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Modern multi-threaded systems are highly complex. This makes their behavior difficult to understand. De-
velopers frequently capture behavior in the form of program traces and then manually inspect these traces.
Existing tools, however, fail to scale to traces larger than a million events.

In this paper we present an approach to compress multi-threaded traces in order to allow developers to
visually explore these traces at scale. Our approach is able to compress traces that contain millions of events
down to a few hundred events. We use this approach to design and implement a tool called NonSequitur.

We present three case studies which demonstrate how we used NonSequitur to analyze real-world perfor-
mance issues with Meta’s storage engine RocksDB and MongoDB’s storage engine WiredTiger, two complex
database backends. We also evaluate NonSequitur with 42 participants on traces from RocksDB andWiredTiger.
We demonstrate that, in some cases, participants on average scored 11 times higher when performing per-
formance analysis tasks on large execution traces. Additionally, for some performance analysis tasks, the
participants spent on average three times longer with other tools than with NonSequitur.

CCS Concepts: • Software and its engineering→ Software testing and debugging; Software performance;
• Human-centered computing→ Visualization systems and tools.
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1 Introduction
Debugging performance issues in multi-threaded applications is a frequent and challenging task
for software developers. For example, a case study on Firefox found that performance bugs take a
longer time to fix, are fixed by more experienced developers, and require changes to larger parts
of the code than non-performance bugs[48]. Another study also found that performance bugs
were more difficult to fix than non-performance bugs, suggesting that developers need better tool
support for performance debugging [35].

One of the challenges that developers encounter when debugging performance is that they often
need to analyze large execution traces to understand performance issues [19]. Execution traces
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are time-stamped operation or function logs, which are generated at runtime and capture each
event that a thread executed over time. A typical execution trace of a multi-threaded application
would capture when a particular thread entered a function and when a particular thread exited
the function. There are several reasons why developers frequently need to analyze large execution
traces when debugging performance:

(1) Execution traces contain the information that developers need to debug two types of perfor-
mance problems: those caused by "outlier events" and those caused by threads being blocked or
delayed. We define an outlier event as: a function call invocation or time between function calls that
lasts an unusually long time. An example of an outlier event is a piece of code which runs infre-
quently, but each execution of this code takes a long time [27]. Although occurring infrequently,
performance issues caused by outlier events are a critical type of performance problem because
they represent the worst-case system behavior. Performance problems caused by threads being
blocked or delayed are also a critical type of performance issue because they constitute a majority
of software performance bugs [24]. To resolve these types of issues, developers need to analyze
execution traces to find outlier events, understand what threads are doing over time, and identify
correlations in behavior across threads.
(2) Developers do not always know a priori what information is useful in diagnosing performance
issues [19]. As a result, they collect large execution traces in the hope of capturing key pieces of
data that will help them understand the performance degradation [19].
(3) When developers try to understand the performance of their applications, they can use profilers
to collect performance data during program execution. Popular profilers include OProfile, Perf,
HPCToolkit, and Intel VTune [47]. But profilers do not sample at a high enough rate to catch outlier
events. As stated by one developer of WiredTiger, a multi-threaded open-source storage engine, “I
would only expect Perf to be of limited use here. It is useful in giving an indication of where time is
spent over the entire run, which is good for general performance tuning but I don’t know how to use
the results to find what is causing outlier operations”[19].

Large execution traces which developers analyze when debugging performance could contain
millions of recorded function invocations across multiple threads. One option that developers
have to analyze large execution traces is to employ algorithms to extract important information
from the execution traces. Such algorithms can remove redundant information from execution
traces [23]; detect “phases of execution” [10, 20, 38, 45]; and find interesting patterns of behavior
[11, 33]. However, these algorithms are not designed to assist software developers with finding and
investigating the causes of outlier events. Furthermore, to the best of our knowledge, most of these
algorithms have not been implemented into trace analysis tools which software developers can
use. Another option is to use trace visualization tools. However, a survey from 2014 found that
the majority of trace visualization tools unable to visualize very large execution traces containing
millions of function invocations [25]. Consequently, even visualization tools that are designed to
assist developers with performance debugging [30, 43] cannot be used with large execution traces.
On the other hand, other trace visualization tools that can handle large execution traces were not
designed to assist developers with analyzing performance bugs caused by outlier events [16, 17].
We present RegTime, an algorithm to compress execution traces by removing information not

important for performance comprehension [19]. RegTime takes as its input a large execution trace
and outputs a compressed version of the trace, with enough information for developers to find
outlier events, understand what threads are doing over time, and identify correlations in behavior
across threads. We also describe NonSequitur, an interactive visualization tool for developers to
study traces compressed with RegTime (see Figure 1). Our current implementation of NonSequitur
compresses multi-threaded execution traces that contain the call stacks of executed functions. But
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Fig. 1. NonSequitur workflow.

NonSequitur can also be adapted to compress logs containing any type of event, as long as those
events have start times and durations. For example, NonSequitur can be adapted to compress a log
of network operations executed by different nodes in a distributed system.

In summary, we make three contributions:
★ We present the RegTime algorithm to assist developers with analyzing large execution traces

to debug performance issues caused by outlier events and by blocked threads.
★ We introduce NonSequitur, a tool that visualizes the compressed execution traces generated

by RegTime. Consequently, NonSequitur is able to visualize large execution traces within the
width of a computer screen1.

★ We present three case studies in which we used NonSequitur to analyze real-world per-
formance issues with WiredTiger and RocksDB, two complex database backends. We also
conduct a user study with 42 software developers to evaluate how effective NonSequitur is at
helping developers diagnose performance bugs as compared with existing tools.

2 Background and Related Work
Our goal with designing RegTime and NonSequitur was to assist software developers with analyzing
performance bugs captured in large execution traces. To understand how to design these tools, we
examined empirical studies that characterised performance debugging. Prior studies focused on
comparing the processes of fixing performance and non-performance bugs [35, 48] or characterizing
performance bugs [32, 40]. But the findings of these studies were not useful in helping us to design
RegTime or NonSequitur because they did not analyze what developers do to diagnose those bugs.
One study, however, examined performance comprehension, defined as the tools, information,

and processes developers use to investigate performance issues. This study used a JIRA database
of tickets for WiredTiger, the MongoDB storage engine, focusing on performance issues [19].
The study concluded that WiredTiger developers spent most of their performance debugging
time investigating latency spikes and throughput drops. Developers also spend time investigating
threads that were blocked or delayed. To that end, developers analyze log files with thread behavior
over time, often focusing on correlations between latency spikes, blockages, and thread activity.
WiredTiger developers frequently manually look through logs, which is impractical for large log
files. This study motivated us to design RegTime and NonSequitur.

The above study emphasized the importance of timing information: to understand what threads
do over time, developers need to understand when events in an execution begin and end. To identify
outlier events, developers need to know when events occur and the duration of these events. To
correlate outliers and blockages with the activities of threads, developers must be able to find the
interval during which these occurred and observe what threads were doing during this interval.

