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Abstract

Asymmetric multicore processors (AMP) consist of cores exposing
the same instruction-set architecture (ISA) but varying in size, fre-
quency, power consumption and performance. AMPs were shown
to be more power efficient than conventional symmetric multicore
processors, and it is therefore likely that future multicore systems
will include cores of different types. AMPs derive their efficiency
from core specialization: instruction streams can be assigned to
run on the cores best suited to their demands for architectural re-
sources. System efficiency is improved as a result. To perform
effective matching of threads to cores, the thread scheduler must
be asymmetry-aware; and while asymmetry-aware schedulers for
operating systems are a well studied topic, asymmetry-awareness
in hypervisors has not been addressed. A hypervisor must be
asymmetry-aware to enable proper functioning of asymmetry-
aware guest operating systems; otherwise they will be ineffective
in virtual environments. Furthermore, a hypervisor must ensure
that asymmetric cores are shared among multiple guests in a fair
fashion or in accordance with their priorities.

This work for the first time implements simple changes to
the hypervisor scheduler, required to make it asymmetry-aware,
and evaluates the benefits and overheads of these asymmetry-
aware mechanisms. Our evaluation was performed using an open
source hypervisor Xen on a real multicore system where asymme-
try was emulated via CPU frequency scaling. We compared the
asymmetry-aware hypervisor to default Xen. Our results indicate
that asymmetry support can be implemented with low overheads,
and resulting performance improvements can be significant, reach-
ing up to 36% in our experiments. Most performance improvements
are derived from the fact that an asymmetry-aware hypervisor en-
sures that the fast cores do not go idle before slow cores and from
the fact that it maps virtual cores to physical cores for asymmetry-
aware guests according to the guest’s expectations. Other benefits
from asymmetry awareness are fairer sharing of computing re-
sources among VMs and more stable execution times.

Categories and Subject Descriptors D.4.1 [Process Manage-
ment]: Scheduling

General Terms Algorithms, Design, Experimentation, Manage-
ment, Measurement.

Keywords multicore processors, asymmetric, heterogeneous, schedul-

ing algorithms, hypervisor, virtual machine monitor
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1. Introduction

Asymmetric multicore processors (AMP) consist of cores expos-
ing the same instruction-set architecture (ISA) but delivering dif-
ferent performance [1, 11]. The cores of an AMP system differ in
clock frequency, power consumption, and possibly other microar-
chitectural features. A typical asymmetric processor would consist
of several fast cores (large area, high clock frequency, complex out-
of-order pipeline, high power consumption) and a large number of
slow cores (small area, low clock frequency, simple pipeline, low
power consumption).

Compared to symmetric multicore processors (SMP), AMPs
better cater to diversity of the workload (in terms of demand for
architectural resources), and in doing so they can deliver better per-
formance per watt and per area [7, 11, 14]. For example, fast cores
are best suited for CPU-intensive applications that can efficiently
utilize these cores’ “expensive” features, such as the superscalar
pipeline and the multiplicity of functional units. Slow cores, on the
other hand, can be dedicated to applications that use the CPU inef-
ficiently, for example as a result of frequent stalls on memory re-
quests: these memory-intensive applications can run on slow cores
without significant performance loss relative to fast cores, but con-
suming much less energy [11]. This specialization of computing
resources, which is typically aided by an asymmetry-aware thread
scheduler [3, 12, 19], promises to make AMP systems significantly
more energy efficient than SMP systems (one study reported up to
60% energy savings [11]). For this reason they are an extremely
attractive platform for data centers, where energy consumption is a
crucial concern [9, 18].

Unfortunately, virtualization software, which is typically used
in data centers to provide safe multiplexing of hardware resources,
is not asymmetry-aware. This prevents using AMP systems in an
effective way. To ensure that asymmetric hardware is well uti-
lized, the system must match each thread with the right type of
core: e.g., memory-intensive threads with slow cores and compute-
intensive threads with fast cores. This can be accomplished by
an asymmetry-aware thread scheduler in the guest operating sys-
tem [17, 3, 12, 19], where properties of individual threads can be
monitored more easily than at the hypervisor level. However, if the
hypervisor is not asymmetry-aware it can thwart the efforts of the
asymmetry-aware guest OS scheduler, for instance if it consistently
maps the virtual CPU (vCPU) that the guest believes to be “fast” to
a physical core that is actually slow.

An equally important goal is supporting fair sharing of fast
cores. This is relevant for both asymmetry-aware guests as well
as for asymmetry-unaware (legacy) guests. As the number of cores
on a single chip increases, scenarios where multiple VMs run on
the same hardware will be more common. In these cases, providing
equal sharing of resources with varying energy costs and perfor-
mance characteristics will be essential for delivering stable perfor-
mance and fair accounting of CPU utilization.



Complementary to fair sharing, is the ability to give a partic-
ular VM (or VMs) a higher priority in using scarce and “expen-
sive” fast cores: in scenarios where one virtual machine is more
“important” than others a hypervisor should provide this flexibility.
Finally, when performance is the top concern, an asymmetry-aware
hypervisor must ensure that fast cores do not go idle before slow
cores. We found that this feature alone can lead to significant per-
formance gains.

The goal of our work is the design, implementation and eval-
uation of asymmetry awareness in a virtual machine hypervisor.
We are not aware of previous attempts to address this subject. In
conducting our study we were interested in answering the follow-
ing question: How to implement efficient mechanisms for asym-
metry awareness in hypervisors and to what extent do they af-
fect performance and efficiency of virtual machines running atop
asymmetric systems? To that end, we implemented the following
asymmetry-aware features in the Xen hypervisor: fair sharing of
fast cores among all vCPUs in the system; support for asymmetry
aware guests; a mechanism for controlling priority of VMs in us-
ing fast cores; a mechanism ensuring that fast cores never go idle
before slow cores. These mechanisms enable better performance
relative to an asymmetry-unaware hypervisor and avoid the unde-
sirable consequences of asymmetry unawareness.

Our mechanisms for asymmetry distribute CPU cycles on fast
and slow cores among vVCPUs according to the fairness policy,
priorities, and other considerations. This is accomplished by peri-
odic migrations of vCPUs among physical cores of different types.
To avoid performance loss, these migrations must be infrequent.
Cross-core migrations cause the vCPUs to lose the cache state ac-
cumulated on the old core, and the performance penalty due to this
loss will be especially large if the abandoned state belongs to a
last-level cache, such as the L2 or L3 cache. The migrations in
our system are performed not more frequently than once every 30
milliseconds per vCPU (for non-1/0-bound workloads), and so the
overheads from migration are small.

