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Abstract—Simultaneous multithreading (SMT) increases CPU
utilization and application performance in many circumstances,
but it can be detrimental when performance is limited by appli-
cation scalability or when there is significant contention for CPU
resources. This paper describes an SMT-selection metric that
predicts the change in application performance when the SMT
level and number of application threads are varied. This metric
is obtained online through hardware performance counters with
little overhead, and allows the application or operating system
to dynamically choose the best SMT level.

We have validated the SMT-selection metric using a variety of
benchmarks that capture various application characteristics on
two different processor architectures. Our results show that the
SMT-selection metric is capable of predicting the best SMT level
for a given workload in 90% of the cases. The paper also shows
that such a metric can be used with a scheduler or application
optimizer to help guide its optimization decisions.

I. INTRODUCTION

The VLSI technologies of the past few years, while giving
significant increases in transistor density, have not been able
to deliver corresponding increases in transistor performance.
One of the architectural techniques used in improving the
overall performance of a wide range of applications has been
Simultaneous Multithreading (SMT) [1]. It is designed to
improve CPU utilization by exploiting both instruction-level
parallelism and thread-level parallelism. The first extensive
use of SMT in a commercial processor design was for Alpha
21464 (EVS8), which was slated for 2004, but did not make it
to the market. Intel’s first SMT-capable processor (marketed
as Hyper-Threading) was the Foster-based Xeon in 2002,
and in 2008 Intel reintroduced SMT with the Nehalem-based
Core i7. IBM designed a fairly sophisticated SMT processor,
POWERS [2], by enabling dynamically managed levels of
priority for hardware threads. The POWERS processors were
available in May 2004. Since then, IBM has developed the next
two generations of POWER processors with further sophisti-
cations in resource allocations. In SMT, the processor handles
a number of instruction streams (typically small number) from
different threads in the same cycle. The execution context, like
the program counter, is duplicated for each hardware thread,
while most CPU resources, such as the execution units, the
branch prediction resources, the instruction fetch and decode
units and the cache, are shared competitively among hardware
threads. In general the processor utilization increases because
there are more instructions available to fill execution units
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and because instructions from other hardware threads can
be executed while another instruction is stalled on a cache
miss. Since the threads share some of the key resources, it is
performance efficient to schedule threads with anti correlated
resource requirements. From the software perspective, the
resource allocation to a thread becomes the focal point for
SMT specific performance improvement, and is the topic of
this research.

Several studies have shown that SMT does not always
improve the performance of applications [3], [4], [S]. The
performance gains from SMT vary depending on a number
of factors: The scalability of the workload, the CPU resources
used by the workload, the instruction mix of the workload, the
cache footprint of the workload, the degree of sharing among
the software threads, etc. Fig. 1 shows the performance of
three benchmarks with and without SMT (4-way SMT) on the
8-core POWER7 microprocessor. We first run the application
with eight threads at SMT1. Then we quadruple the number
of threads and enable SMT4. Note that for Equake, SMT4
degraded the performance of the application, while it improved
the performance of EP. MG’s performance was oblivious to
whatever SMT level was used.

These data motivate the following question: Given a multi-
threaded application, will it benefit from additional hardware
contexts available via SMT, as we increase the number of
threads? Addressing this question is the focus of our work.
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Fig. 1: Comparison of performance with SMT1 vs. SMT4 for
3 applications on an 8-core POWER?7 system. Each application
is run alone in a separate experiment. The application uses 8
threads under SMT1 and 32 threads under SMT4.
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Fig. 2: Speedup on SMT4/SMT1 plotted against cache misses, CPI, branch-mispredictions, and fraction-of-floating-point/vector
instructions for 27 benchmarks on the POWER?7 processor. Eight threads are used under SMT1 (on eight cores), 32 threads

are used under SMT4.

In general, workloads that benefit from SMT contain threads
that under-utilize certain processor resources as well as threads
are able to make use of those resources. Reasons why such
”symbiotic” situations occur include:

1) A large number of cache misses: For a non-SMT proces-
sor, when an instruction miss occurs, no more instruc-
tions are issued to the pipeline until more instructions
have been brought to the instruction cache. A similar
situation happens in the case of a data cache miss, the
stream of instructions ceases execution until the missing
data is brought to the cache. Such situations could result
in delays ranging from tens to hundreds of cycles. SMT
enables one or more other hardware threads to execute
their instruction streams when such delays occur; hence,
maximizing the use of the processor pipeline.

2) Long chains of instruction dependencies: Inter-
instruction dependencies limit the instruction-level
parallelism of applications. Based on the layout of the
multiple pipeline stages, compilers attempt to generate
independent instructions that can be executed in parallel.
When dependencies exist, the next instruction ceases
execution until it can receive the results of the previous
instruction. So if the workload exhibits very long chains
of instruction dependencies, SMT could help to fill the
gaps by allowing other independent instruction streams
from other threads to execute in the otherwise idle
execution units.

3) A large number of branch mis-predictions: When the
branch history table and the branch target buffer are not
large enough to service a large number of branch mis-
predictions, the execution units remain idle. This is again
another opportunity for SMT to allow other hardware
threads to use the execution units while the branch mis-
prediction is being resolved.

The workloads in these examples are expected to benefit
from SMT, because one or more threads leave resources idle,
but other threads have sufficient diversity in the instruction mix
to put these resources to use. At the same time, if a workload
consists of threads that are individually well optimized for a
super-scalar processor (e.g., they do not leave resources idle),
this workload is not expected to benefit from SMT, because
there are no resource gaps to fill.

While SMT allows executing multiple streams of instruc-

tions in the same cycle, it also introduces more resource
contention among the hardware threads that are co-scheduled
on the same core. If any of the shared resources becomes a
bottleneck, all threads contending for the resource will suffer,
and SMT will not be beneficial. Properties of workloads that
create contention for resources include:

1) A homogeneous instruction mix: If one or few types of
instruction are more common than others, the workload
may create contention for the functional unit responsible
for this type of instruction. For example, workloads that
are floating-point intensive are likely to gain little from
simultaneous multithreading.

