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ABSTRACT
JPEG is a common encoding format for digital images. Appli-
cations that process large numbers of images can be acceler-
ated by decoding multiple images concurrently. We examine
the suitability of using a large array of in-memory processors
(PIM) to obtain a high throughput of decoding. The main
drawback of PIM processors is that they do not have the same
architectural features that are commonly found on CPUs
such as floating point, vector units and hardware-managed
caches. Despite the lack of features, we demonstrate that it
is feasible to build a JPEG decoder for PIM, and evaluate its
quality and potential speedup. We show that the quality of
decoded images is sufficient for real applications, and there
is a significant potential for accelerating image decoding
for those applications. We share our experiences in building
such a decoder, and the challenges we faced while doing so.

CCS CONCEPTS
• Computer systems organization → Parallel architec-
tures; • Computing methodologies→ Image compres-
sion; Parallel computing methodologies.
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1 INTRODUCTION
In 1992, the Joint Photographic Experts Group (JPEG) pro-
duced the ISO/IEC 10918-1 standard for encoding digital im-
ages [6]. Today, JPEG is used by web browsers, cell phones,
image archives, digital cameras, producing several billion
images every day [7]. Many of these images are uploaded to
online services such as Flickr [3], SnapChat [15], Instagram
[12], Facebook [11] and WhatsApp [13], producing huge
online repositories of JPEGs. Processing these JPEG images
is a common task in data centers for mining, tagging and
machine learning applications. Therefore, acceleration of
JPEG decoding is an important goal to save time and energy
consumption in these applications.
Many techniques have been explored for accelerating

JPEG decoding using various technologies including: vec-
torized instructions on a general-purpose CPU [10], parallel
implementations for GPU [20], FPGA [9] andASIC [16].With
the recent availability of DRAM enabled with in-memory
processors from UPMEM [2], we evaluate the suitability of
these new off-the-shelf, general-purpose, in-memory proces-
sors (PIM) for this task. For applications that process a lot
of images, multiple images can be decoded concurrently to
get a boost in throughput. PIM looks like a suitable solution,
because JPEG decoding offers data parallelism and PIM is
ideally suited for such workloads. The amount of compu-
tational resources and internal bandwidth of PIM-enabled
memory scales with the amount of memory and hence with
data size. Decoding using PIM processors can potentially
reduce system cost because DPUs are cheaper than CPUs.
In-memory processing architectures are designed to over-
come the memory wall; to boost memory-bound workloads.
In this case, we show that the massive parallelism of PIM is
enough to boost a CPU-bound workload as well.

Processing in memory has been an active research subject
for years, but few products have been built. UPMEM PIM
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Figure 1: Architecture of in-memory processor from
UPMEM

is one commercially available product, Samsung Function-
in-Memory (FIM) is another. They took very different ap-
proaches: UPMEM integrated general-purpose processors
into DRAM, Samsung added a domain-specific processor
for AI to HBM (high bandwidth memory) with limited func-
tionality. The jury is still out which approach will be more
practical. A domain-specific solution might be more cost-
effective, but the availability of a general-purpose processor
allows us to explore what kind of an accelerator would be
the right one. The results presented in this paper help us un-
derstand the properties of an “ideal” application that justifies
building a dedicated PIM accelerator.
We evaluate the only commercially available, general-

purpose PIM hardware for JPEG decompression. UPMEM
has integrated general-purpose processors, called DRAM
Processing Units (DPU), into DRAM DIMMs. DPUs are more
akin to embedded microcontroller processors than fully-
featured application processors. Due to the physical con-
straints of integrating DPUs into memory chips, UPMEM has
made several design decisions that impact software program-
ming. The lack of features makes programming a challenge
and prevents existing applications from being used without
modifications.

• DPUs have a small number of 32-bit registers and no
hardware support for floating point

• DPUs only have direct access to 64KB of SRAM mem-
ory, that must be managed in software through explicit
DMA operations on DRAM

• DPUs have a relatively slow clock rate (267 MHz) that
does not compare to the GHz scale processors common
today

• The threading model requires careful memory man-
agement when implementing an algorithm

• Most JPEG images do not contain the necessary infor-
mation to be decoded with multiple threads

Despite these challenges, it is possible to write a high
quality JPEG decoder on this platform.