We evaluated our system AASH — an Asymmetry Aware Sched-
uler for Hypervisors implemented in Xen — on real multicore hard-
ware where asymmetry was emulated by setting the cores to run at
different clock frequencies. As the baseline for comparison we used
the default Xen hypervisor, whose scheduler is not asymmetry-
aware. For evaluation we used primarily scientific applications, fo-
cusing on those that perform little I/O, since these applications are
especially sensitive to optimizations related to allocation of CPU
resources. Furthermore, scientific applications are increasingly ex-
ecuted in data centers via so-called “cloud” services [6, 20] or other
initiatives, such as West Grid. Our evaluation provides insight into
potential impact of asymmetry-awareness in hypervisors. We found
these benefits to be quite significant. We observed performance im-
provements (of up to 36%) relative to an asymmetry-unaware hy-
pervisor, reduced variance in execution time, and a fairer distribu-
tion of computing resources among VMs. At the same time, perfor-
mance degradation from asymmetry support was small, never ex-
ceeding 3%. We conclude that (1) neglecting asymmetry awareness
in hypervisors can lead to measurable performance sacrifices for
both single-VM and multi-VM workloads, regardless of whether
the guest is asymmetry-aware or not; (2) asymmetry awareness can
be implemented via simple and effective mechanisms, and thus the
cost of supporting it is low.

The rest of this paper is organized as follows. Section 2 de-
scribes the components of asymmetry-aware aware support avail-
able in AASH. Section 3 describes the implementation of AASH
in Xen. Section 4 presents the experimental results. Section 5 dis-
cusses related work. Section 6 summarizes our work and presents
conclusions.

2. Features of AASH

We assume a system with two core types: fast and slow. Fast cores
are typically characterized by a large area, high clock frequency,
complex superscalar out-of-order pipeline and high power con-
sumption. Slow cores typically use less area, have a lower clock
frequency and a relatively simple pipeline, and consume a lot less
power. The reason for assuming only two core types is that this
structure is mostly likely to be adopted in future AMP systems. Ac-
cording to a study by Kumar et al. [11], supporting only two core
types is sufficient for achieving most of the potential of asymmetric
designs.

A scheduler running on asymmetric hardware must provide
several features unique to this type of systems. If the goal of the
user is to maximize the system’s overall efficiency, the scheduler
must ensure that the cores of different types are allotted to threads
that use these cores most efficiently. If fairness is desired, the cores
of different types should be shared among the running entities
equally. Finally, if some VMs are more “important” than others,
the scheduler should ensure that they receive a higher share of
premium fast cores. Our scheduler AASH includes the mechanisms
addressing these goals.

Asymmetry-aware thread schedulers in operating systems typ-
ically monitor individual threads to determine their relative bene-
fit, or efficiency, in running on cores of different types [3, 12, 19].
We believe that these thread-aware algorithms belong to the op-
erating system rather than a hypervisor. Implementing them in a
hypervisor requires monitoring thread context switches within the
guest OS (in order to learn properties of individual threads), and
is thus cumbersome. Furthermore, if the OS is already performing
asymmetry-aware scheduling there is no need to replicate this work
in the hypervisor. As a result, we decided that instead of copying
asymmetry-aware OS algorithms in the hypervisor, the hypervisor
should provide the support for asymmetry-aware guests necessary
for them to carry out their policies.

In the rest of this section we describe the mechanisms in AASH
that serve to support asymmetry. There are three key mechanisms:
(1) support for fair sharing of fast physical cores (and by extension
of slow cores) among virtual CPUs, (2) support for asymmetry-
aware guest operating systems, and (3) support for priorities in
allocating fast-core cycles among vCPUs.

2.1 Fair sharing of physical fast cores among virtual CPUs

Hypervisors typically run multiple guests on the same hardware.
Fair and predictable sharing of hardware resources is crucial in this
environment. First of all, it simplifies accounting when CPU cycles
have unequal “cost” depending on if they were used on a fast or
on a slow core. Second, lack of predictable distribution of CPU
time on fast and slow cores leads to unpredictable and unstable
performance [2]. To aid in resolution of these problems, AASH
ensures that the fast physical cores are shared equally among all
virtual CPUs. In our system, a VM’s share of fast-core cycles is
proportional to the number of vCPUs that this VM contains, and
each vCPU within a given VM gets the same share of fast-core
cycles as other vCPUs in the system. An alternative way to share
fast-core cycles is to divide them evenly among VMs rather than
vCPUs, and this change can be easily made in our scheduler. In
the current implementation, however, we decided to divide the fast-
core cycles among vCPUs, since in that case the fast-core cycles are
given to a VM in proportion of the computing resources it demands
(its number of vCPUs).

In addition to improving fairness, fair sharing of fast cores
improves performance of certain parallel applications, because it
equally accelerates all virtual CPUs. As a result, resources are
distributed among the threads in a more balanced fashion.



In addition to fairly sharing fast cores, AASH ensures that fast
cores do not go idle before slow cores.

2.2 Support for asymmetry-aware guest operating systems

AASH ensures deterministic mapping of virtual CPUs of a particu-
lar type to physical cores of the same type. In a virtualized system
running multiple guests, each guest is allotted a fair share of cy-
cles on fast physical cores. These fast-core cycles are allocated to
the vCPU that the guest considers to be “fast”, and the excess, if
any, is allocated to the vCPUs considered “slow”. If multiple “fast”
vCPUs are competing for physical fast cores, and if the number of
“fast” vCPUs exceeds the number of fast physical cores, the fast-
core cycles will be equally shared among those vCPUs. In that case,
a “fast” virtual CPU cannot be mapped to the fast physical core
100% of the time to ensure that other competing vCPUs receive
a fair share of their cycles on fast cores, and as a result will be
mapped for part of the time to a slow physical core.

Another useful part of support for asymmetry-aware guests
would be the capability enabling the guests to discover the types of
underlying physical cores. This can be done by virtualizing access
to model specific registers (MSR), which are typically used to dis-
cover the features of CPUs. Implementation of this mechanism can
be performed more comprehensively when actual AMP systems
become available, and so we defer this task for future work.