2) Intensive use of the memory system: Irrespective of
instruction mix, a workload stressing the memory sys-
tem (e.g., because of poor cache locality) may cause
memory-related stalls to become even longer and more
frequent on an SMT processor due to increased con-
tention for the memory bandwidth. As a result, processor
resource utilization could decrease instead of increasing.

In summary, we intuitively understand that workloads that
benefit from SMT would have threads that under-use re-
sources, which other threads are able to use, while at the
same time not creating contention for these resources. At
the same time, being able to predict what is the right SMT
level to use for a given workload is not a trivial task. This
requires a thorough knowledge of both the internals of the
workloads and the internals of the hardware they run on.
The complexity of predicting the right SMT level become
more paramount as the number of supported SMT levels
increases. For instance, IBM’s POWER?7 processor [6] has 4-
way SMT multithreading and exposes to applications three
different levels: SMT disabled or SMT1 level, 2-way SMT or
SMT?2 level, and 4-way SMT or SMT4 level. Although this
technology provides more flexibility, it also introduces more
complexity since the user needs to decide what is the right
SMT level for their running application.

In an attempt to see if it is possible to predict performance
improvements from SMT by just looking at applications’
characteristics, we plotted the speedup obtained at SMT4 vs.
SMT1 against four main application metrics on a POWER7
machine: L1 cache misses, branch mispredictions, cycles per
instruction (CPI), and fraction of floating point operations.
The experiment was conducted using 27 representative mul-



tithreaded benchmarks on a POWER?7 system (more details
about the benchmarks used will be presented in subsequent
sections). Fig. 2, shows that there is no correlation between
any of the four metrics and the SMT speedup. Note here, that
every dot in the figures corresponds to a given benchmark.

One option for SMT tuning is to compare application
performance with and without SMT in an offline analysis and
then use the configuration that results in better performance in
the field. However, this method is not effective if the hardware
used in the field is not the same as that used for original testing,
and if the application behavior significantly changes depending
on the input. Another option is to vary the SMT level online
and observe changes in the instructions-per-cycle (IPC), but
this method has limited applicability, because not all systems
allow changing the SMT level online. Furthermore, IPC is not
always an accurate indicator of application performance (e.g.,
in case of spin-lock contention).

We propose an SMT-selection metric (SMTsm) that does
not require any changes to applications or operating systems
and incurs low overhead. The metric is measured online while
applications are being run. Our metric-based approach relies
on hardware performance counters and measures the tendency
of a workload to run better or worse in more hardware
contexts. SMTsm can be easily integrated in any user-level
scheduler or even kernel schedulers to provide insights and
intelligent decision about the right SMT level to be used
by a workload. SMTsm can be measured periodically and
hence allows adaptively choosing the optimal SMT level for
a workload as it goes through different phases. We also show
how this metric can be used in a scheduler or a user-level
optimizer to help guide scheduling decisions.

The rest of the paper is organized as follows: Section II
describes the SMT-selection metric and its rationale. Section
IIT presents the experimental methodology adopted using two
processor architectures. Performance evaluation is presented
in Section IV. Section V describes ways the SMT-selection
metric can be used. Related work is discussed in Section VI
and finally, concluding remarks and future work are discussed
in Section VIIL.

II. THE SMT-SELECTION METRIC

The rationale behind the SMT-selection metric is based
on how well the instructions of a workload can utilize the
various pipelines of a processor during each cycle. An ideal
workload for SMT would have a good mix of instructions
that are capable of filling all available functional units at each
cycle. Figure 3 shows the pipeline of a generic processor
core. In each cycle, the processor fetches from the instruction
cache a fixed number of instructions. These instructions are
then decoded and buffered. As resources become available,
instructions can be dispatched/issued to the various execu-
tion/functional units in an out-of-order manner. Issue ports
are the pathways through which instructions are issued to the
various functional units, which can operate independently. If
the instructions that are issued consist of a mix of load, store,
branch, integer, and floating point instructions and there are
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Fig. 3: A generic processor execution engine.

little data dependencies between them, then all functional units
will be able to be used concurrently, hence increasing the
utilization of the processor.

We define the term ideal SMT instruction mix to mean a mix
of instructions that is proportional to the number and types of
the processor’s issue ports and functional units. With an ideal
mix, the processor is able to execute the maximum number of
instructions supported. In order for SMT to increase utilization
there needs to be instructions available from all the hardware
contexts to use as many issue ports as possible. Consider a
multithreaded application whose vast majority of instructions
are fixed point (integer) instructions. Running the application
with more hardware contexts will not help because the fixed
point units were already occupied most of the time with one
hardware context. On the other hand, if we have an application
with an ideal SMT instruction mix, then SMT should improve
performance since the processor will have more opportunities
to fill all the execution units.

Since SMTsm must be able to predict whether an applica-
tion benefits from additional SMT resources as we increase
the number of threads, it must also include some measure of
scalability within the application itself. After all, if there are
software-related scalability bottlenecks, the application will
not run better with increased number of threads irrespective
of hardware. We observe that instruction mix, which is crucial
for predicting hardware resource utilization in SMTsm, is also
a good indicator of the application’s scalability. An application
that spends significant time spinning on locks will have a large
percentage of branch instructions and a high deviation from
the ideal SMT mix.