2 BACKGROUND
2.1 Short overview of PIM architecture
A detailed description of the UPMEM architecture can be
found in other publications [2, 5, 14], but the main points are
summarized here. Figure 1 shows the high level architecture
of an in-memory processor.
A DPU (DRAM processing unit) is an in-order, general-

purpose processor that is embedded in the DRAM. There
are 8 DPUs in one chip, each with a dedicated 64MB slice
of DRAM. As this ratio is fixed, the number of DPUs scales
with the memory capacity when more DIMMs are added to
a system. This is good news for algorithms that have a lot of
independent data that can be processed concurrently. Each
DPU has 24 execution contexts (i.e. threads) called tasklets
that operate in a round-robin fashion.
Each DPU has a 64KB private SRAM scratchpad buffer,

called the working memory. The working memory is the
only directly addressable memory for use by the DPU and
is shared by all tasklets, including static and dynamic data
structures as well as the runtime stacks. Any data coming
from DRAM is copied with an explicit, blocking DMA in-
struction. The DMA engine can copy up to 2KB in a single
operation and the copy time increases linearly with the size.

Every cycle, a DPU executes an instruction from one of its
tasklets. Multiple tasklets are needed to hide DMA latency
but only one tasklet can advance at each cycle.When a tasklet
is blocked on a DMA operation, other tasklets can still make
progress. The more often DMA operations block tasklets, the
more tasklets are needed to keep the DPU pipeline filled.

Limited Memory. The most limited resource is the 64KB
working RAM. That limits the number of blocks that can
be decoded simultaneously. The lack of a communication
channel between DPUs means the DRAM is in isolated seg-
ments. That puts a hard limit on the size of the image that
can be processed by a DPU. The DRAM must hold both the
input (encoded) image as well as the decoded output. For
that reason, our implementation does not support decoded
images that are larger than 40MB. That is still more than
enough for a full HD picture (1920x1080) which needs about
6MB.

Floating point. There is no floating point hardware so all
algorithms use only integer operations. Float point oper-
ations can be emulated in software but that is extremely
slow. Libjpeg-turbo [10] (one of the official reference imple-
mentations) has forsaken floating point operations during
decoding for performance reasons. Comments in their source



Bulk JPEG Decoding on In-Memory Processors SYSTOR ’22, June 13–15, 2022, Haifa, Israel

Figure 2: JPEG decoding process pipeline

code claim that the floating point operations do not signif-
icantly improve quality, but have a detrimental effect on
performance. Even though we have no choice but to use
integer operations, this suggests that it will not affect the
quality of our implementation.

2.2 JPEG decoding overview
Decoded data is grouped into blocks of 8 x 8 pixels called
Minimum Coded Units (MCUs). For example, a 1920 x 1080
grayscale image has 32400 MCUs, and a coloured image
is 97200 MCUs (3× larger) since it has 3 colour channels.
Figure 2 shows the decoding stages with serial steps on a
single line and parallel steps on parallel lines. JPEG decoding
begins with a serial step of reading the image metadata to
discover global parameters such as the Huffman tables, and
the quantization tables. The file contains multiple markers
such as Start Of Image (indicates that this is a JPEG file), Start
Of Frame (holds information about image width and height),
and Start Of Scan (where the encoded image data starts).
After extracting the information from the markers, the image
data can be decoded. The Huffman codes are derived from
the Huffman tables that are read from the markers. Using
the Huffman codes, each MCU is decoded bit by bit.

After decoding, MCUs can be dequantized independently.
During dequantization, each pixel in the MCU is multiplied
by its corresponding value in the quantization table. The
dequantized MCUs then undergo inverse discrete cosine
transform (IDCT). This is described further in section 3.3.
Adjusting the DC coefficients of all MCUs must be performed
serially, since the coefficient of block N is based on the ad-
justed value of block N-1 (i.e. differential encoding). Lastly,
the 3 colour channels must be converted from the YCbCr
colour space to RGB values before they can be used by the
application, or saved to a file.