2.3 Support for priorities in using fast cores

In virtual environments where multiple VMs share the same hard-
ware some VMs may be considered more “important” than oth-
ers, and so AASH allows giving to these VMs a higher priority
in allocation of fast-core cycles. We designed two priority mecha-
nisms. The first one is a coarse priority system where VMs can be
classified either as high-priority or low-priority. In that case, high-
priority VMs will be assigned fast-core cycles first, and if several
high-priority VMs are present, they will share these cycles equally.
The remaining fast-core cycles, if any, will be allotted to other vir-
tual machines.

The second mechanism is where a VM with a low number of
active vCPUs receives a higher priority in running on fast cores
than VMs with a large number of active vCPUs. This is relevant
for scenarios where a VM is used as a container for a single ap-
plication, as is commonly the case in virtual environments. In this
case, a low number of active vCPUs indicates that the VM is run-
ning code with a low degree of parallelism, or sequential code’.
Such VMs are given priority on fast cores, because this can deliver
a greater benefit to the application’s overall performance. Consider
scheduling on asymmetric system a VM running a parallel applica-
tion. Only a small subset of threads of this parallel application can
scheduled on fast cores at any given moment, because the number
of fast cores is usually small relative to the total number of cores in
the system. The application as a whole, therefore, receives only a
very small performance improvement. On the other hand, for appli-
cations with only one or a handful of threads, running on a fast core
as opposed to a slow core typically results in performance improve-
ment proportional to the speed of the fast core relative to the slow
core. For parallel applications with sequential phases, this mecha-
nism will accelerate the sequential phase on the fast core, reducing
the cost of the serial bottleneck [7, 1].

In accelerating VMs with a low number of active vCPU on
fast cores, the system assumes that the application’s phases of
low parallelism will be exposed to the hypervisor. This would
occur if unused application threads are blocked, causing the vCPUs

' We assume that unused threads of a parallel application block, rather than
busy-wait on a CPU. In that case, a VM that has entered a phase of low
parallelism will have idle vCPUs, which will be visible to the hypervisor.

where they were running to go idle. Idle vCPUs are visible to the
hypervisor, so it can react when the number of active threads, and
thus active vCPUs, decreases below a threshold. If an application
is designed such that unused threads busy-wait on the CPU as
opposed to releasing it, this method, which relies on detecting the
change in the number of active virtual CPUs, will not detect phases
of low parallelism. In that case an asymmetry-aware guest OS that
interacts with an application runtime environment is required [16].
Another way to implement this prioritization scheme is to cal-
culate the fast core cycles for each VMs in inverse proportion to the
number of that VM’s active vCPUs. We found, however, that this
approach would require excessively frequent redistribution of fast-
core cycles if the number of active vCPUs changes frequently. In-
stead, it is better to use an active vCPU threshold, where VMs with
an active vCPU count under the threshold are considered to have
low parallelism and thus get a high priority on fast cores, while the
VMs with an active vCPU count above the threshold are considered
highly parallel and thus get a low priority in running fast cores.

The described mechanisms can be used on their own, depending
on the goals of the user, or simultaneously. In our experimental
implementation we have chosen to combine all three mechanisms.
In this case, any high-priority VMs share the fast cores equally.
The remaining fast-core cycles are shared equally among all vCPUs
with the exception of asymmetry-aware guests whose fast vCPUs
receive all the fast-core cycles allotted to that VM. While we chose
a particular way to combine the mechanisms, we do not advocate
this particular approach to be the only correct way. We evaluate
each mechanism separately to enable understanding the merits of
the individual mechanisms and also show how they work in tandem.

3. Design and implementation

In implementing the AASH algorithm we pursued two goals: sim-
plicity and low overhead. Overhead may occur when virtual CPUs
are migrated between fast and slow physical cores, especially when
migrations cross memory-domain boundaries. The term memory
domain is used to refer to a group of cores sharing a last-level
cache (LLC). When a vCPU is migrated to a new memory domain
it loses the cache state accumulated in its old LLC. This can cause
performance degradation. To avoid this overhead, we ensured that
cross-core migrations are not very frequent. In our implementation
they occur, on average, not more often than once per 30 millisec-
ond accounting period per vCPU. As a result, as we show in the
experimental section, performance overheads are small. Another
potential source of overhead is due to non-uniform memory access
(NUMA) [13]. We have not investigated effects of NUMA in this
project, leaving this for future work.

To implement AASH we extended the default Credit Scheduler
in Xen [5]. We begin with providing pertinent background about
the Xen credit scheduler and then explain how we extended it to
support asymmetry.

3.1 The Xen Credit Scheduler

To accomplish fair sharing of physical cores among vCPUs Xen
relies on a system of credits. Credits are distributed among vCPUs
on each 30 millisecond accounting period and the physical CPU
time granted to a vCPU depends on the number of credits assigned
to this vCPU. The total number of credits in the system depends
on the number of physical cores. Each physical core is worth 300
credits for a 30ms accounting period. Credits are distributed among
vCPUs according to the cap and weight of the VM to which these
vCPUs belong; cap controls the maximum CPU time that a VM
can receive during the accounting period, and weight determines
that VM’s proportion of CPU resources. In our system we assume



that the cap is unlimited and that the weight of a VM is proportional
to the number of vCPUs with which this VM was configured, but
supporting other weights would not be difficult.

As the vCPU runs on a physical core, its credits are decremented
by 100 units on each 10 millisecond scheduling clock tick. All
vCPUs are organized in a priority runqueue. On expiration of a
vCPU’s timeslice (or when a vCPU goes idle or blocks) the sched-
uler decides which vCPU to run next according to its priority. A
vCPU that has a positive credit balance has a priority of under; a
vCPU with a zero or a negative balance has a priority of over®. A
vCPU with a priority of under will be chosen to run before any
vCPU with a priority of over.

3.2 Equal sharing of asymmetric cores

We describe this mechanism first, because it underlies other
asymmetry-aware mechanisms in our scheduler. To support equal
sharing of asymmetric cores we introduce two types of credits: fast
credits and slow credits. Fast credits entitle the vCPU to run on a
fast core. Slow credits entitle it to run on slow cores.

Fast and slow credits are distributed on each accounting period.
The amounts of fast and slow credits available on each period are
proportional to the number of fast and slow physical cores. Not all
vCPUs get fast credits on each accounting period; therefore not all
of them run on fast cores in a given period. A fast queue, described
below, is maintained to ensure equal sharing of fast credits.