Equation 1 shows how to calculate the SMTsm metric
for the generic processor discussed above, where Pi denotes
a unique issue port, N is the total number of issue ports,
DispHeld is the fraction of cycles the dispatcher was held
due to lack of resources, TotalTime is the wall-clock time
elapsed, and AvgThrdTime is the average time spent by
each hardware thread. Smaller metric values indicate greater
preference for a higher SMT. The metric consists of three



factors: 1) the instruction mix’s deviation from an ideal SMT
instruction mix, ii) the fraction of cycles that the dispatcher
was held due to lack of resources, and iii) the ratio of the wall-
clock time elapsed to the average CPU time elapsed per thread.
fpi is the fraction of instructions that are issued to P¢. For
example, to calculate fp;, the number of instructions issued
through port 1 is divided by the total number of instructions.

N-1
SMTsm = (> (fpi—1/N)*)'/?
u=0 1
, (D
x DispHeld
x (TotalTime/AvgThrdTime)

The second factor of the SMT-selection metric is the fraction
of cycles that the dispatcher was held due to lack of resources.
The meaning of resources is architecture dependent and may
include many items but it should primarily refer to the issue
queues of the execution units. If the issue queues are filling up
to the point where the dispatcher is held, then having additional
instruction streams to dispatch from is not going to be useful.
This factor is important to have in addition to the instruction
mix because it indirectly captures the effect of instruction-
level parallelism and cache misses. The number of cycles the
dispatcher is held due to resources is easily obtained through
hardware performance counters in many modern processors.

The final factor of the metric is the ratio of the wall-
clock time elapsed to the average CPU time elapsed per
hardware thread. This measures scalability limitations man-
ifested through sleeping or Amdahl’s law as opposed to busy
waiting. This factor does not have a direct relationship with
SMT preference, but scalability is an important factor to
consider since additional software threads are needed to use
the available SMT hardware contexts.

In the following subsections, we illustrate how SMTsm
metric is measured for two different processor architecture:
IBM’s POWER?7 and Intel’s Nehalem Core i7.

A. SMTsm on IBM’s POWER7 Processor

In a given cycle, the POWER7 [6] core can fetch up to
eight instructions, decode and dispatch up to six instructions,
and issue and execute up to eight instructions. The core has 12
execution units: two fixed point units, two load/store units, four
double-precision floating-point pipelines, one vector unit, one
branch unit, one condition register (CR) unit, and one decimal
floating point pipeline. POWER?7 processors support up to 4-
way SMT. In other words, up to four hardware contexts can
concurrently use the core. If there is only a single software
thread running on a core, the processor automatically runs
the core at SMT1 which gives the hardware thread access to
resources that would be partitioned or disabled at higher SMT
levels. Similarly, if there are only two software threads on a
core then the core runs at SMT2.

Fig. 4 shows that an issue port in POWER?7 is tied to
a type of instruction. For instance, a fixed point instruction
always uses a fixed point issue port. There are a total of eight
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Fig. 4: IBM’s POWER?7 out-of-order execution engine.

issue ports: 1 port corresponds to a conditional register (CR)
instruction, 1 port corresponds to a branch instruction, the
remaining 6 issue ports are divided equally between the two
unified issue queues, UQO and UQ1. Through each UQ, up to
one load/store instruction, one fixed point instruction (FP) and
one vector scalar (VS) instruction can be issued concurrently.
It is important to note here, that the CR unit is a special unit. It
is tightly tied to the branch unit. It is also not heavily used in
general. This unit has been mainly designed to avoid sending
the compare instructions through the FP unit to avoid tying
branch prediction to the FP unit. Therefore, we consider in our
metric both the CR and branch units as one execution unit. So,
an ideal SMT instruction mix for the POWER?7 architecture
would consist of 1/7 loads, 1/7 stores, 1/7 branches, 2/7 FP
instructions, and 2/7 VS instructions. The loads and stores
are separated because they rely on separate resources like
the load and store buffers. To measure the second term of
the equation (dispatcher held) in POWER?7, the hardware
performance event PM_DISP_CLB_HFELD_RES can be
used. The SMT-selection metric for the POWER7 processor
is shown in Equation 2.

P7SMTsm = ((fr — 1/7)% + (fs — 1/7)°
+(fer —1/7)?
+(fvs =2/T + (frp = 2/DH? @)
*x DispHeld
x (TotalTime/AvgThrdTime)

B. SMTsm on Intel’s Nehalem Processor

On the Nehalem Core i7, the number of issue ports equals
the maximum number of instructions that can be issued in a
cycle (see Fig. 5). In contrast to POWER?7, each of the six
issue ports is used for a variety of unrelated instructions [7].
The unified reservation station serves as a single scheduler
for all the execution units. It is responsible for assigning
instructions to the different execution units. The core can issue
up to 6 instructions per cycle. Three of them are memory
operations (load, store address and store data), and the other
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Fig. 5: Intel’s Nehalem out-of-order execution engine.

three are computational instructions (floating point, branch,
and integer operations). Intel’s Nehalem core supports 2-way
SMT.

Equation 3 shows the SMT-selection metric for Intel’s
Nehalem Core i7 processor. The term fp; refers to the
fraction of instructions that have been issued through port
(i€[0,1,2,3,4,5]). Since the issue ports on Nehalem are
not related to a single type of instruction, we simply measure
the number of instructions issued to each port. All instructions
map to a single issue port, except for integer ALU instructions
which map to three ports, so the mix of instructions sent to
each issue port is sufficient for calculating the SMT-selection
metric. Dispatch held can be obtained using RAT _STALLS
event with the rob_read_port unit mask [8].

5
CiTSMTsm = (Y _ (fpi — 1/6)*)'/?
i=0 3)
x DispHeld
* (TotalTime/AvgT hrdTime)

III. EXPERIMENTAL METHODOLOGY

A. System Configuration

Experiments were conducted on an AIX/POWER7 system
and a Linux/Core 17 (Nehalem) system.