1NonSequitur is open source: https://github.com/auggywonger/nonsequitur_vis
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Table 1. Summary of prior work

Tool Technique Large
traces

Considers
timing

Finds
outliers

Compress. Framework [23] Trace Compression Alg ✓ ✗ ✗

Phase Finder [38] Phase Detection Alg ✓ ✗ ✗

Sabalan [11] Pattern Detection Alg ✓ ✗ ✗

Zinsight [17] Trace Vis ✓ ✓ ✗

TraceViz [16] Trace Vis ✓ ✓ ✗

SyncTrace [30] Trace Vis ✗ ✓ ✓
ExtraVis [15] Trace Vis ✗ ✓ ✗

TraceDiff [44] Trace Vis ✗ ✓ ✗

Sites’ Vis Tools [2, 2] Trace Vis ✗ ✓ ✓

NonSequitur (this paper) Trace Compression and Vis ✓ ✓ ✓

What developers do when diagnosing performance bugs is different from the activities of program
comprehension [37]. Many existing tools are designed for program comprehension, despite the fact
that performance bugs are generally harder to resolve than non-performance bugs [35, 48]. Table 1
summarizes the features of the existing tools.
Prior work has developed algorithms to help developers analyze execution traces. These algo-

rithms summarize the activities captured within the execution traces by removing repeated calls
due to loops [23] or by dividing the content of an execution trace into fragments that correspond to
execution phases [38]. These algorithms can help explain the functionality of the system. However,
they do not consider the timing information captured in the execution traces, treating unusually
long function calls the same as those of expected duration. Therefore, these algorithms cannot
locate outlier events or show what happened when the outlier events appeared. Other algorithms
were designed to find patterns of behavior in execution traces. Sabalan is a trace visualization tool
uses a bioinformatics-inspired algorithm to display execution behavior that appears repeatedly in
multiple traces [11]. The algorithm treats execution traces like DNA sequences, where recurring
patterns in DNA serve biological functions. Sabalan is effective at helping developers with program
comprehension tasks such as feature location or understanding how a system works. But Sabalan’s
algorithm ignores timing information and has limited use in performance comprehension.
In contrast, many trace visualization tools do display the behavior of execution traces over

time. However, these trace visualization tools are not suited for analyzing large execution traces to
diagnose performance bugs caused by outlier events or blockages. Trace visualization tools typically
fall into one of three categories: (1) The tool can visualize large execution traces, but does not support
performance comprehension tasks. (2) The tool can support performance comprehension tasks, but
cannot visualize large execution traces. (3) The tool neither supports performance comprehension
tasks nor is capable of visualizing large execution traces.
Zinsight is a tool to visualize traces from the IBM System Z [17]. TraceViz is a visualization

framework based on observations made in real situations at STMicroelectronics, a semi-conductor
company [16]. Both tools provide a timeline showing what is happening in an execution over time.
However, the main purpose of these tools is to help developers to identify patterns of behavior
in execution traces. Zinsight has a Sequence Context view that shows the paths of execution that
lead to specific events. TraceViz’s timeline view of the execution was designed to show periodic
temporal behavioral patterns. These tools are not designed for investigating performance bugs
caused by outlier events or blockages.
SyncTrace visualizes thread behavior over time in sufficient detail that it could theoretically

be used for performance comprehension tasks [30]. SyncTrace has a panel residing at the top for
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visualizing the timeline of a thread. Users can interact with the panel to see correlations in behavior
between the thread displayed in the panel and other threads. But SyncTrace was only demonstrated
to be capable of visualizing threads executing hundreds of thousands of events. Large execution
traces, by contrast, could capture millions of events per thread.

ExtraVis [15] is a trace visualization tool designed explicitly to support program comprehension.
It displays a vertical timeline of events with the purpose of helping developers with identifying the
major phases of an execution. ExtraVis was not shown to be capable of visualizing large execution
traces. TraceDiff [44] allows developers to visually compare two execution traces. TraceDiff is only
capable of visualizing execution traces containing hundreds of thousands of function calls.
Trace compression by RegTime is a form of performance summarization, as introduced by

Attariyan et al. [12]. Unlike this prior work, however, we do not rely on record and replay, which
is an expensive technique. And our goal with compression is to present a coherent and scalable
visualization for developers to explore.

Dick Sites described methods for finding software bugs during his career at Google [42]. His
visualization tools display [2, 3] various events across time, such as RPC, user/kernel transitions,
and acquired locks. However, these visualizations are constrained by their inability to present a
large number of events on a single screen, necessitating either small visual features or requiring
paging across multiple screens.

Tail latency and stragglers are extensively studied in the distributed systems community [13, 18].
Research has considered these issues in specific sub-domains, including microservice architec-
tures [22, 49], service meshes [50] and analytics systems [36]. A variety of ways to deal with tail
latency have also been proposed, such as new schedulers and operating systems [28, 39], as well as
increasingly advanced forms of distributed tracing to collect and organize latency and dependency
information across systems [21, 29, 34, 41]. Some of these systems include anomaly detection algo-
rithms [26, 31], support aggregation of traces, and provide visualization tools to help developers
understand the captured latency information. However, we are not aware of trace compression and
scalable call-stack-style trace visualization efforts, which are the core contributions of our work.

3 NonSequitur Design
In this section we present the design of NonSequitur. Two requirements drove the design:
(1) Turn a multi-threaded execution trace into a representation that can be practically visualized.

To support traces with millions of events, this logically leads us to the next requirement:
(2) Compress a multi-threaded execution trace in a way that retains information required by

software developers to debug performance.
We satisfy both requirements via the new execution trace compression algorithm, RegTime,

which we present in Sections 3.1 and 3.2. We build NonSequitur, a new tool that visualizes traces
compressed by RegTime. We present NonSequitur in Sections 3.3 and 3.4.

3.1 Trace Compression
We focus on traces containing time-stamped records of function calls, though traces with other kinds
of log records could also be potentially processed. We are not the first to propose a technique for
compressing execution traces, so as to make them more understandable. For instance, Hamou-Lhadj
et al. [23] created a framework for lossless trace compression. Lossless compression techniques
achieve compression such that the exact original dataset can be recreated from its compressed
version. Lossy compression techniques produce better compression ratios by discarding information,
but the original dataset cannot be recreated. Consequently, there is a trade-off between better
compression ratios and retaining information from the original dataset.
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Fig. 2. (1) A compressible function sequence. (2) The callstacks which make up the compressible function
sequence. (3) The same callstacks in the compressible function sequence are merged together. (4) The first
occurrences of each unique callstack in the compressible function sequence. (5) The compressed callstacks.