All vCPUs entitled for fast credits are placed in the fast queue.
On each accounting period, the scheduler selects nFastCores vC-
PUs from the top of the fast queue; nFastCores corresponds to the
number of fast cores in the system. The selected vCPUs are as-
signed fast credits for the following accounting period: during that
period they will be mapped to fast cores. The remaining vCPUs are
assigned slow credits: during the following accounting period they
will be mapped to slow cores. At the end of the credit distribution,
nFastCores vCPUs will be moved from the tail of the queue to the
head®. These vCPUs, which did not receive fast-core credits dur-
ing the current period, will get them during the next period. The
vCPUs that did get fast credits during the current period, will drift
back down the queue until moved to the head again. This mecha-
nism ensures fair sharing of cores of both types and also ensures
that fast-to-slow core migrations are not overly frequent, since fast-
core credits are awarded only once per accounting period.

If a vCPU blocks while running on the fast physical core, that
core will try to steal work from other cores — that is, it will run a
vCPU that is waiting in the queue of another core, preferably a fast
core.

A vCPU’s credits are decremented as it runs on a particular type
of core. Once the number of credits reaches zero, the credits are
deemed expired. A vCPU whose fast credits have expired will be
marked as a candidate for migration to a slow core. To avoid load
imbalance, the scheduler will find a vCPU running on a slow core
that is about to receive fast-core credits (i.e., a vVCPU at the top of
the fast queue), and mark it as a candidate for migration to a fast
core. The actual migration happens right before the physical core
begins running the new vCPU.

Our mechanism for fairly sharing asymmetric core is efficient,
as shown in the evaluation section, because it requires relatively
few cross-core migrations. A vCPU that is assigned fast credits gets
the right to use a fast core for the entire 30ms timeslice; only upon
the expiration of the timeslice may it get migrated to a slow core.
With such relatively infrequent migrations the loss of last-level
cache state becomes amortized, since a 30ms period is large enough

2 There is another priority boosted, but it is not relevant to this discussion.

3 We chose to move vCPUs from tail to head, rather than from head to tail,
to simplify the implementation of support for asymmetry-aware guests.

to allow the vCPU to refill its cached data and run with the warm
cache for most of the timeslice [8]. Although applications with very
large cache working sets do see some performance degradation
due to migrations, the overhead never exceeds 4%, because the
frequency of migrations is low.

3.3 Support for asymmetry-aware guest operating systems

Mapping of virtual CPUs in a asymmetry-aware guest must be
deterministic so that the guest operating system can effectively
apply its policies. To this end, AASH maps to fast cores only those
vCPUs that are considered “fast” by the asymmetry-aware guest.
In this work we assume that vCPUs with IDs up to nFastCores are
“fast”, but any other mapping can be supported in our algorithm®.
“Fast” vCPUs will be assigned to run on fast physical cores as often
as possible, depending on the competition for fast cores, while the
remaining vCPUs will always run on slow cores, unless idle fast
cores are available or unless a fast core steals them from a slow core
as part of routine load balancing. Another alternative would be to
never allow the mapping of “slow” vCPUs to fast physical cores,
but for the sake of optimizing performance we chose to allow such
a mapping if there are idle fast cores.

To support this mapping policy, we modify the process of updat-
ing the fast queue as follows. Remember that once the scheduler is
finished distributing fast-core credits, it moves the vCPUs from the
tail of the queue to the head. If a “slow” vCPU is encountered, it is
left at the tail of the queue. Note that if a “slow” vCPU is encoun-
tered at the head of the queue during the distribution of fast credits,
it will not be skipped, since with our mechanism where eligible vC-
PUs are moved from the tail to the head, this can only occur when
the number of vCPUs eligible for running on fast cores exceeds
the number of fast cores. In this case we choose to run “slow” vC-
PUs on fast cores to maximize performance. If the goal is to save
power, it might be wiser to leave fast cores idle so that they could
be brought into a more economical low-power state. Considering
power saving policies for AMP systems, however, is outside the
scope of this work.

If there are other VMs in the system, either asymmetry-aware or
asymmetry-unaware, fast credits will be shared among all vCPUs
that are entitled to use fast cores. If the scheduler is unable to assign
fast credits to a “fast” vCPU of an asymmetry-aware guest on a
particular timeslice, as a result of competition for fast cores from
other VMs, the “fast” vCPU will be instead assigned slow-core
credits.

3.4 Support for priorities

To support priorities we introduce another queue: a high-priority
fast queue. Virtual CPUs that have an elevated priority for using fast
cores are placed on that high-priority queue. When fast credits are
distributed, the vCPUs in that queue will be given the credits first.
Credits are distributed among high-priority VMs in a fair fashion,
in the same way as for the “normal” fast queue. The remaining
fast credits, if any, will be distributed among the remaining eligible
vCPUs.

A VM is considered to have a high priority for using fast cores
in two cases: (1) when it has been explicitly designated as a high-
priority VM by a system administrator; (2) if the number of ac-
tive vCPUs in the corresponding VM reduces below a pre-defined
threshold, assuming that the feature for prioritizing VMs with a
low number of virtual CPUs is enabled. This threshold can be set
to equal the number of fast cores, and it was set to “one” in our
experiments. If the number of active vCPUs increases, the vCPUs
of that VM are moved again to the normal fast queue.

4 As mentioned earlier, development of mechanisms for the discovery of
fast cores by a guest OS is outside the scope of this work.
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Figure 1. Completion time under AASH normalized to that under
default Xen. Low numbers are better.

4. Evaluation

In this section we evaluate the AASH scheduler by comparing
it to the default Xen scheduler. In Section 4.1 we describe the
experimental platform and benchmarks. In Section 4.2 we evaluate
the overhead. In Section 4.3 we evaluate the mechanism for fair
sharing of fast cores. This mechanism is evaluated before others,
because it forms the basis on top of which other mechanisms
are built. We evaluate the support for asymmetry-aware guests in
Section 4.4 and the two prioritization mechanisms in Sections 4.5
and 4.6 respectively.