The AIX/POWER?7 system uses AIX 6.1.5 and two 8-core
POWER? chips. For the single-chip experiments, the bench-
marks were restricted to run on one §-core chip. The POWER?7
CPU is clocked at 3.8 GHz and the system has 64 GB of
RAM. The C, C++, and Fortran benchmarks were compiled
with IBM XL compiler 11.1.0.6 using these flags: -O3 -gstrict
-qarch=auto -qsimd=auto -q64 and -gsmp=omp. The MPI
programs use the IBM Parallel Operating Environment version
5.2.2.3. the Java benchmarks use the 64-bit IBM JVM version
1.6.0. The SMT levels on POWER7 can be changed without
rebooting the system by running the smfctl command with
privileged access.

The Linux/Core i7 system uses Linux kernel 2.6.34 with
3GB of RAM and a four cores Intel Core i7 965 clocked at

3.2 GHz with two SMT threads per core. GCC 4.4.5 was used
to compile the benchmarks with the flags -O3 -march=native
and -fopenmp where appropriate. Unlike POWER7, the SMT
level can only be changed by rebooting and modifying a
BIOS setting. In our experiments SMT2 is always enabled
in the BIOS. Therefore to simulate SMT1 we only use one
software thread per core. This better represents typical use
cases because SMTsm is designed to be used dynamically at
run-time.

B. Benchmarks

The experiments use a diverse set of benchmarks to capture
the variations in characteristics of various workloads. The
benchmarks are drawn from the NAS Parallel Benchmarks
(NPB) v3.3.1, the PARSEC Benchmark Suite v2.1, the SSCA2
benchmark, the STREAM synthetic benchmark, the SPEC
OMP2001 benchmark suite v3.2 and two commercial bench-
marks. Due to compatibility issues we were not able to
run all of the benchmarks on the POWER?7 system. Due to
time constraints, we focused mostly on the POWER7 system,
because it supports a higher SMT level than Nehalem; as a
result we did not run all of the benchmarks on Nehalem. A
brief description of the benchmarks used is outlined below.

o The NAS parallel benchmark Suite [9] is a set of
programs that have been initially designed to evaluate
the performance of supercomputers. Both the MPI and
OpenMP versions were used on AIX/POWER7 but only
the OpenMP versions were used on Linux/Core i7.

e PARSEC benchmarks [10]: PARSEC stands for Princeton
Application Repository for Shared-Memory Computers.
It is a set of programs designed to evaluate the perfor-
mance of Chip-Multiprocessors (CMPs). PARSEC bench-
marks mimic multithreaded applications from different
fields such as recognition, mining, and large-scale com-
mercial applications. PARSEC does not officially support
the AIX operating system, so only a handful of the
benchmarks were able to be used on the AIX/POWER7
system.

o SSCA2 benchmarks: SSCA, which stands for the Scal-
able Synthetic Compact Applications, is a computational
graph theory benchmark that uses OpenMP. It consists of
four kernels with irregular access to a large, directed, and
weighted multi-graph. This benchmark is characterized
by integer operations, a large memory footprint, and
irregular memory access patterns.

e STREAM [11] is a synthetic benchmark designed to
measure memory bandwidth and also uses OpenMP. To
obtain reasonable running times for our experiments, we
have increased the the default array size and number of
iterations to 4577.6 MB and 1000 respectively.

e SPEC OMP benchmark Suite [12] is adapted from the
SPEC CPU2000 benchmarks. Its goal is to evaluate the
performance of openMP applications on shared memory
multi-processors. We have used the SPEC OMP experi-
ments only on the AIX/POWER7 system.



e DayTrader [13] is a Websphere benchmark application
that emulates an online stock trading system. The ap-
plication simulates typical trading operations such as
login, viewing portfolios, looking up stock quotes, and
buying or selling stock shares. The benchmark consists
of a websphere front-end, a DB2 database, and a load
generator. The DayTrader client is a Linux Intel Xeon
machine running the JIBE (Websphere Studio Workload
Simulator), which simulates a specifiable number of
concurrent browser clients. We simulated 500 clients
for stressing the DayTrader application running on the
DayTrader server. This number of clients was sufficient to
keep the server continuously busy with waiting requests
to be processed.

e SPECjbb2005 is a Java server benchmark from the Stan-
dard Performance Evaluation Corporation [14] based on
the TPC-C benchmark specifications. It simulates a 3-tier
system in a JVM with emphasis on the middle tier.

o SPECjbb05-contention is a custom benchmark derived
from SPECjbb2005. The primary change introduced in
SPECjbb05-contention is that all worker threads operate
on a single warehouse instance instead of each worker
thread operating on its own warehouse instance. This
introduces synchronization contention that is not present
in SPECjbb2005.

Table I summarizes the various benchmarks used in each
category. Note here that for the problem sizes presented, native
and reference problem sizes are the largest available for their
respective suites. For NAS benchmarks, D is a larger problem
size than C.

IV. EVALUATION

In all of the experiments conducted, the number of software
threads used is chosen to be the same as the number of
available hardware threads/contexts in the OS instance. For
example, in the AIX instance on one 8-core POWER?7 chip,
32 software threads were used at SMT4, 16 software threads
were used at SMT2, and 8 software threads were used at
SMT1. Similarly, on the Linux instance on the 4-core Core
17 machine, 8 software threads were used at SMT2, and 4
software threads were used at SMT1.