2.3 Parallelization
The JPEG standard specifies an optional feature called a
’restart marker’ to parallelize decoding. When included, the
restart marker appears periodically throughout the file, to

mark the beginning of a new scan line. The markers make
it easy to know the index of the MCU being decoded, so
every scan line can be decoded by a different thread without
major effort of coalescing the results at the end. Unfortu-
nately, most JPEG images in the wild do not contain the
restart marker, which complicates parallelization efforts. At
the same time, most JPEG images in the wild are encoded
using Huffman trees. Klein and Wiseman [8] explain how
most Huffman codes are self-synchronizing and show how
this property can be exploited for parallel JPEG decoding.
Their theorem states that Huffman codes can be decoded
starting from a random location (not necessarily at a code
boundary) and will eventually read valid codes, given the
block of data is sufficiently large, and certain (rare) proper-
ties of the Huffman codes do not hold. While this behaviour
is not guaranteed, we find (as they did) that it is quite reliable
for JPEG images encoded in the standard way.

3 DESIGN
The parallel portions of the decoding process are divided
among multiple tasklets, where each tasklet handles the de-
quantization, inverse DCT, and YCbCr to RGB conversion
steps. Dequantization and conversion of YCbCr to RGB are
simple steps, working on each pixel individually with simple
operations. The inverse DCT is the most computationally in-
tensive step, detailed in section 3.3. After colour conversion,
raw data can be written to a file for validation of whether de-
coding was performed correctly, and further preprocessing
such as scaling and cropping can be carried out.

3.1 Working memory
The 64KB of working memory is the most constrained re-
source but sufficient for decoding a JPEG. It is used for the
runtime stack of each tasklet (1KB) as well as program data.
During decoding, some global data structures must remain
in memory. The four quantization tables are a fixed size of
256 bytes each (64 32-bit integers) for a total of 1KB. The
four Huffman tables (2 for DC components and 2 for AC
components) are 1298 bytes each, for a total of 5192 bytes. If
each of the 24 tasklets decodes a single MCU at a time (64
bytes of decoded data), we need about 32KB in total.

3.2 Tasklet synchronization
To improve decoding time, the image is processed by multi-
ple tasklets. Each tasklet is assigned an equal length range of
image data to decode. Since the encoded MCUs are variable
length, there is no simple way to determine where one MCU
ends and another begins. Therefore, it is very likely that the
tasklets will begin decoding in the middle of an MCU, and
thus produce MCUs which are incorrect. This means that
each tasklet will decode a small number of MCUs incorrectly
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and all subsequent MCUs will be decoded correctly after the
Huffman codes synchronize. The key is to identify when the
tasklets start decoding MCUs correctly. We detect an incor-
rectly decoded MCU by looking at the range of known values
from Huffman codes, such as the field length and values of
the AC and DC coefficients. Any out-of-range values causes
decoding to abort and restart as the next MCU. Each tasklet
records the byte index of the first 128 MCUs that are decoded
successfully. Rather than having a tasklet rewind the stream
to an earlier point to retry failed decoding, we depend on the
previous tasklet to compensate by continuing to decode be-
yond its assigned range. To illustrate the point, assume that
tasklet N has completed decoding its assigned range and the
first few MCUs are decoded incorrectly. We rely on tasklet
N-1 to continue decoding beyond its range into tasklet N ’s
assigned range. As tasklet N-1 decodes MCUs, it compares
the index of the first compressed byte of the MCU with the
index recorded by tasklet N. When three consecutive indices
match, the decoded data has been synchronized. After all
tasklets have finished decoding, all the correctly decoded
MCUs are concatenated into a contiguous memory block.
From previous work, we know the optimal number of

tasklets depends on the ratio of data movement time to pro-
cessing time. Gomez-Luna et al. [5] explain how the DPU
pipeline means instructions in the same thread should be
dispatched at least 11 cycles apart to fully utilize the DPUs.
Gomez-Luna et al. further experimentally confirmed that
at least 11 tasklets were needed to fully saturate the DPU
pipeline when measuring arithmetic throughput or MRAM
throughput. Furthermore, they recommend using more than
11 tasklets in real-world workloads to ensure the pipeline
remains fully saturated. Experimentally, we determine the
optimum number of tasklets for JPEG decoding to be any-
where between 11 and 15, the maximum number of decoding
tasklets that can be supported by the DPUs’ WRAM. We
speculate that using more than 11 tasklets means that the
pipeline remains fully saturated when a few tasks are wait-
ing on transfers between MRAM and WRAM which may
take up to 1100 cycles in our case.

3.3 Inverse DCT with integers
The Discrete Cosine Transform (DCT) maps a finite sequence
of data points from a spatial representation into the fre-
quency domain. Basically, each value in an MCU represents
the sum of cosine functions oscillating at different frequen-
cies. This sum has to be transformed back to a finite sequence
of data points for each MCU to obtain the original values
of the 3 color channels for each pixel. The IDCT function
performs this transform.