4.1 Experimental Platform and Benchmarks

We use an AMD Opteron 2350 (Barcelona) system, with two quad-
core CPUs and 8GB of RAM. Cores on the same chip share a
2 MB L3 cache and each core has a private 512 KB L2 cache,
a 64 KB instruction cache and a 64 KB data cache. Asymmetry
was emulated by setting cores to run at different frequencies using
dynamic voltage and frequency scaling (DVFS). Fast cores are
emulated by running the core at the highest available frequency:
2GHz. Slow cores are emulated by running the core at the lowest
available frequency: 1GHz. We vary the number of cores and the
ratio of fast to slow cores according to the experiment.

Virtualization is often used for services like Amazon EC2 Elas-
tic Compute Cloud, and these services are becoming increasingly
popular in the HPC scientific community [6, 20]. In our experi-
ments we use primarily scientific applications that perform little
I/0, since the effect of CPU optimizations is particularly evident on
applications that spend a large majority of their time on CPU. The
applications are drawn from SPEC CPU2000, SPEC CPU2006,
PARSEC [4] and SPLASH benchmarks suites, BLAST (a series
of sequence alignment codes used in bioinformatics), and FFT-W
(a parallel implementation of a fast Fourier transform). We repeat
each experiment at least three times and report the average execu-
tion time or speedup.

In our experiments the number of virtual CPUs matches the
number of physical CPUs; using a configuration where the number
of virtual CPUs exceeds the number of physical ones is only rea-
sonable for I/0O-bound applications, but the applications we used
perform little to no I/O. If a workload with a high CPU utiliza-
tion is run on a system where the number of vCPUs exceeds the
number of physical cores, it may suffer from a high context switch-
ing overhead, without the added benefit in performance. Although
workloads with more vCPUs than physical cores were not used,
we do not see a reason why our results would not extend to such
scenarios.

4.2 Evaluating the overhead of migrations

Recall that the AASH scheduler shares the fast cores among vir-
tual CPUs and therefore causes more migrations than the default
Xen scheduler. Migration of virtual CPUs among physical cores
of different types may be costly if the cores are located in differ-
ent memory hierarchy domains; by memory hierarchy domain we

mean a group of cores sharing a last-level cache. Cross-memory-
domain migrations cause the migrated vCPU to lose the state ac-
cumulated in the LLC. Rebuilding this state after migration may
cause performance degradation [8].

In order to evaluate the overhead of migrations, all cores were
configured as slow (1GHz), but the AASH scheduler still deems the
system asymmetric (with one fast core) so it performs its regular
migrations. This experimental setup allows us to bring out the
overhead associated with AASH’s migrations, while eliminating
any performance improvements from asymmetry-aware scheduling
policy. We compare the completion time of the applications running
under the AASH scheduler to that under the default Xen scheduler;
any additional latency under AASH is due to migration overhead.

Migration overhead could manifest differently for applications
with different memory access patterns. Cache-sensitive applica-
tions (those with a large cache footprint and a high cache access
rate) could be sensitive to frequent migrations. Cache-insensitive
applications could be indifferent to additional migrations. We used
the classification scheme similar to that in [21] to determine which
applications are cache-sensitive and which are not. As cache-
sensitive we identified leslie3d and libquantum from the SPEC
CPU2006 benchmark suite and mcf from the SPEC CPU2000
benchmark suite. As cache-insensitive we identified calculix, namd
and sjeng from the SPEC CPU2006 and sixtrack from the SPEC
CPU2000.

An experiment consists of running one virtual machine with
eight virtual CPUs executing eight copies of the same benchmark.
We measure the completion time of all instances of the benchmark
and report the average under AASH normalized to that under Xen.

Figure 1 shows the results (low bars are good). There is a negli-
gible performance degradation with the AASH scheduler for cache-
sensitive applications. For the most cache-sensitive application mcf
the overhead reaches 3%. Cache-insensitive applications are largely
unaffected by migrations. We have evaluated the sensitivity of per-
formance to migration frequency, changing the timeslice from 3 to
100 milliseconds, and found that the overhead slightly increases
when the timeslice is reduced, and decreases when it is increased.

4.3 Evaluating the equal sharing capability

For experiments in this section we use both single-threaded and
parallel applications. The single-threaded applications are leslie3d,
libquantum, calculix, namd and sjeng from the SPEC CPU2006
suite, mcf, sixtrack and eon from the SPEC 2000 suite. The par-
allel applications are blackscholes, bodytrack, facesim, ferret and
Sfluidanimate from PARSEC, radix from the SPLASH suite, FFT-W
and BLAST.

In the first set of experiments we used a machine with four
physical cores: one fast and three slow. In each experiment we ran
four virtual machines, each configured with one virtual CPU and
running one application. Each application was run with one thread,
and four identical applications were run in an experiment. We
repeat the experiment for each application in the list. Comparing
completion times of applications across the four VMs under AASH
and under the default Xen scheduler enables us to evaluate the
impact that equal sharing of the fast core has on performance of
applications.

Figure 2 shows the results. The vertical bars show the comple-
tion times of the four VMs stacked one on top of the other. If the
stacked components have equal height, this means that the com-
pletion times of the four VMs are roughly equal, which is what
we would like to see if the fast core is shared equally. The black
line at the top of each bar shows the standard deviation of comple-
tion times across the VMs. AASH delivers more equal completion
times, because it shares the fast core equally among them. The de-
fault Xen scheduler, on the other hand, may deliver disparate per-
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Figure 3. Speedup under AASH relative to default Xen in an
experiment with a single VM and eight vCPUs

formance for these identical VMs, because it may arbitrarily favour
one VM over another in terms of the fraction of time spent running
on the fast core. Standard deviation of completion times across the
VMs is also significantly higher under the default Xen scheduler.
Examining the raw completion times, we see that they are roughly
the same under AASH as under the default Xen scheduler, suggest-
ing that AASH delivers more stable performance and fairer sharing
of fast cores without compromising performance.

In the course of our experiments we also observed that in some
cases performance is improved due to the fact that AASH ensures
that fast cores never go idle before slow cores. For applications

with unbalanced load, where some CPUs are occasionally left idle,
this can improve performance. We demonstrate this effect in the
following experiment. We use a physical machine with eight cores,
one of which was fast and the rest were slow. In each experiment
we run a single VM with eight virtual CPUs. We choose one
application to run inside a VM; in case the application is parallel
we launch it with eight threads, in case the application is sequential
we run eight copies of it. We measure the performance of each
application under AASH and under the default Xen scheduler,
and in Figure 3 we report the speedup under AASH relative to
default Xen. Here and in subsequent experiments, speedup percent

is computed using the following formula: (1 — %) * 100,

where T'aasy and Tye fquie are completion times under the AASH
and default schedulers respectively.