A. SMTsm Evaluation for various Multithreaded Benchmarks

Fig. 6 shows the relationship between the SMT-selection
metric measured at SMT4 and the speedup obtained on SMT4
relative to SMT1 on the AIX/POWER7 system. We can see
a clear correlation between the metric value and the speedup,
and the correlation is strong enough to predict the optimum
SMT level in most cases (In our experiments, the success rate
was 93%). If we set a threshold close to the value of 0.07 then
we can be confident that any application with a metric greater
than the threshold will perform better at SMT1 than SMT4.
This is true for the majority of the benchmarks evaluated.
Applications that fall to the left of the threshold are likely
to prefer SMT4, with only two of the evaluated benchmarks

3 .

i .
1 Threshold Line
EP ]
L] ]
EP_MPI !
- ]
25 !
|
]
|
]
]
2 ]
o ]
S Blackscholes !
° v ]
@ |
@ 1S 1
Q =,
n Wupwise  Gafort ]
~ 15 = mS_MPI T
E Fluidanimate Fmadd !
= LUMPm B!
@ CG_MP 1By
5 Ammp : Daytrdder
< !
E T Agsi SPECiob, o
______ - . AR
5 T R e Tsveam ol Dedup
MG_MPIm m St SCA2 d
- FStreamclustePSS
i Swim
! Mind E
] quake
0.5 n (]
i
]
] SPECjbb_contention
i =
]
0

o 0.025 005 0.075 0.1 0.125 0.15 0.175 0.2
SMT-selection Metric @ SMT4

Fig. 6: SMT4/SMT1 speedup vs. metric evaluated @ SMT4 —
AIX instance on an 8-core POWER?7 chip.

0.225 0.25

SMT4/SMT1 Speedup

P
1.82 135 0.86

078 025
100% -
W B

80% -

70% -
60% -

50% - I—

- O
o |
10%
0%
'o 5 K & & &
N & IS N «&
& é\\& & & & 2
g & S &
Q IS &7 &
1 &

[@% Loads Mm% Stores (% Branches 0% FXU B %VSU]
Fig. 7: Instruction mix of 5 benchmarks — AIX instance on an
8-core POWER? chip.

1.87 t ]
| — Threshold Line
1.64 =EP_wPI i
mEP !
1.41
CG_MPI !
B\acks.chnles L
2 1.2f &5
3 Fi 1
g WUpW'(?afortlIE"IM:L‘UTa ﬁPlC'bb
g_ [ — MG P! B rader _Dedup_ _
n T_MPI Stream@gg, i) Applu L
Ammpm [ S is
e BT, A2
E os! : BSSC
(g i M%r\d
% 0.6t S‘}ream.c!uster Equake
' SPECjbb_contention
0.4+ ' g}
0.2+ i
c 4 : 4 4 4 Il
0 0.05 0.1 0.15 0.2 0.25

SMT-selection Metric @ SMT4

Fig. 8: SMT4/SMT2 speedup vs. metric evaluated @SMT4 —
AIX instance on an 8-core POWER?7 chip.



TABLE I: Benchmarks Evaluated

[ Label Suite [ Problem Size | Description ]
IS NAS D Integer Sort: Bucket sort for integers
BT NAS C Block Tridiagonal: Solves nonlinear PDEs using the BT method
LU NAS C Lower-Upper: Solves nonlinear PDEs using the SSOR method
CG NAS C Conjugate Gradient: Estimates eigenvalues for sparse matrices
FT NAS C Fast Fourier Transform
MG NAS D MultiGrid: Approximate solution to a 3d discrete Poisson equation
EP NAS D (OpenMP) Embarrassingly Parallel: Computes pseudo-random numbers
C (MPI)
Blackscholes | Parsec Native Computes option prices
Bodytrack Parsec Native Simulates motion tracking of a person
Canneal Parsec Native Cache-aware annealing
Dedup Parsec Native Data compression and deduplication. Heavy I/O
Facesim Parsec Native Simulates human facial motion
Ferret Parsec Native Content similarity algorithm
Fluidanimate | Parsec Native Fluid dynamics simulation
Freqmine Parsec Native Frequent item set mining
Raytrace Parsec Native Raytracing
Streamcluster | Parsec Native Online data clustering
Swaptions Parsec Native Pricing of financial swaptions
Vips Parsec Native Image processing
X264 Parsec Native Video encoding
Stream N/A 4578 MB x 1000 Streaming memory performance
iterations
SSCA2 N/A SCALE = 17 Graph analysis benchmark. Lock heavy
No. vertices = 217
SPECjbb SPECjbb No. warehouses = Server-side Java performance. It emulates a 3-tier system
2005 No. hw. threads in a JVM with emphasis on the middle tier.
SPECjbb N/A No. warehouses = 1 | Modified version of SPECjbb with only a single warehouse.
contention Heavy lock contention
Daytrader N/A 500 clients Websphere trading platform simulation. Web front-end only.
Heavy network 1/0.
Ammp SPEC OMP2001 | Reference Molecular dynamics
Applu SPEC OMP2001 | Reference Fluid dynamics
Apsi SPEC OMP2001 | Reference Lake weather modeling
Equake SPEC OMP2001 | Reference Earthquake simulation
Fma3d SPEC OMP2001 | Reference Finite element method PDE solver
Gafort SPEC OMP2001 | Reference Genetic algorithm
Mgrid SPEC OMP2001 | Reference Multigrid method differential equation solver
Swim SPEC OMP2001 | Reference Shallow water modeling
Wupwise SPEC OMP2001 | Reference Quantum chromodynamics
having a metric less than the threshold and performing slightly
worse at SMT4.
2 In Fig. 7, we clearly see a correlation between the instruc-
1.8 < tion mix and the SMT4/SMTI1 speedup. We have selected
1.6 P representative benchmarks from the set of benchmarks studied.
- Blacksgholes P As we move from the left of the figure to the right, the speedup
1.4 F.\ulda-mmale Ga;OSnMP\ n . .
2 Wopwse, ¥ going from SMT1 to SMT4 decreases from 1.82 to 0.25, while
3 1.2 'ba“‘i"ii F”‘-“"'LU{P" the instruction mix tends to be more and more dominated with
@ S B E _Eauake o e one or fewer functional units or less diverse.
E r—‘77’9"’15'PE.(‘,|b G By F,Sltream s Dedup .
% 0.1 w6 ¥ i = The metric versus SMT4/SMT2 speedup on AIX/POWER7
E ' _ _ is shown in Fig. 8. Once again a threshold of 0.07 provides
SPECjbb_contention . . .
o 0.67 " good separation. All of the benchmarks with a metric greater
0.4 than the threshold prefer SMT2. Three benchmarks have a
metric less than the threshold and a speedup less than 1 but
02 greater than 0.9. All of the remaining benchmarks have a
i 005 o1 o5 02 025 oa metric below the threshold and a speedup greater than 1.