To compress traces into a representation that can be visualized in a small amount of screen
real estate, RegTime must reduce a trace with millions of events down to a few thousand. Given
a compression ratio 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙/𝑛𝑎𝑓 𝑡𝑒𝑟 , where 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial number of function records in the
trace and 𝑛𝑎𝑓 𝑡𝑒𝑟 is the number of function records in the trace after compression, RegTime must
to achieve a compression ratio at least 1,000. However, the lossless compression proposed by
Hamou-Lhadj et al., the best technique known to us, demonstrated a maximum compression ratio
of around 41. Therefore, we chose to design RegTime as a lossy compression algorithm.

3.2 The RegTime Algorithm
We use Figure 2 and Algorithms 1 and 2 to explain how RegTime works. We use the term RegTime
expression to refer to a function sequence which has been compressed by RegTime.

Figure 2 visualizes the key steps of the algorithm on an example. Figure 2(1) shows a compressible
function sequence, and Figure 2(2) shows that this compressible function sequence has four unique
callstacks: S0, S1, S2, and S3. To create the compressed callstacks (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑠𝑒𝑞 in Algorithm 2)
RegTime first merges identical callstacks. In Figure 2(3), RegTime creates four groups of merged
callstacks: S0’, S1’, S2’, and S3’. For example, RegTime formed S2’ by merging the three instances of
S2. Next, RegTime arranges the groups according to the order in which the first occurrences of
each unique callstack appears. Figure 2(4) shows the first occurrence of each unique callstack, and
Figure 2(5) lists the final ordering. We now present the full algorithm in detail.
RegTime iterates through the timeline of each thread captured in a multi-threaded execution,

deciding which function sequences invoked by a thread can be compressed into a RegTime expres-
sion (Algorithm 1, lines 5 - 6). There may be cases when RegTime decides none of the function
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Algorithm 1 CompressExecution
1: procedure CompressExecution(𝑇 )
2: RegTimes = [][] ⊲ [t][[expr,s,e] is a RegTime expr from positions s to e of thread t’s exec
3: for 𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑 in 𝑇 do ⊲ Iterate through all threads in trace T
4: 𝑓 𝑛𝑐𝑎𝑙𝑙_𝑖𝑛𝑑𝑒𝑥 ← 0
5: while 𝑓 𝑛𝑐𝑎𝑙𝑙_𝑖𝑛𝑑𝑒𝑥 < 𝑇 [𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑] .𝑙𝑒𝑛𝑔𝑡ℎ do ⊲ Iterate through thread’s timeline
6: (𝑒𝑥𝑝𝑟, 𝑠𝑡𝑎𝑟𝑡_𝑝𝑜𝑠, 𝑒𝑛𝑑_𝑝𝑜𝑠) ← FindRegTimeExpr(𝑓 𝑛𝑐𝑎𝑙𝑙_𝑖𝑛𝑑𝑒𝑥,𝑇 [𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑])
7: if 𝑒𝑥𝑝𝑟 is nil then
8: ⊲ No RegTime expr found starting at 𝑓 𝑛𝑐𝑎𝑙𝑙_𝑖𝑛𝑑𝑒𝑥
9: 𝑅𝑒𝑔𝑇𝑖𝑚𝑒𝑠 [𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑] .𝑎𝑝𝑝𝑒𝑛𝑑 ( [𝑛𝑖𝑙, 𝑓 𝑛𝑐𝑎𝑙𝑙_𝑖𝑛𝑑𝑒𝑥,𝑇 [𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑] .𝑙𝑒𝑛𝑔𝑡ℎ − 1])
10: break
11: end if
12: if 𝑠𝑡𝑎𝑟𝑡_𝑝𝑜𝑠 > 𝑓 𝑛𝑐𝑎𝑙𝑙_𝑖𝑛𝑑𝑒𝑥 then
13: ⊲ Found RegTime expr interval does not capture 𝑓 𝑛𝑐𝑎𝑙𝑙_𝑖𝑛𝑑𝑒𝑥
14: 𝑅𝑒𝑔𝑇𝑖𝑚𝑒𝑠 [𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑] .𝑎𝑝𝑝𝑒𝑛𝑑 ( [𝑛𝑖𝑙, 𝑓 𝑛𝑐𝑎𝑙𝑙_𝑖𝑛𝑑𝑒𝑥, 𝑠𝑡𝑎𝑟𝑡_𝑝𝑜𝑠 − 1])
15: end if
16: ⊲ Record found RegTime 𝑒𝑥𝑝𝑟
17: 𝑅𝑒𝑔𝑇𝑖𝑚𝑒𝑠 [𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑] .𝑎𝑝𝑝𝑒𝑛𝑑 ( [𝑒𝑥𝑝𝑟, 𝑠𝑡𝑎𝑟𝑡_𝑝𝑜𝑠, 𝑒𝑛𝑑_𝑝𝑜𝑠])
18: 𝑓 𝑛𝑐𝑎𝑙𝑙_𝑖𝑛𝑑𝑒𝑥 ← 𝑒𝑛𝑑_𝑝𝑜𝑠 + 1
19: end while
20: end for
21: return RegTimes
22: end procedure

sequences executed by a thread need to be compressed (Algorithm 1, line 9). Alternatively, Reg-
Time can compress some function sequences executed by a thread while leaving other sequences
uncompressed (Algorithm 1, lines 12 - 15).
For a given thread, RegTime iterates through the function call records corresponding to that

thread to find the start of a compressible function sequence (Algorithm 2, lines 6 - 10). To simplify
our explanation of RegTime, we treat each function call record as including a start and end time of
the function call, stack depth of the call, and call duration.

RegTime considers a function sequence to be compressible if it satisfies three conditions:
• Condition 1: The function sequence is comprised of function calls that have duration less
than 𝐶𝑎𝑙𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ.
• Condition 2: The time between two consecutive function calls is less than 𝐶𝑎𝑙𝑙𝐺𝑎𝑝𝑇ℎ𝑟𝑒𝑠ℎ.
• Condition 3: The time interval occupied by the function sequence does not take up more
than a 𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ of a thread’s total execution time.

Condition 1 ensures that RegTime compresses those portions of a thread’s behavior that have a
high density of function calls. These regions are ideal for compression. Condition 1 also ensures
that RegTime does not lose outlier calls with long duration. Additionally, because an outlier event
can be an unexpectedly long period of time between two consecutive calls, condition 2 ensures
that these periods are not lost. Finally, Condition 3 guarantees that RegTime will use multiple
RegTime expressions to represent the behavior of a thread, even if all the calls by that thread satisfy
Conditions 1 and 2.
Users can tune 𝐶𝑎𝑙𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ, 𝐶𝑎𝑙𝑙𝐺𝑎𝑝𝑇ℎ𝑟𝑒𝑠ℎ, and 𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ to create