We observe that some parallel applications (FFT-W, BLAST,
radix and blackscholes) experience significant speedup under the
AASH scheduler. There are two reasons for this. First, because
of equal sharing of fast cores among vCPUs, AASH equally ac-
celerates the computation running on all cores as opposed to ac-
celerating one vCPU while letting others trail behind. In applica-
tions where threads synchronize, ensuring equal acceleration for
all threads may reduce the completion time.

Another reason for improved performance is better utilization of
fast cores under AASH. Consider, for example, FFT-W that reaches
the speedup of 31%. Although FFT-W is a parallel application it
spends a large amount of time (87%) running with only a single
thread. When only a single thread is active, the guest operating sys-
tem reports idle vCPUs to Xen. As a result, Xen scheduler removes
idle vCPUs from its scheduling queue and assigns processor cycles
only to the active ones. The asymmetry-unaware default scheduler
may map the active vCPU to either a fast or a slow core, because it
cannot tell them apart. The asymmetry-aware AASH, however, will
always map the active vCPUs to fast cores first. As a result, the vir-
tual CPU will run faster than under the default Xen scheduler. This
brings performance improvements to applications that often leave
some of the cores idle. For parallel applications like BLAST and
FFT-W, which reduce the number of active threads during a sequen-
tial phase also causing the reduction in the active vCPU count, this
amounts to the acceleration of their sequential phases on fast cores.
Potential performance benefits of this effect were discussed in liter-
ature [1, 7]. When only one VM is running, sequential phases of the
enclosed application are accelerated automatically. When multiple
VMs are running the scheduler has to be designed specifically to
detect and accelerate low-parallelism phases of the VM. The said
capability of AASH will be evaluated in Section 4.5.

4.4 Evaluating support for asymmetry-aware guests

In this section, we first present experiments with a single asymmetry-
aware guest running under the AASH scheduler. We show that it
achieves better performance than under the default Xen scheduler,
because AASH provides deterministic mapping of “fast” vCPUs
to fast physical cores. AASH also supports the co-existence of
asymmetry-aware guests and legacy guests. We evaluate this prop-
erty in the second experiment, by running both types of guests
simultaneously. In this case, comparing performance under AASH
and under the default Xen schedulers shows that both guests bene-
fit from an asymmetry-aware scheduler. The following sub-sections
present these two experiments.

4.4.1 Single-VM experiments

We use the same workloads as have been used in a previous study
[19] to evaluate an asymmetry-aware operating system scheduler
called HASS. In that work, the following workloads made up of the
SPEC CPU2000 benchmarks were used: (1) sixtrack, crafty, mcf
and equake, (2) gzip, sixtrack, mcf and swim and (3) mesa, perlbmk,
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Figure 4. Support for asymmetry-aware guests: a single-VM Experiment

equake and swim. The first two benchmarks in each set are CPU-
intensive, meaning that they effectively utilize the CPU pipeline,
rarely stalling it, and the second two are memory-intensive, mean-
ing that they frequently stall the CPU pipeline as a result of issuing
a large number of memory requests. The experiments in the afore-
mentioned work were run on a system with two fast cores and two
slow cores. The HASS scheduler mapped the CPU-intensive appli-
cations to fast cores and the memory-intensive applications to slow
cores, since this kind of mapping is known to maximize efficiency
of AMP systems [11]. The authors of the HASS paper reported
performance improvements of up to 12% from using this policy
on an asymmetric platform similar to ours. To replicate the same
experiment in our study and to mimic the HASS scheduling pol-
icy we use a single VM that runs one of the three aforementioned
workloads. We bind the CPU-intensive applications to the first two
virtual CPUs and the memory-intensive applications to the second
two virtual CPUs inside the guest operating system. Since the guest
assumes that the first two virtual CPUs are fast and the second two
virtual CPUs are slow, the scheduler needs to respect that map-
ping to the actual physical cores. This is what the AASH scheduler
does. (We assume that there is a mechanism in place that enables
the guest to inform the hypervisor which vCPUs it considers fast;
implementation of this mechanism is beyond the scope of the pa-
per.) The default Xen scheduler, on the other hand, is asymmetry-
unaware, and so it performs mapping of virtual to physical cores ar-
bitrarily, disrupting the asymmetry-aware policies in the guest OS.
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Figure 5. Experiments with asymmetry-aware and legacy guests

Figure 4 shows the results of this experiment. As can be ex-
pected, the asymmetry-aware guests performed better under the
AASH scheduler. The mean speedup (Figure 4(d)) was as much

as 16.27% for the mesa, perlbmk, equake and swim workload and
reached 11% and 14% for the other workloads. For all workloads
we see that the first two CPU-intensive applications in the work-
load speed up under the AASH scheduler, while the second two
memory-intensive applications slow down (in Figures 4(a), 4(b)
and 4(c)) . This is the expected behaviour, and the results agree with
those reported in the original HASS paper, since the asymmetry-
aware OS scheduler runs CPU-intensive applications on fast cores,
relegating memory-intensive applications to slow cores. Since the
speedup experienced by the CPU-intensive applications is greater
than the slow-down experienced by the memory-intensive appli-
cations, the workload as a whole experiences an improvement in
performance. The performance gains are possible only with an
asymmetry-aware hypervisor. An asymmetry-unaware hypervisor
sacrifices 12-16% in performance.
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4.4.2 Experiments with an asymmetry-aware and a legacy
guest

In this experiment, we used two virtual machines, one running
an asymmetry-unaware (legacy) guest and the other running an
asymmetry-aware guest. The legacy guest has six virtual CPUs and
runs BLAST, which is configured to use six threads. (BLAST is a
parallel application with frequently occurring sequential phases.)
The second virtual machine runs an asymmetry-aware guest and
has two virtual CPUs (it assumes the first virtual CPU is fast). It
runs one instance of a CPU-intensive application (sixtrack) and
another instance of a memory-intensive application (mcf). As in
the previous experiment, we simulate asymmetry awareness in the
second virtual machine by binding sixtrack to the first virtual CPU
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BLAST/eon workload. Time on x-axis is represented in terms of statistics-gathering intervals; each interval is roughly equal to 1-2 seconds.