SMT-selection Metric @ SMT2

Fig. 9: SMT2/SMT1 speedup vs. metric evaluated @SMT2 —
AIX instance on an 8-core POWER?7 chip.

The experiment shown in Fig. 9 is the same as the previous
experiments except it uses the SMT2 over SMT1 speedup. In
this case, the SMT-selection metric is not capable of always
making an accurate prediction. For metric values below 0.07 or
above 0.19, we can predict the optimum SMT level. However,



for metric values between 0.07 and 0.19, it is not possible to
predict the application’s SMT preference.
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Fig. 10: SMT2/SMT1 speedup vs. metric evaluated @SMT?2
— Linux instance on a quad-core Core i7 system.

Fig. 10 shows the SMT-selection metric compared to
the SMT2/SMT1 speedup on the Linux/Core i7 system. In
this experiment, a stronger correlation than in any of the
AIX/POWERT7 experiments is observed. With only eight soft-
ware threads running at SMT2, there is less synchronization
contention so only a few of the benchmarks prefer SMT1
over SMT2. In this case there is not much motivation for
SMT optimization but the experiment does show that the SMT-
selection metric can be adapted to other architectures.

In this experiment, we observe an outlier on the far right,
which is Streamcluster from PARSEC. The outlying behavior
of Streamcluster is due to its unique characteristic: a large
fraction of load instructions (40%). More specifically, the
model does not very well reflect the behaviour of streamcluster
on Nehalem for the following reason: Since streamcluster has
an unusually high number of loads, according to our model,
a single thread should tie up a particular pipeline resource
(an issue port for loads, in this case). Therefore, adding
more threads will not help. However, because this application
is memory-intensive on Nehalem (it has 8 L3 Misses per
thousand retired instructions (MPKI)), the bottleneck for load
instructions is the memory system instead of the the issue port.
So, this creates a scenario where adding more SMT threads
helps: while some threads wait for memory others can continue
using pipeline resources.

On POWER?, the reason for Streamcluster being an outlier
in the SMT2/SMT1 case is different, because the L3 miss rate
is no longer high (POWER?7 has a larger L3 cache). However,
the reason still relates to Streamcluster having a high number
of loads and a low number of stores. On POWER?7, loads
and stores rely on mostly the same pipeline resources (like
the issue port). Therefore, these resources do not become the
bottleneck although we have many load instructions.

B. SMTsm Evaluation at a Lower-SMT level
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Fig. 11: SMT4/SMT1 speedup vs. metric evaluated @SMT1
— AIX instance on an 8-core POWER?7 chip.
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Fig. 12: SMT2/SMT1 speedup vs. metric evaluated @SMT1
— Linux instance on a quad-core i7 system.

The previous subsection evaluated how well the SMTsm es-
timated performance speedup is, when the SMTsm is measured
at the highest supported SMT level (SMT4). In this subsection,
we evaluate the metric when the application is running at a
lower SMT level, and the metric is used to predict the speedup
at a higher SMT level.

Figures 11 and 12 show the same experiments presented in
subsection IV-A but with the SMTsm measured at the lowest
supported SMT level. The experiments did not show a good
correlation between the metric and the speedup. This is not
surprising, as the metric is not able to foresee scalability
limitations caused by more threads at a higher SMT level;
the metric is only capable of detecting a slowdown when it
is happening. At SMT1 we are not able to accurately capture



contention as it was the case at SMT4, so the metric breaks
down at SMT1. Therefore, it is important to use the metric at
the highest SMT-level available. Moreover, in all SMT-capable
processors, the highest SMT-level is always used as the default
since many multi-threaded applications benefit from SMT.
This motivates further the use of the metric at higher SMT-
levels to predict whether going to a lower SMT-level benefits
the running workload.

C. Metric Evaluation across Chips
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Fig. 13: SMT4/SMT1 speedup vs. metric evaluated @SMT4
— AIX instance on two 8-core POWER?7 chips.
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Fig. 14: SMT4/SMT2 speedup vs. metric evaluated @SMT4
— AIX instance on two 8-core POWER7 chips.

Figures 13, 14, and 15 give the results for the SMTsm
prediction experiments on an AIX instance running on a two-
chip POWER?7 system. For these experiments there are 16
cores, which means 64 software threads are used at SMT4,
32 threads are used at SMT2, and 16 threads are used at
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Fig. 15: SMT2/SMT1 speedup vs. metric evaluated @ SMT1
— AIX instance on two 8-core POWER?7 chips.

SMT1. Using two chips introduces two new variables that the
metric must compensate for to remain accurate. First, there
is a performance penalty for cross-chip communication, so
applications that are more sensitive to NUMA effects may
affect the metric differently. Second, the number of running
software threads is doubled at all SMT levels compared to the
single chip case, so the effect of scalability is amplified.

For the SMT4/SMT1 case presented in Fig. 13, the results
are similar to the SMT4/SMT 1 experiment with only one chip.
However, there are more benchmarks that are mis-predicted.
We also notice, that applications that have a metric near
the threshold are more likely to be mispredicted. Another
difference with the single chip experiment is that more appli-
cations prefer SMT1 over SMT4. This is expected since with
more software threads, more contention for synchronization
resources will be introduced, and hence more scalability
limitations.

The SMT4/SMT2 results (Fig. 14) look better than the
SMT4/SMT1 results, but there is still only a small differ-
ence in metric values between SMT4-preferring applications
and SMT1-preferring applications. Fig. 15 demonstrates that
SMT2/SMT1 prediction is ineffective, the same as in the single
chip case.

