large prediction errors (around 9%) for a few par-
ticular benchmarks. We will investigate and address this
issue in our future work.
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