(the one that is assumed by the guest to be fast) and mcf to the
second virtual CPU. We ran virtual machines on our experimental
platform with one fast core running at 2 GHz and seven slow cores
running at 1 GHz.

AASH shares the fast core among all virtual machines. Since the
second virtual machine is asymmetry-aware, the AASH scheduler
assigns all its fast-core cycles to the vCPU deemed “fast” by this
guest. This results in: (1) sharing of fast cores among both guests
in proportion to the number of vCPUs in each guest, and (2)
deterministic mapping of the “fast” vCPUs to fast physical cores
for the asymmetry-aware guest.

Figures 5(a) and 5(b) show the completion time and speedup for
each benchmark under AASH relative to the default Xen scheduler.
Sixtrack, the CPU-intensive application running in the asymmetry-
aware VM, shows a 13% performance improvement. The mean
speedup of the asymmetry-aware guest is 6.7% (Figure 5(c)). The
asymmetry-unaware guest, which runs BLAST, also shows a 20%
speedup. We note that the speedup for sixtrack is smaller than in
the experiment of Figure 4(b), because in sixtrack shares the fast
physical core with BLAST, unlike the earlier experiment where it
had the fast core to itself. Here, the benefit of using a fast core is
equally distributed among both asymmetry-aware and asymmetry-
unaware guests.

4.5 Prioritizing VMs running code low in parallelism

In this experiment we evaluate the mechanism for giving a higher
priority for running on fast cores to VMs deemed as running code
low in parallelism. Remember that AASH uses the number of
active vCPUs as a heuristic for the degree of parallelism. In our
system a low-parallelism threshold is set to one: that is, a VM is
considered low in parallelism when its active vVCPU count reduces
to one. Assuming the VM runs a single application, this amounts to
acceleration of sequential phases of this application on a fast core.
Earlier we demonstrated that sequential phases are automatically
accelerated when there is only one VM running on the system,
because that VM’s single active vCPU will be always mapped to
a fast core. In this section, we evaluate the scheduler’s ability to
accelerate low-parallelism VMs when multiple VMs are present.

Remember that the feature giving a higher priority for low-
parallelism VMs can be selectively turned on in AASH. When it
is on, the scheduler does not equally share fast cores among all
vCPUs, but preferentially allocated fast-core cycles to VMs whose
active VCPU count is below the low-parallelism threshold. The
remaining fast-core cycles are shared among other eligible vCPUs.

We identified several workload mixes that were interesting for
evaluating this feature:

1. A combination of a sequential workload and a parallel workload
with sequential phases.
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seconds.

2. A combination of a highly parallel workload and a parallel
workload with sequential phases.

3. A combination of two parallel workloads, both of which have
sequential phases.

The following sub-sections describe the experiments performed
with those three workloads. In all cases with use a system with
eight physical cores where one core is fast and others are slow.

4.5.1 Sequential workload and a parallel workload with
sequential phases

In this scenario, the AASH scheduler would preferentially allocate
fast-core cycles to the VM running the sequential applications,
assuming this VM will always have only one active vCPU. If the
other VM reduces its active vCPU count to one, the fast-core cycles
will be equally shared among the vCPUs of the two VMs.

To evaluate this scenario, we run two virtual machines. The first
virtual machine has six virtual CPUs and runs BLAST — a parallel
applications with sequential phases. The other virtual machine has
a single virtual CPU and runs a sequential application eon from
SPEC CPU2000.

Figure 6(a) shows the results. The single-threaded application
experienced a 36% speedup and the parallel application enjoyed
an 8% speedup under AASH relative to the default Xen scheduler.
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Figure 9. Prioritization experiment

While eon benefits from running on the fast core most of the time
under the AASH scheduler, BLAST also enjoys the acceleration of
its sequential phases.

Figure 7 shows the behavior of these two applications under
both schedulers over time. Figure 7(a) shows the changes in the
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number of the active virtual CPUs, the number of clock ticks
that each virtual machine spends on fast cores and the number
of migrations under AASH; Figure 7(b) shows the same statistics
for Xen. As can be seen in the middle portion of Figure 7(a), eon
spends most of its time on the fast core. In sequential phases of the
BLAST workload, the AASH scheduler shares the fast core among
both virtual machines. The figures also show that migrations of eon
were limited to its sequential phases during those periods where it
shared the fast core with BLAST. Figure 7(b) on the other hand,
shows that the behavior of the benchmarks under the default Xen
scheduler is largely arbitrary.

4.5.2 A highly parallel workload and a parallel workload
with sequential phases

We use two virtual machines. The first one has six virtual CPUs
and runs a parallel workload with frequently occurring sequential
phases (BLAST). The second one has two virtual CPUs and runs a
highly parallel application (blackscholes). The average completion
time of both application is shown in Figure 6(b). BLAST experi-
enced a 17% speedup under the AASH scheduler; performance of
blackscholes was largely unaffected.

Figure 8(a) shows the behavior of these two benchmarks under
the AASH scheduler. It can be seen that whenever BLAST enters
a sequential phase and the underlying VMs active vCPU count
reduces to one, the AASH scheduler migrates the vCPU to the fast
core and stops giving any time on the fast core to blackscholes.
When both VMs have the vCPU count exceeding one they share the
fast core proportionally to the number of their active vCPUs. Figure
8(b) shows the behaviour exhibited by the default Xen scheduler
during this experiment. Migration patterns and allocation of virtual
CPUs is rather arbitrary.

4.5.3 Parallel workloads with sequential phases

In this experiment, we run BLAST and FFT-W benchmarks on the
two virtual machines. The VM running BLAST uses six virtual
CPUs and the VM running FFT-W uses two. Both of these parallel
applications have long sequential phases.

Figure 6(c) shows that the workload as a whole achieved a
speedup of 16% with the AASH scheduler. FFT-W achieved a 27%
speedup, and BLAST achieved a 6% speedup. BLAST achieved a
smaller performance improvement than in the experiment of Figure
3, because during its sequential phase it had to share the fast core
with FFT-W.

The results presented in Figures 7 and 8 of this section demon-
strate that the AASH scheduler reacts sufficiently quickly to the
change in the active vCPU count and begins allocating fast-core
cycles to VMs whose active vCPU count reduces to one, or stops

allocating them if the vCPU count increases beyond one and there
is another single-CPU VM running. This suggests that the choice
of distributing fast-core cycles only every 30ms for the sake of min-
imizing migration overhead does not impede the scheduler’s ability
to share fast cores equally among the competing vCPUs.