SMT preference prediction is important for large systems
with many cores because more applications will be hindered
by SMT as synchronization overhead and contention over CPU
resources overtake the benefits of SMT. The results show that
the SMT-selection metric is still useful at 16 cores, but more
work needs to be done since the metric is less accurate at
16 cores than at 8 cores. One possibility is that the scalability
detection aspect of the metric starts to break down with a large
number of threads. This is supported by the fact that the metric
works better at SMT4/SMT2 prediction with 16 cores, since
the change in the number of software threads is smaller than
when predicting SMT4/SMT1 speedup.



V. APPLYING THE SMT-SELECTION METRIC

The SMT-selection metric can be used by operating systems
to guide scheduling decisions. It can also be used by user-level
optimizers or application tuners to dynamically adjust the SMT
level of the underlying system to improve the performance of
running applications.

To use the SMT-selection metric, the formula must first be
adapted to the target architecture. In section II, we presented
the metric for the IBM POWER7 and Intel Nehalem archi-
tectures. The metric can be ported to other architectures in
similar ways. The threshold for changing the SMT level needs
to be determined for each new system. This can be achieved
by running a representative set of workloads, recording the
SMT speedups and the observed SMTsm metric values for
each workload, as we did in section IV. Once the (metric,
speedup) values are gathered, the threshold can be obtained
automatically using statistical techniques. We describe two
methods to obtain a good SMTsm threshold for deciding when
a change in SMT level would benefit the performance of a
given application.

A. Using Gini Impurity

Gini impurity [15] is a measure of how well separated or
clustered a set is. We look for a separator (potential threshold)
that leads to the lowest overall Gini impurity as follows:

1) Re-label the (metric, speedup) tuples into the form
(metric, i) with (¢ € {0,1}), setting i=0 if the speedup
is less than 1, and i=1 if the speedup is greater than or
equal to 1.

2) Divide the tuples into 2 sets {L=Left-set, R=Right-set}
based on whether the metric value is to the left or to the
right of the separator value.

3) Calculate the Gini impurity of the left-set (/1) and the
right-set (Ir) as shown in equations 4 and 5, where
|Lo| denotes the size of the left-set with ¢ = 0 (i.e.,
speedup < 1), |L1| denotes the size of the left-set with
i1 =1 (ie., speedup > 1), and |L| is the size of the

entire left set (|L| = |Lg| + |L1|). Similar notation is
used with the right set.
Lﬂr [Lo|r
IL=1- [ - = )
L] L]
|R1|r [|R0]2
In=1- { _ [ 1Bl (5)
R R
4) Calculate the overall Gini impurity using equation 6.
, L] R
Impurity = I+ T 6
Pty = m ttpeR e ©

An impurity of 0 indicates that the set is perfectly separated,
i.e. all of the sample points to one side of the separator have
a speedup greater than or equal to 1, and all of the remaining
points are on the other side. A high impurity value means that
the selected separator is not a good classifier, and vice versa.

Fig. 16 shows the results of using Gini impurity to provide
a suitable metric threshold value at which to decide on
performing a change in SMT level to improve performance,
when using SMT4/SMT1 speedup data on POWER?7. The
dotted vertical lines mark the range of optimal thresholds. The
figure also displays two easy ways to observe the qualitative
fitness of the SMT-selection metric on a given system and a
set of benchmarks. First, is how low the impurity is at its
lowest point, which represents how good a prediction can be
made. In the figure, the lowest impurity is 0.23 which is good,
as verified by the fact that only four of the benchmarks were
misclassified with the threshold obtained by this method (Refer
to Fig. 6 which has four points to the left of the separator with
a speedup below 1). Second, is how large the range of optimal
thresholds is. If the range is very small, then a new application
with a metric beyond that range is likely to be mispredicted.
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Fig. 16: Total overall Gini impurity for potential separators of
the SMTsm metric for SMT4/SMT1 speedup on POWER?7.

B. Using The Average Percentage Performance Improvement
(PPI) Method

With this method we are trying to estimate how much
performance improvement we would obtain if we switched
from the default SMT level (e.g., SMT4) to a lower one (e.g.,
SMT1) as dictated by different thresholds. The threshold with
the highest estimated Percentage Performance Improvement
(PP]) is deemed the best. In order to do this, for each potential
SMTsm threshold value, and for each benchmark, we estimate
a PPI value as follows:

« If the benchmark’s measured SMTsm value is less than
the threshold in question, then its PPI is set to 0. Essen-
tially, this means that the benchmark is not expected to
benefit from a lower SMT setting, so its expected PPI
from switching to lower SMT level is zero.

« If the benchmark’s measured metric value is greater than
the threshold value in question, then the PPI is set to
((SMT4/S]\41T1 speedap — 1) *100. In other words, if the
benchmark is expected to benefit from a lower SMT
setting based on the current threshold, we calculate PPI as




the performance improvement at SMT1 relative to SMT4
(expressed in percent).

Then, we take the average of the PPIs over the whole set of
benchmarks as the Y-value to plot against that threshold value.
This gives us the average expected performance improvement
at each threshold level. Examining this data, we can choose
the best threshold — the one that gives us the highest PPI.
Fig. 17 shows an example of wusing this method
for SMT4/SMT1 performance improvement prediction on
POWER?7. The results are similar to those using Gini impurity,
but this methods provides the following additional benefits:

1) It can be used to easily show how much performance
improvement the SMTsm metric can provide. The Gini
impurity method only shows that the metric is working,
but cannot show potential improvements.