A multi-dimensional DCT can be reduced to 1D transfor-
mation along all dimensions. In JPEG decoding, the rows

will be transformed and then the DCT is run on the columns.
The resulting matrix is the two dimensional DCT. The IDCT
step of decoding depends on the cosine function. Since JPEG
encoding uses 8x8 blocks, there are only 64 cosine values that
are needed and they are constant across all MCU blocks. The
AAN algorithm (Arai, Agui, and Nakajima [1]) is the fastest
known algorithm to transform a 8x8 block. AAN simplifies
8-point one-dimensional DCT to 13 multiplications and 16
additions/subtractions so that all cosine values can be stored
in 13 constants. Expensive floating point multiplications, that
are not supported by the DPUs, are approximated by integer
addition and shift operations [22].

4 EVALUATION
We evaluate using the tiny-imagenet-200 dataset [21], which
is widely used for machine learning tasks. In addition, we
have tested many random JPEGs that we find on the Internet
to explore the limits of the decoder. We are not aiming for a
production-ready implementation and have omitted features
that are not necessary for decoding the majority of JPEG
images that we tested. Since our implementation does not
closely follow the reference implementation (libjpeg-turbo),
it is important to evaluate the quality of the decoded image
compared to the reference implementation by using two ac-
cepted indicators: SSIM (structural similarity index) [19] and
PSNR (peak signal-to-noise ratio). While this will give us
concrete numbers, we also want to know qualitatively if the
decoded images are still good enough for real applications.
We do so by comparing the results of image classification
using ResNet18 as detailed below. Since our current imple-
mentation has not yet been optimized for speed we cannot
fully evaluate the performance, so we address this by looking
at some extrapolations from our measurements.

4.1 Information Loss
SSIM. Structural similarity index is a full-reference image

metric which means it compares a reference image with a
distorted image. While the uncompressed original image is
generally used as the reference, we do not have access to the
original images. Instead, we use the same compressed image
decoded by the reference implementation as the reference
image to compare to the image as decoded by our implemen-
tation. Unlike Mean-Squared Error or PSNR, which are also
full-reference metrics, SSIM attempts to take into account
the differences in the structure of each image. SSIM factors
in the relation between nearby pixels to estimate perceptual
error. Figure 3 shows the SSIM, with a median of 0.996. For
comparison, a mean SSIM of 0.95 was found to be the ap-
proximate threshold for which a distortion is imperceptible
to non-expert human observers [4].
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Figure 3: SSIM of tiny-imagenet images decoded on
DPU vs CPU

PSNR. Peak signal-to-noise ratio quantifies the noise in an
image by finding the difference between an original image
and a processed (i.e. compressed and then decompressed)
image. Since we do not have access to the original uncom-
pressed images, we use PSNR to measure the difference in-
troduced by decompression on PIM as compared to the same
image decompressed on a CPU. Therefore, the metric does
not indicate the quality of PIM decompression per-se, but
rather how different the decompression is from that of a
CPU implementation. Figure 3 shows the distribution of
noise measurements. PSNR is measured in dB (decibels) on
a logarithmic scale. Perfectly matching images would have
infinitely large ratios, so larger numbers indicate higher sim-
ilarity. Figure 4 shows a median of approximately 41 dB. This
indicates a strong similarity between the outputs of the two
decoders. For comparison, 32 dB is enough to be considered
good for JPEG transmission across a wireless channel [18].

Inference
CPU DPU

CPU 31.63% (0.06%) 31.88% (0.18%)
Model
DPU 31.70% (0.10%) 32.21% (0.11%)
Model

Table 1: Accuracy of image classification using
ResNet18. The model was trained on images decoded
by libjpeg-turbo (CPU) and our implementation (DPU),
and cross-validated by inference on images from both
decoders.

Figure 4: PSNR of tiny-imagenet images decoded on
DPU vs CPUwith linemarking 32 dB quality threshold

4.2 Real Applications
SSIM and PSNR are good mathematical methods for sum-
ming up the differences between two images, but it does
not tell us much about utility of the image itself. We are
most interested to know if the results are useful for image
processing applications. We use ResNet18, a popular neural
network to experiment with image classification. It operates
in two phases: teaching the network to recognize objects
(training), and then classifying objects in images that the
network has not yet seen (inference). Both phases rely on the
quality of the images for good results. We train ResNet18 on
tiny-imagenet-200 decompressedwith both implementations.
Table 1 shows the inference accuracy is not significantly dif-
ferent between the two tested decoders. The accuracy we
see with a stock (untuned) network is approximately 10%
lower than the best (41%) reported by students at Standford,
who used a highly tuned network [21].