4.6 Coarse-grained priorities

In this experiment we evaluate the mechanism in AASH that en-
ables it to preferentially grant fast-core cycles to high-priority VMs
before low-priority VMs. Recall that AASH supports two priority
classes, high and low. We show that a high-priority VM receives
a higher share of fast-core cycles and achieves better performance
than a low-priority VM.

To enable performance comparisons across VMs, we use two
VMs running identical applications, but one VM has a high priority,
while another VM has a low priority. Each virtual machine has
four virtual CPUs. We run two experiments, each using a different
workload: in the first experiments the two VMs run BLAST and in
the second the two VMs run blackscholes.

Figures 9 and 10 show the results of this experiment. As can
be seen in Figure 9(c) the high-priority VMs achieve better perfor-
mance than low-priority VMs. Figure 10 shows the distribution of
fast core cycles among VMs over time. In both scenarios fast cores
are used most of the time by the high-priority guest. In Figure 10(a)
we see that a low-priority guest is occasionally assigned to run on
fast cores: this happens when the vCPU count of that guest reduces
to one and the priority of that VM rises. In this case, both guests
share the fast core.

5. Related work

Existing virtualization systems are not asymmetry aware. VT-
ASOS [15] is an enhanced version of the Xen hypervisor that lever-
ages application feedback when deciding how to allocate machine
resources. In principle, this system is well positioned to support
asymmetry, but the existing implementation is not asymmetry-
aware and, in particular, it does not provide proper support for
asymmetry-aware guests.

Most work related to AMP systems was done in the domain
of operating systems. We classify the asymmetry-aware algorithms
for operating systems according to three categories. In the first
category are the algorithms that determined the best threads to
schedule on cores of different types via continuous monitoring of
performance and its analysis [3, 12, 17, 10] or via analytical models
relying on static information about applications [19]. In the second
category are the algorithms that accelerated sequential phases of
parallel applications on fast cores [17]. In the third category are the



algorithms that either ensured fair sharing of the fast core [2] or
placed a higher load on fast cores than on slow cores [13].

The algorithms in the first category required information about
individual threads in the workload in order to pick for running on
fast cores those threads that would use these cores most efficiently.
Since the hypervisor is not aware of context switches among in-
dividual threads, it is difficult to implement the same algorithms
in the hypervisor. Therefore, we believe that this type of asymme-
try support belongs to the guest OS, and asymmetry awareness in
the hypervisor should be limited to providing proper support for
asymmetry-aware guests, fair sharing of different types of cores,
and prioritization in using more “expensive” cores.

We now briefly describe the algorithms falling into the first cat-
egory. An algorithm designed by Kumar et al. [12] is represen-
tative of algorithms in this category. The best threads to run on
fast cores were determined via direct measurement of performance:
each thread had to be run on both fast and slow cores, its per-
formance (in terms of instructions per cycle) was measured, and
the ratio or performance on the fast core relative to a slow core
was used to guide the thread assignment. Threads with the highest
fast-to-slow performance ratios were selected to run on fast cores.
An algorithm designed by Becchi and Crowley [3] used a simi-
lar method to select the most efficient threads. Unfortunately, these
algorithms were not implemented in a real operating system and
when a later study attempted a real implementation [19], it was
found that the need to run each thread on each core type created
load imbalance and caused performance degradation. To address
this problem, Shelepov et al. proposed an algorithm that relied on
the architectural signature of an application (a statically obtained
summary of its architectural properties) to find the best candidates
for fast cores [19]. Saez et al. further improved on that work by
estimating an application’s speedup on the fast core dynamically,
using data obtained via hardware counters, but without requiring to
run each thread on cores of all types [17]. Koufaty et al. proposed
a similar mechanism [10]. Similarly to other approaches, however,
these algorithms required detailed knowledge about the application,
and would thus be cumbersome to implement in the hypervisor.

In the second category are algorithms proposed by Saez et
al. [17] and by Annavaram et al. [1]. These algorithms accelerated
sequential phases of parallel applications on the fast core. In giving
a higher priority in running on fast cores for low-parallelism VMs,
AASH borrows ideas from these algorithms.

In the third category are the schedulers designed by Li et al. [13]
and Balakrishnan et al. [2]. Li’s scheduler ensured that fast cores
run more threads than slow cores. The idea is that a core’s load
should be proportional to its speed, so threads running on fast cores
compute more quickly, but receive less CPU time. We do not pursue
the same strategy; instead we allow fast cores to be used by vCPUs
either equally or in accordance with a priority scheme. This way
fast cores end up executing more instructions than slow cores, and
this benefit is distributed among all vCPUs, either equally or in
accordance with a priority policy. While Li’s strategy implicitly
assumes that all threads benefit from running on the fast core to
the same degree, an assumption that does not always hold [11], our
strategy does not make the same assumption and instead gives each
vCPU (modulo its priority) a chance to benefit from running on a
fast core. Balakrishnan’s scheduler ensured that the fast cores do
not go idle before slow cores; our scheduler has a similar feature.
What these two schedulers did not provide, however, is a true
round-robin sharing of fast and slow cores. Our scheduler provides
this feature while imposing only negligible performance overhead.

All in all, although there are similarities between asymmetry-
aware schedulers in operating systems and our asymmetry-aware
scheduler in the hypervisor, there are several key differences that
distinguish our work from previous studies. Our scheduler is imple-

mented in the hypervisor, and not in the operating system. Unlike
OS schedulers, it provides support for asymmetry-aware guests.
We design and implement round-robin sharing of cores of differ-
ent types using a unique mechanism, new to our work, which en-
ables fair sharing while incurring little overhead. Most importantly,
we evaluate asymmetry-aware support in the context of virtual sys-
tems, where the benefits and overheads may be fundamentally dif-
ferent than in non-virtualized environments.

6. Conclusions

We presented AASH, an asymmetry-aware scheduler for hypervi-
sors. To the best of our knowledge, this is the first implementation
of asymmetry support in a VM hypervisor. Using AASH we were
able for the first time to evaluate the impact of asymmetry aware-
ness in the hypervisor’s scheduler, both in terms of performance
and overhead.

Our conclusion is that support for AMP systems can be imple-
mented in modern hypervisors relatively efficiently and that it re-
sults in measurable performance benefits for most workloads (up to
36% in our experiments), and with only a small performance loss
for some.
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