a custom definition of what an unusually long function or interval looks like for their particular
system and performance issue. Once the algorithm has found the beginning of a compressible
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Algorithm 2 FindRegTimeExpr Function
1: procedure FindRegTimeExpr(𝑓 𝑛𝑐𝑎𝑙𝑙_𝑖𝑛𝑑𝑒𝑥,𝑇𝑇𝑟𝑎𝑐𝑒)
2: 𝑠𝑡𝑎𝑡𝑒 ← Skip ⊲ Stay in Skip state until we find a compressible fn call
3: 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑠𝑒𝑞 = []
4: for 𝑖 = 𝑓 𝑛𝑐𝑎𝑙𝑙_𝑖𝑛𝑑𝑒𝑥 to 𝑇𝑇𝑟𝑎𝑐𝑒.𝑙𝑒𝑛𝑔𝑡ℎ do ⊲ Iterate through the thread’s fn calls
5: 𝑖𝑠_𝑙𝑜𝑛𝑔𝑓 𝑛 ← 𝑇𝑇𝑟𝑎𝑐𝑒 [𝑖] .𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 > 𝐶𝑎𝑙𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ ⊲ Whether call at 𝑖 has an

outlier duration
6: if 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 Skip and not 𝑖𝑠_𝑙𝑜𝑛𝑔𝑓 𝑛 then
7: 𝑠𝑡𝑎𝑡𝑒 ← Compress ⊲ Start compressing
8: 𝑒𝑥𝑝𝑟_𝑠𝑡𝑎𝑟𝑡_𝑝𝑜𝑠 ← 𝑖

9: 𝑒𝑥𝑝𝑟 .𝑠𝑡𝑎𝑟𝑡𝑡𝑖𝑚𝑒 ← 𝑇𝑇𝑟𝑎𝑐𝑒 [𝑒𝑥𝑝𝑟_𝑠𝑡𝑎𝑟𝑡_𝑝𝑜𝑠] .𝑠𝑡𝑎𝑟𝑡𝑡𝑖𝑚𝑒

10: 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑠𝑒𝑞.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇𝑇𝑟𝑎𝑐𝑒 [𝑖])
11: else if 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 Compress then
12: 𝑒𝑥𝑝𝑟_𝑒𝑛𝑑_𝑝𝑜𝑠 ← 𝑖 − 1
13: 𝑒𝑥𝑝𝑟 .𝑒𝑛𝑑𝑡𝑖𝑚𝑒 ← 𝑇𝑇𝑟𝑎𝑐𝑒 [𝑒𝑥𝑝𝑟_𝑒𝑛𝑑_𝑝𝑜𝑠] .𝑒𝑛𝑑𝑡𝑖𝑚𝑒

14: 𝑖𝑠_𝑙𝑜𝑛𝑔_𝑖𝑑𝑙𝑒 ← (𝑇𝑇𝑟𝑎𝑐𝑒 [𝑖] .𝑠𝑡𝑎𝑟𝑡𝑡𝑖𝑚𝑒 −𝑇𝑇𝑟𝑎𝑐𝑒 [𝑖 − 1] .𝑒𝑛𝑑𝑡𝑖𝑚𝑒) > 𝐶𝑎𝑙𝑙𝐺𝑎𝑝𝑇ℎ𝑟𝑒𝑠ℎ
15: 𝑖𝑠_𝑙𝑜𝑛𝑔_𝑟𝑒𝑔𝑡 ← expr longer than 𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ of thread exec time
16: if 𝑖𝑠_𝑙𝑜𝑛𝑔𝑓 𝑛 or 𝑖𝑠_𝑙𝑜𝑛𝑔_𝑖𝑑𝑙𝑒 or 𝑖𝑠_𝑙𝑜𝑛𝑔_𝑟𝑒𝑔𝑡 then
17: ⊲ Reached end of compressable sequence. Compress sequence so far and return.
18: 𝑚𝑒𝑟𝑔𝑒𝑑_𝑐𝑎𝑙𝑙𝑠𝑡𝑎𝑐𝑘𝑠 =𝑚𝑒𝑟𝑔𝑒_𝑠𝑎𝑚𝑒_𝑐𝑎𝑙𝑙𝑠𝑡𝑎𝑐𝑘𝑠 (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑠𝑒𝑞)
19: 𝑠𝑜𝑟𝑡𝑒𝑑_𝑚𝑒𝑟𝑔𝑒𝑑_𝑐𝑎𝑙𝑙𝑠𝑡𝑎𝑐𝑘𝑠 = 𝑠𝑜𝑟𝑡_𝑏𝑦_𝑓 𝑖𝑟𝑠𝑡_𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 (𝑚𝑒𝑟𝑔𝑒𝑑_𝑐𝑎𝑙𝑙𝑠𝑡𝑎𝑐𝑘𝑠)
20: 𝑒𝑥𝑝𝑟 .𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑐𝑎𝑙𝑙𝑠𝑡𝑎𝑐𝑘𝑠 = 𝑠𝑜𝑟𝑡𝑒𝑑_𝑚𝑒𝑟𝑔𝑒𝑑_𝑐𝑎𝑙𝑙𝑠𝑡𝑎𝑐𝑘𝑠
21: return 𝑒𝑥𝑝𝑟, 𝑒𝑥𝑝𝑟_𝑠𝑡𝑎𝑟𝑡_𝑝𝑜𝑠, 𝑒𝑥𝑝𝑟_𝑒𝑛𝑑_𝑝𝑜𝑠 ⊲ Return RegTime expr
22: end if
23: 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑠𝑒𝑞.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇𝑇𝑟𝑎𝑐𝑒 [𝑖]) ⊲ Add TTrace[i] and continue compressing
24: end if
25: end for
26: return 𝑛𝑖𝑙, 𝑛𝑖𝑙, 𝑛𝑖𝑙 ⊲ No RegTime expr found
27: end procedure

function sequence, it continues to iterate through the function call records until it determines that
it has reached the end of a compressible function sequence. Then, RegTime generates a RegTime
expression to represent the compressible function sequence (Algorithm 2, lines 17 - 22). Each
RegTime expression would be visualized separately on a timeline by NonSequitur (as explained
next). If a thread with consistent and repetitive sequence of function calls is compressed with only
a single RegTime expression, then the visualization would include only a single visual element. We
reasoned that software developers would better understand how a thread’s behavior changes over
time if we showed it with multiple visual elements. Hence, we use multiple RegTime expressions.
A RegTime expression has three attributes allowing it to represent a function sequence: start

and end times for the function sequence and 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑐𝑎𝑙𝑙𝑠𝑡𝑎𝑐𝑘𝑠: a sequence of sorted groups
of callstacks captured in the function sequence period (Algorithm 2, line 20). Figure 2 illustrates
how RegTime generates these compressed_callstacks.