2) It also gives a view of potential PPIs over a range
of threshold values. Even though the range of optimal
metric thresholds is relatively small in both methods,
we can see from Fig. 17 that there is actually a large
range of potential threshold values where we have an
average PPI that is greater than 15%. This means that a
new application whose metric value falls into this range
is not likely to experience a severe negative effect from
using this metric value as a threshold for deciding on a
change in SMT level.
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Fig. 17: Average SMT4/SMT1 percentage performance im-
provement of all the benchmarks vs. SMTsm values — AIX
instance on POWER7.

3) This method can also provide a better threshold than
the Gini impurity method in some cases, because Gini
impurity does not consider the amount of speedup. For
example, there could be a few benchmarks with speedup
values just below one, and a benchmark with a very
large speedup just to the right of them. In this case Gini
impurity would suggest putting the threshold to the left
of all the mentioned benchmarks so as to classify more
benchmarks correctly, whereas this method would sug-
gest putting the threshold to the right, thereby preserving
the large speedup in return for minimal slow-downs in

the other benchmarks.

VI. RELATED WORK

SMT job schedulers and SMT performance characterization
comprise the majority of related work. The SMT job sched-
ulers are designed to find high performing (often referred to
as symbiotic) co-schedules from a larger selection of running
applications. They do not attempt to optimize the SMT level
itself like SMTsm. The SMT performance characterizations
do investigate the effect of the SMT level but none of
them propose a general metric or algorithm for optimizing
it. Additionally, most of the previous work focus on single-
threaded applications while our work studies multi-threaded
applications.

Mathis et al [4] evaluate and analyze the effect of SMT2
on the POWERS CPU with single-threaded applications. To
measure the SMT?2 gain of an application, they simply run one
copy of the application per available hardware thread/context
with and without SMT. The authors found that most of the
tested applications have a moderate performance improvement
with SMT. They also found that applications with the smallest
improvement have more cache misses when using SMT. This
result is less applicable to multi-threaded applications because
the total amount of work and data does not increase as the
number of threads increases, like it does when you run more
copies of a single-threaded application and because threads of
a multi-threaded application may share data. Ruan et al [16]
evaluate and analyze SMT effects on a network of servers but
do not attempt any optimization. They found that the overhead
of using an SMP-capable kernel sometimes outweighs the
benefit of SMT. This is irrelevant today since all modern server
CPUs are at least dual-core. The authors also discovered that
SMT can sometimes hurt performance when there is more than
one CPU which supports our claim that the SMT level should
be optimized.

Snavely and Tullsen [17] describe a job scheduler for SMT
systems called SOS (Sample, Optimize, Symbios). The goal
of SOS is to choose an effective co-schedule of applications
from a pool of ready-to-run applications. SOS has a sampling
phase where it tries many different co-schedules and measures
a performance predictor metric from hardware counters. Then,
it has a symbiotic phase where it runs the co-schedules with
the best predicted performance. The authors evaluated several
different predictors and found that a high IPC and a low L1
data cache miss rate are both good predictors. They did try a
predictor based on the instruction mix, but it only looked at
integer and floating point instructions and it did not take into
account the mix of execution units. Snavel et al [18] extended
SOS to support application priorities. Overall, SOS is effective
for finding good co-schedules among many single-threaded
applications, but it is not designed to choose the best SMT
level for a multi-threaded application.

Settle et al [19] designed a job scheduler similar to SOS
in its goals. They use custom hardware performance counters
to create a fine-grained view of the cache access patterns of
the applications, from which they derive co-schedules with



an average of 7% improvement over the default scheduler.
Eyerman and Eeckhout [20] propose an SMT job scheduler
that is meant to surmount the shortcomings of SOS. They use
a probabilistic model to co-schedule applications without the
need for a sampling phase, and it can be configured to optimize
for throughput or turn-around time. The major downside of
their approach is that it requires specialized CPU counters
that are not available on commercial hardware.

Tam et al [21] present a solution for scheduling threads on
SMP-CMP-SMT systems. Their goal is to reduce remote cache
accesses by scheduling threads together that access the same
data. The authors approach this problem by using hardware
performance counters to monitor the addresses of memory that
cause remote cache accesses and then scheduling together (on
the same chip or on the same core) threads that access the
same memory. They achieve 5-7% performance improvements
for a handful of applications, but their system is not meant to
determine the optimal SMT level.

VII. CONCLUSIONS AND FUTURE WORK

Simultaneous multithreading design has revolutionized the
way modern processors perform computations today. It has
introduced many benefits, notably increasing CPU utilization.
However, automatically predicting when SMT fails to provide
the expected increase in performance for many applications is
still not a well-understood area of research.

This paper examines a methodology for SMT-level selec-
tion. At the heart of our methodology is the SMT-selection
metric that is capable of predicting potential change in appli-
cation performance when the SMT-level is changed. We have
shown that it is very difficult to predict SMT preference by
just relying on certain parameters like cache misses, branch
mispredictions, number of floating point instructions, or CPIL.

Our performance evaluation used a large number of multi-
threaded standard benchmarks that represent a wide range of
applications behavior. Our results have shown that the SMT-
selection metric was able to predict the correct SMT speedup
in 93% of the cases on the IBM POWER?7 processor, and in
86% of the cases on the Intel Nehalem processor. The metric
can easily be adapted to other architectures once we have a
good understanding of the issue ports and functional units used
by the target architecture. We have also presented an algorithm
based on the Gini impurity that can be used to accurately
obtain a range of SMT-selection metric thresholds that can be
used by schedulers or application optimizers.

While we tried to capture most of the factors that could
impact SMT performance for a general microprocessor, the
SMTsm still does not address directly some issues like
instruction-level dependencies and relative execution speeds
of various instruction types. SMTsm attempts to approximate
such effects indirectly through the dispatch-held factor. Study-
ing such effects is the subject of our future investigations.
More future work needs to be done to increase the accuracy of
prediction, to test the metric on other architectures, to improve
the scalability of the metric when applied to a much larger

number of cores, and finally, to use the metric in a user-level
scheduler.
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