4.3 Performance
Our implementation is a proof-of-concept to explore the
feasibility of implementing a complex piece of code such as
a JPEG decoder in PIM. We did not invest the effort required
for an optimized implementation and so we cannot report the
performance in as much detail as wewould like. However, we
did some experiments to show system characteristics such as
scalability to get some intuition regarding the performance.
Figure 5 shows the throughput (in files per second), as

the number of images is increased exponentially. Each DPU
processes a single image, so the number of DPUs increases
along with the number of images, up to the maximum (576
DPUs across 9 ranks). The first segment ramps up quickly,
up to 8 ranks (512 DPUs) as the incoming images fill the
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Figure 5: Processing scalability as the number of DPUs
increases with the number of files (log scale)

idle hardware. At 9 ranks, the performance levels off as new
work entering must wait until previous batches complete,
and are written to disk. After that point, there is another
smaller performance increase as all of the DPUs are used
more than once, and concurrent operation of the ranks starts
to compensate for stragglers. The performance then reaches
a steady state of 90 files per second at which point the system
is compute-bound (all of the DPUs are operating at maxi-
mum capacity). This highlights the advantage of having no
communication or sharing between the DPUs; they operate
nearly completely independently. Adding more DPUs to the
system would continue to increase throughput until the I/O
device or memory bus becomes saturated.
Our DPU implementation with a single tasklet decodes

a JPEG approximately 200× slower than ImageMagick [17]
that uses libjpeg-turbo, [10] (using SIMD acceleration) on
an Intel Xeon 4110 CPU core. Figure 6 shows a detailed
breakdown of the time spent. The initialization of the SDK
has a fixed overhead that is significant when decoding a
single image, in this particular case, 10% of the time. The
majority of the time is spent on dequantization, inverse DCT
and colour conversion operations. These rely heavily on
multiplication which is quite costly in the DPU. Since many
of the multiplications are by constants (such as the size of an
MCU), it is likely that we can make significant performance
improvements by replacing them with adds and shifts.
Additional tasklets has the most significant performance

improvements for larger images. The additional effort of
decoding MCUs that were decoded incorrectly for small im-
ages (64x64) outweighs the benefit. Larger images (500x375
or 640x480) can benefit from multiple tasklets.

With a large number (10000) of small images (64x64 pixels),
our implementation on 200 DPUs (2.5 ranks) with a single
tasklet has approximately the same throughput as a single

Figure 6: Timing details of JPEG decoding on a DPU.
Over 85% of the time is spent on the DPUs. Dequanti-
zation (30.3%), inverse DCT (20.0%) and YCrRb-to-RGB
colour conversion (30.3%) take themajority of the time.

Xeon 4110 CPU core. In this case, the SDK initialization time
is less significant, but our rudimentary implementation of
disk I/O becomes a factor.

4.4 Floating Point
As we have shown, the lack of floating point hardware in
the DPU does not hinder JPEG decoding but there are other
cases to consider. Once images are decoded, image processing
libraries perform a range of operations including arbitrary
rotations and arbitrary scaling that do depend on floating
point. These operations require high precision interpolation
of data, and multiplication with fractional values that can be
best performed in floating point. These can be accepted as
future challenges for others to face.

5 CONCLUSION
We show that it is feasible to build a JPEG decoder on PIM
hardware that produces high quality output. The hardware
architecture matches well with the requirements of the algo-
rithm. The major limitations are the size of the decoded file
and lack of features in the encoded files to support parallel
decompression.
As in many systems, this is a case of gaining throughput

at the cost of higher latency, when compared with JPEG de-
coding on a CPU. PIM is suitable for use as a JPEG decoder,
in cases where the datasets are large enough to overcome
the high latency with concurrent processing of many files.
It is noted however, that specialized hardware that could
perform the computationally intensive portions of the al-
gorithm (inverse DCT) more efficiently would likely have
a huge impact. While there is much to be said about the
flexibility of a general purpose processor in memory, some
common computational tasks readily expose its limits.
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