3.3 RegTime Visual Encoding of RegTime Expressions
We use the term RegTime Visual Encoding to refer to the visualization technique NonSequitur uses
to display RegTime expressions. Figure 3 compares the function sequence from Figure 2(1) to the
RegTime Visual Encoding of RegTime expression for this sequence from Figure 2(5). NonSequitur
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uses a black box to denote the start and end times of the expression. It uses stacked rectangular
glyphs to encode the 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑_𝑐𝑎𝑙𝑙𝑠𝑡𝑎𝑐𝑘𝑠 in the RegTime expression.
If we consider the RegTime Visual Encoding in Figure 3(2), we can discern the following infor-

mation about the function sequence it represents:
✓ Caller-callee relationships. RegTime preserves the caller-callee relationships between func-
tions. The RegTime Visual Encoding shows function 𝑋 is always called by function 𝑃 .
✓ Order and functions. The function sequence consists of the functions 𝐴, 𝑃 , 𝑋 , and 𝑌 . RegTime
preserves all the functions in the trace, unless their cumulative duration over the entire trace is
negligible. RegTime does not preserve the total order of the callstacks because it sorts them by the
first occurrence within the encoded period. E.g., callstack 𝐴 is shown first in the encoded sequence,
callstack 𝑃,𝑌 is shown second, and callstack 𝑃,𝑋 is shown third. If the program also happened to
invoke 𝑃,𝑌 after 𝑃,𝑋 (in addition to invoking it after 𝐴), the visual encoding would not change.
Every callstack is visualized only once in the encoding period regardless of how many times it
appeared, meaning only the order of the first occurrence is preserved.

Fig. 3. (1) The function sequence from Figure 2(1). (2) The
RegTime Visual Encoding of the corresponding RegTime
expression.

✓ Encoded interval. RegTime preserves
the start and end time of the encoded func-
tion sequence. In this example, the func-
tion sequence started at 0 ns and ended at
7 ns.
✓ Cumulative duration of functions.
RegTime uses the cumulative duration of
all callstacks in the encoded sequence to
determine the relative width of the corre-
sponding glyphs. For example, given that
the cumulative duration of function A in
the sequence is 3 ns, function 𝐴’s glyph
takes about 3/7 of the coresponding glyph.
✓ Loose causal relationship. Since the
order in which the groups of merged call-
stacks appear in a RegTime expression cor-
responds to the order that the first occur-
rences of the callstacks appear in the func-
tion sequence, we have some sense of the
causal relationships between functions executed by the thread.
For example, the RegTime Visual Encoding shows that function 𝑃 appears after function 𝐴.

Strictly speaking, this indicates that an occurrence of function 𝑃 appeared after an occurrence of
function A at least once in the function sequence. However, because the behavior of threads is
highly repetitive [14], function P likely always appeared after function 𝐴. Since a function’s name
typically captures the function’s purpose [9], users can further ascertain causal relationships from
the function names.

However, due to the lossy compression, we are unable to discern the following from a RegTime
Visual Encodings:
✗ Individual function calls. Because invocations of the same function are merged together, we
cannot tell when individual function calls were executed or what their durations were.
✗ Precise causal relationship. Two merged functions appearing next to each other within a
RegTime Visual Encoding does not always mean there is a causal relationships between these
functions. Figure 3(2) hows function X appearing after function Y, even though Figure 3(1) shows
that there is no causal relationship between these functions.
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Fig. 4. NonSequitur is divided into main panel and the task panel. The main panel is where NonSequitur
shows what threads are doing over time. The task panel provides users with three options for exploring the
visualization: (1) The multi-select widget in NonSequitur which allows users to select thread ID numbers.
After users select one or more thread IDs, NonSequitur displays only those threads which were assigned
those thread IDs. (2) The search bar in NonSequitur which allows users to enter the name of a function.
NonSequitur displays only those threads which have called that function. (3) A legend which shows users the
mapping between colours and functions.

3.4 NonSequitur Tool
We developed NonSequitur to visualize the encodings generated by RegTime. The tool is open
source2. NonSequitur ingests traces that are collected by tracing tools like XRay3. NonSequitur
works over traces that include function call entry and exit timestamps with the corresponding
thread IDs. XRay produces such traces automatically by instrumenting the application at compile
time. Most traces we study in evaluation were produced using XRay. But other tools or manual
instrumentation could be used as well.
Given traces compressed with RegTime, NonSequitur outputs an .html file that contains the

visualization. This file can be opened with any browser. Figure 4 shows a NonSequitur view for
two threads from RocksDB. NonSequitur consists of two parts: the main panel and the task panel.
Main panel. The main panel shows what the threads are doing over time. As discussed in Section
3.2, the summary of an execution trace produced by RegTime can contain both compressed (en-
coded) and uncompressed segments. NonSequitur visualizes the activities within the uncompressed
segments as callstacks over time, while it uses RegTime Visual Encodings to visualize the com-
pressed segments. The main panel is divided into rows, one for each thread. The X axis represents
time, while the Y axis represents callstack depth.

Figure 4 shows the activity of two threads, Thread 4 and Thread 11. The original traces of these
threads captured approximately 2.5 million and two hundred thousand function calls respectively.
However, RegTime summarized the behavior of these threads using a few hundred function calls.
The summaries produced by RegTime are short enough that the horizontal space occupied by Non-
Sequitur visualizations do not exceed 1,300 pixels. Thus, software developers using NonSequitur do
not need to use horizontal scrolling within the main panel to see different parts of the visualization.
Task panel. The task panel sits at the top of NonSequitur. Using the task panel, users can select
one or more thread timelines to show, while hiding the others (Figure 4(1)). We also let users

2https://github.com/auggywonger/nonsequitur_vis.git
3https://llvm.org/docs/XRay.html
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Fig. 5. (1) If users hover over a function call in the visualization which is not within a RegTime Visual Encoding,
NonSequitur highlights in green the activities of all the threads during the time this function call was invoked.
Additionally, a tooltip displays the name of the function and the duration of the function call. (2) If users
hover over a function call belonging within a RegTime Visual Encoding, NonSequitur highlights in green the
activities of all the threads during the time that the function sequence represented by the RegTime Visual
Encoding was invoked. Additionally, a tooltip displays the name of the function and the cumulative duration
of the function call within the function sequence represented by the RegTime Visual Encoding.

search the execution for function names (Figure 4(2)). After users enter the name of a function,
NonSequitur displays only those threads which have called that function. NonSequitur relies on
colour to distinguish which function calls are made by the threads. Below the search bar is a legend
showing users the mapping between colours and functions (Figure 4(3)).
Figure 4(3) shows that many of the functions in the legend have been assigned the colour grey.

The reason is because only a limited number of colours should be used to represent categories
when visualizing data. NonSequitur assigns distinctive colours to only a subset of functions, while
the other functions are shown in grey. To decide which functions should be represented with
distinctive colours, NonSequitur computes a prominence score for each function: the number of
times the function appeared in the execution trace summary produced by RegTime multiplied
by the number of threads that invoked the function. Users can click on a function in the legend;
occurrences of those functions are then highlighted in the main panel.

To improve readability in NonSequitur visualizations, each rectangular glyph is designed to have
a minimum width in pixels. This design choice ensures that even the smallest glyphs are visible to
users. However, a consequence of this approach is that the X axis in NonSequitur visualizations is
nonlinear. For example, a linear X axis may cause some function calls of extremely short duration
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Fig. 6. Case study 1: a portion of the timeline for Thread 18 during a good run.

to occupy less than one pixel of horizontal space, while enforcing a minimum width would allow
these function calls to occupy a visible amount of horizontal space.
Linked highlighting. A nonlinear X axis can make it challenging for users to discern correlations
between activities across different threads. With a nonlinear X axis, function calls in multiple
threads may appear to have occurred simultaneously when, in fact, they happened at different
times. To mitigate this issue, NonSequitur uses linked highlighting to help users find correlations
in activities across threads. If a user hovers over a function call in the visualization which is not
within a RegTime Visual Encoding, NonSequitur highlights in green the activities of all the threads
during the time this function call was invoked.
For example, Figure 5(1) shows the green highlighting which appears in the main panel when

we hover over an unusually long invocation of the function rocksdb::InstrumentedCondVar::Wait().
The green highlighting indicates that during the time interval when thread 4 made an unusually
long invocation of the function rocksdb::InstrumentedCondVar::Wait(), thread 11 experienced a
period of inactivity. Similarly, if a user hovers over a function call belonging to the RegTime Visual
Encoding in Figure 5(2), NonSequitur highlights in green the activities of all the threads during the
time that the function sequence represented by the RegTime Visual Encoding was invoked.

Note that hovering over a function call in the main panel also reveals a tooltip, which provides
more details about that function call. If users hover over a function call outside of a RegTime Visual
Encoding, the tooltip shows the name of the function and the duration of the function call. If a user
hovers over a function call within a RegTime Visual Encoding, the tooltip shows the name of the
function and the cumulative duration of the function call within the function sequence represented
by the RegTime Visual Encoding.

Next, we discuss how we used NonSequitur to investigate real-world performance issues.

4 NonSequitur Case Studies
In this section we present three case studies with using NonSequitur on actual bugs in complex
software. The first two are with the MongoDB storage engine WiredTiger (WT). The third is with
Meta’s key-value store RocksDB.

4.1 Case Study 1: Slow LSM Performance in WiredTiger
In this case study we reproduce a MongoDB performance bug described in their JIRA ticket [6].
To trigger this bug, three workloads execute in sequence on a log-structured merge (LSM) tree.
After populating the initial database, the application performs a read-only workload and achieves
excellent performance. We call this the good run. Then, an application runs an update workload,
which increases the size of the database, and then it runs another read workload. That second read
workload achieves performance 99% slower than the good run and we refer to it as the bad run.

WT developers explored two hypotheses as to why the bad run is slower than the good run:
(1) Cache eviction is struggling to keep up. There are too many cache misses and cache eviction is
not able to evict pages quickly enough to provide clean space for missed pages. “The cache fill ratio
is usually above 94.9% for the bad run, so application threads are evicting. And we often struggle to
find candidate pages to evict.” – a quote from discussion on the JIRA ticket.
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Fig. 7. Case study 1: a portion of the timeline for Thread 18 during a bad run.

Fig. 8. Case study 1: timelines for two background threads, Threads 9 and 10, during a good run.

Fig. 9. Case study 1: timelines for two background threads, Threads 9 and 10, during a bad run. In the green
region Thread 9 is executing an eviction-related function, while Thread 10 is blocked on a condition variable.

(2) Internal threads performing the LSM tree consolidation interfere with application threads during
the bad run. “It’s also worth noting that it’s likely that there is quite a lot of LSM tree consolidation
going on in the background during the read phase, which will alter the achievable throughput.” – a
quote from discussion on the JIRA ticket.
To decide which of these hypotheses presents the true underlying causes of poor performance

developers used (1) manual analysis of the internal statistics collected by their storage engine, (2)
in-house visualization tool for these statistics and (3) lots of additional experiments with varying
configuration parameters. In the end, the developers discard the second hypothesis and conclude
that struggling eviction is the root cause: “The cache size (3GB) is too small for the size of the tree
(114GB). We are spending lots of time on eviction. . . ” – a quote from discussion on the JIRA ticket.

Although developers did find the underlying root cause and closed the ticket, it took multiple
days and three different techniques or information sources. We now show how NonSequitur
visualizations quickly guided us to the correct root cause with a single visualization of each run.

Figures 6 and 7 show a portion of the NonSequitur execution timeline for Thread 18, the applica-
tion thread during the good run and the bad run, respectively. The good run is dominated by __cur-
file_search, a function that searches the BTree. The bad run is dominated by __wt_cond_wait_signal
– a synchronization function that causes the thread to wait. The synchronization function is in-
voked by the __wt_cache_eviction_worker function. This suggests that in the bad run, Thread 18 is
blocking because of eviction. We next look at the NonSequitur activity for the background threads
that differ between the good run (Figure 8) and the bad run (Figure 9).

During the good run, Thread 9 makes calls to __evict_page which take a relatively small amount
of time, and Thread 10 performs occasional eviction. During the bad run, however, Thread 10
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Fig. 10. Case study 2: an example thread that has a function called worker at the bottom of the call stack
(bottom-most line in grey). The call to __wt_row_search indicates that this thread is likely searching the tree.

spends most of its time in __wt_cond_wait_signal, suggesting that it is blocked on a condition
variable. Meanwhile, Thread 9 is busy with __evict_lru_walk, suggesting that it is working on LRU
algorithm eviction-related activity. In summary the good run’s application thread is mostly only
searching the tree, while the one in the bad run performs blocking eviction. That coincides with
inefficient eviction in the bad run’s internal threads, which are delayed by waiting and performing
the LRU walk activity.

The NonSequitur visualizations show that slow eviction is the main distinguishing feature of the
bad run. Moreover, NonSequitur does not lead us down the wrong path of suspecting the internal
tree consolidation activity (the alternative hypothesis). Although it seems like other tools showing
call stacks over time could lead to the same conclusion as NonSequitur, it is not clear if they can be
applied on the large traces used in this case study (∼9GB). We elaborate on this aspect in the next
section.

4.2 Case Study 2: Slow Performance With the mmap Option in WiredTiger
For this second case study there is no associated performance ticket. This issue was presented
to us directly by a MongoDB engineer and at that time the engineer did not know the root
cause for this performance bug. An update-heavy WiredTiger workload is executed with two
different configuration options: with mmap turned on (mmap_update) and with mmap turned off
(regular_update). The mmap feature performs I/O by mapping the file into memory and accessing
its data via a memcopy, which transfers the requested data into the application buffer. Without
mmap, I/O is done via read/write system calls, which also use memcopy internally. The difference
is that with mmap_update, I/O operations can use the user-level memcopy, which is faster than
the kernel memcopy because the user-level version can use SIMD registers [4]. The developer
expected mmap_update to be faster than regular_update. But, in this scenario, they observed the
opposite. To help the developer diagnose the problem, one of the authors generated NonSequitur
visualizations for the mmap_update and regular_update executions and as the first step identified
all application threads by observing the executed functions. We observe six threads having a
function called “worker” at the bottom of their call stack and generally call functions such as
__wt_row_search, suggesting that they are searching the tree (Figure 10). Examining the time taken
by __wt_row_search we observe it is usually longer in the mmap_update than in the regular_update
configuration, notably in the first part of the execution highlighted in green in Figure 10.
Hovering over the thread’s callstack, we notice that a long du-

ration of __wt_row_search is accompanied by a long duration
of __wt_block_read_off as compared to later periods in the same
threads. This function takes 7.37 seconds in the first period (nearly
25% of the total) and just over a second in subsequent periods (see
figure to the right).
We proceed to examine activities of other threads to see if there is correlation between their

activities and an unusually long execution of __wt_block_read_off. We observe two correlations:
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Correlation 1: During the same period,
Thread 23, a background thread, spends over
3 seconds in the function __wt_evict, while in
the remainder of the period that function is so
short it does not even register in the visualiza-
tion (see figure to the right).

Correlation 2: During the same period
Thread 25, another background thread, spent
3.6 seconds in __wt_prepare_remap_resize_file,
whereas in the remaining periods that function
was not present (see figure to the left).

When we presented this information to the
WiredTiger developer, they quickly realized
that __wt_prepare_remap_resize_file was in-

deed the root cause for the performance issue. With mmap on, a growing mapped file causes the
storage engine to unmap it, resize the mapped area and remap the file. This involves synchroniza-
tion with the other threads performing I/O, which could be regular threads, such as Thread 24 or
background threads, such as Thread 23 (eviction thread). The need to resize the file in the beginning
of the execution slowed down these threads and caused the overall degradation in performance.

The traces sizes used in this case study were ∼3GB, and as we elaborate in the next section other
tools showing call stacks over time are not equipped to effectively present such large traces.

4.3 Case Study 3: RocksDB memtable Concurency
RocksDB is a key-value store used in Meta based on a log-structured merge (LSM) tree. It places
new inserts and updates into an in-memory table, called memtable, and then rewrites them into
an on-disk table (SSTable). The memtable in RocksDB is lock-free for readers and protected by a
mutex for writers. A writer that gets the mutex will apply changes for all threads concurrently
waiting; other writers link their updates into a data structure to be consumed by the winning writer.
Several years ago we were in contact with a RocksDB developer, who introduced improvements to
concurrency for the memtable. In the improved version, there is still a mutex but some of the work
done by writer threads can be done concurrently.

The developer told us that while this feature generally improved performance, in certain cases it
made performance worse. We reproduced the issue and visualized the executions in two config-
urations: the one with concurrent memtable off (concurrency_off) and the one with concurrent
memtable on (concurrency_on).

Fig. 11. Case study 3: Thread timelines with concurrency_on. Notice the long delay in the first half.
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Fig. 12. Case study 3: Thread timelines with concurrency_off.

Fig. 13. Case study 3: during a concurrency_on run, while there is delay in Figure 11, a background Thread 2
is busy synchronizing the memtable.

Fig. 14. Case study 3: the parallel memtable writing function does not appear during the period of delay in
Figure 11, eliminating it as the root-cause.

Examining the NonSequitur visualizations, we see clear differences. In the concurrency_on
configuration the threads executing the workload (Threads 21-32; we show only Threads 30-32 for
brevity, but the omitted threads look the same as Threads 30-32) experience a huge delay in the
first half of the execution (Figure 11). Thread 32 is waiting on a condition variable as it is trying
to apply writes, while threads 21-31 are trying to link their writes. This does not occur in the
concurrency_off configuration (Figure 12).

We observe that this delay in the concurrency_on configuration coincides with a period where
one background thread takes a longer time to sync the memtable than during the subsequent
periods (Figure 13).
In contrast, in the concurrency_off configuration: Sync() is relatively short in each period

throughout the execution, and looks the same as in the second half of the execution in Figure 13.
We also confirmedCompleteParallelMemTableWriter, the function implementing the concurrency

feature, does not occur during the period of delay (Figure 14), and does not appear to be the culprit.
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Table 2. Summary of the Execution Traces Used in Our User Study

Trace Name Description Trace Size Total Exec. Time
WT normal A trace of WiredTiger

executing queries
over a log-structured
merge-tree (LSM
tree).

24 threads
making 0.8M calls to
20 different functions

0.5 minutes

WT large A large trace of
WiredTiger running
an update heavy
benchmark test.

28 threads
making 50M calls to
320 different
functions

5 minutes (includes
the benchmark test
setup)

RDB large A trace of RocksDB
running the dbbench
benchmark test with
parallel writes
enabled.

32 threads
making 39M calls to
747 different
functions

20 minutes (includes
the benchmark test
setup)

We conclude that the root cause of performance degradation is the delay in applying writes in
the beginning of the execution, which coincides with a delayed write sync in a background thread.

The size of the traces used in this visualization was ∼10GB; as we show next, other tools showing
call stacks over time are either challenging to use with such large traces or crash when presented
with this volume of information.

5 Methodology for NonSequitur Controlled Evaluation
We empirically evaluate how effective NonSequitur is at helping software developers diagnose
performance issues by answering the following research questions:

RQ1: Does NonSequitur help analyze large execution traces to understand what threads are
doing over time?
RQ2: Does NonSequitur help analyze large execution traces to find when unusually long
function latencies occur?
RQ3: Does NonSequitur help analyze large execution traces to learn what one thread was
doing during the time when another thread was blocked or delayed?
RQ4: For small traces that can be visualized with other tools, does NonSequitur lead to false
conclusions in questions regarding thread activity over time as compared to other tools that
do not drop information from the trace?

To address these questions, we conducted a within-subjects user study with 42 participants. The
rest of this section presents our methodology and results.

5.1 Multithreaded Traces
Each participant was asked to carry out performance analysis tasks on three different execution
traces shown in Table 2. The first two traces, which we call the normal WiredTiger (WT) trace and
the large WiredTiger trace were taken fromWiredTiger, MongoDB’s storage engine. The third trace,
which we call the large RocksDB (RDB) trace was taken from RocksDB. We derived these traces from
two software systems where we knew developers were struggling with diagnosis of performance
bugs: from the original study for WiredTiger [19] or from our own interaction with developers for
RocksDB.
Although the normal WiredTiger and large WiredTiger traces came from the same system,

they capture WiredTiger performing two different tasks. Additionally, the number of function
invocations captured in the large WiredTiger trace is 60 times larger than the number of function
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Fig. 15. Chrome TraceViewer, part of the Chrome Developer Tools Suite. It visualizes multi-threaded execution
traces as rows of icicle plots.

invocations in the normal trace. Therefore, participants would not be able to apply their knowledge
of the normal WiredTiger trace to analyze the large one.

We recruited 42 participants for our user study. The participants included computer engineering
students and professional software developers:
• We classified 7 of the participants as "WiredTiger Developers." These participants are either
former or current WiredTiger developers.
• We classified 20 of the participants as "Experienced Performance Debuggers." These partici-
pants indicated they had three or more years of experience debugging the performance of
software systems.
• We classified 10 of the participants as "Performance Debuggers." These participants stated
they had 1-2 years of experience debugging the performance of software systems.
• We classified 5 of the participants as "Inexperienced Performance Debuggers." These partici-
pants stated they had no experience debugging the performance of software systems.

Because none of the participants indicated that they had experience developing RocksDB, we
did not categorize any participants as RocksDB developers.

5.2 Variable Selection
Our study involved one independent variable: the type of trace visualization tool participants used
for performance analysis. Because our study followed a within-subjects design, participants were
required to use both “NonSequitur” and other tools, which we refer to as other. We describe the
other tools in the next section. The dependent variables were (1) how accurately the participants
were able to do the performance analysis tasks, and (2) how long participants took to perform the
tasks.

5.3 Tools Used for Comparison: Chrome TraceViewer, and OpTrack
We used two tools in the other category: Chrome TraceViewer [1] and OpTrack [5]. These were the
only publicly available tools known to us that, like NonSequitur, display the per-thread callstacks
over time. Unlike NonSequitur, they do not drop any information from the trace, so they were ideal
for answering RQ4. Because our study followed a within-subjects design, each participant was
exposed to both the treatment condition and control condition; consequently, all participants were
required to use NonSequitur, Chrome TraceViewer, and OpTrack.
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Fig. 16. OpTrack is part of WiredTiger. It visualizes per-thread call stacks, breaking up the timeline across 240
individual pages. A developer selects the page to view from the top panel.

Chrome TraceViewer, which is part of the Chrome Developer Tools suite, is representative of a
typical trace visualization tool. It visualizes multi-threaded execution traces as rows of icicle plots,
with each icicle plot depicting callstacks that occurred over time within one thread (see Figure 15).
Chrome TraceViewer offers users a number of navigation features, including zooming into the
visualization, highlighting functions of interest with prominent colours, and scrolling horizontally
across the X axis.

Since Chrome TraceViewer visualizes all events in a trace and uses the width of a single screen to
do this, it is unable to visualize execution traces containing millions of events: the UI crashes when
presented with very large traces. Therefore, for the large traces we used OpTrack, which is part of
WiredTiger distribution [5]. Similarly to Chrome TraceViewer, OpTrack visualizes multi-threaded
execution call stacks over time (see Figure 16). To handle large traces, OpTrack divides traces into
240 equal time intervals and shows one interval at a time. Users select from a navigation panel the
interval to view. Consequently, OpTrack cannot show the entire execution all at once. Other than
the navigation panel, OpTrack does not have any notable navigation features such as zooming or
highlighting functions of interest.

5.4 Experiment Treatments
Our study followed a within-subjects design. Each participant had to analyze each trace twice: once
with NonSequitur (the treatment condition), and once with another tool (the control condition).

We randomly placed participants into one of two groups. In the first group, participants were
always exposed to the treatment condition first for all traces. In the second group, participants
were always exposed to the control condition first for all traces. That is, a participant would either
always analyze a trace with NonSequitur first or always analyze a trace with NonSequitur last. In
the next section, we describe the tasks we asked participants to perform when analyzing a trace
with NonSequitur and the other tools.
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Table 3. Performance analysis tasks used in the study

Task Task Description Example Question

T1 Understand what a thread is
doing over time.

Which thread executes __evict_lru_walk
throughout its lifetime but only executes
__evict_page at the beginning and at the end of
its lifetime?

T2
Find when unusually long la-
tencies or long periods be-
tween function calls occur.

Which threads contain invocations of
rocksdb::WriteThread::LinkOne exceeding
500 seconds? When do these invocations occur
in the execution?

T3

Understand what one thread
was doing during the time
when another thread was
blocked or delayed.

During the time intervals when thread 24 is not
executing any function, which thread spends
most of its lifetime in __wt_cond_wait_signal?

Table 4. The number of tasks that participants needed to complete for each trace when exposed to either the
treatment or the control condition.

Trace Condition # of T1 tasks # of T2 tasks # of T3 tasks
WT Normal Treatment 1 1 2
WT Normal Control 1 1 2
WT Large Treatment 1 1 1
WT Large Control 1 1 1
RDB Large Treatment 1 1 1
RDB Large Control 1 1 1

5.5 Experiment Tasks
We asked participants to perform the key performance analysis tasks identified in a case study
on how developers debug performance [19]. To quantify how well a participant performed on a
performance analysis task, each participant was required to answer a question that assessed how
accurately they performed that task. Table 3 lists the types of tasks and example questions. Table 4
shows the number of performance analysis tasks that each participant performed on a given trace
when exposed to either the treatment or the control condition.

Asking exactly the same question for both the treatment and the control condition would create
undesirable learning effects. That is, a participant could learn the answer for a question using the
treatment tool and then would trivially know the answer for the control tool without having to
actually apply it. To that end, we present users with very similar, but non-identical questions for
each task.
For a given trace, we asked participants to perform T1 tasks first, followed by T2 tasks, and

finally T3 tasks. T1 tasks were the simplest, while T3 tasks were the most complex. By presenting
the tasks in this order, we gradually increased the complexity of the performance analysis tasks,
thereby reducing user fatigue.

5.6 Experimental Procedure
The procedure for the user study consisted of three phases:
• Prestudy: We asked potential participants to complete a pre-questionnaire to gather demo-
graphic information about them. Students who indicated that they completed at least five
computer engineering courses or possessed at least one school term of software development
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work experience were allowed to participate in the study, as were non-student respondents
indicating that they were working as software developers.
• Training: All participants watched tutorial videos explaining how to use NonSequitur,
Chrome TraceViewer, and OpTrack. After that, the participants completed quizzes testing
their knowledge of the tools. After completing the quizzes, the participants were given the
correct answers, so that they can become comfortable with the tools. Participants were also
given opportunities to re-watch the tutorial videos. On average, it took them approximately
one hour to complete the training.
• Tasks: During this phase, the participants were exposed to the experiment treatments. The
order in which the traces were presented to the participants was consistent: starting with
the normal WiredTiger trace, followed by the large WiredTiger trace, and ending with the
large RocksDB trace. The normal WiredTiger trace was the simplest trace to analyze and was
therefore presented to participants first. The large WiredTiger trace and the large RocksDB
trace were more complicated, so we presented these trace to the participants after the normal
WiredTiger trace. Introducing the traces in this order allowed the participants to gradually
gain familiarity with the tools and reduce user fatigue. However, the order in which the
participants received questions about the trace was not fixed because, as stated earlier, we
randomly exposed participants to either the treatment condition first or the control condition
first for all traces.
Participants took between one and three hours to finish the tasks with both NonSequitur
and the other tools. Because of the large number of participants involved in our study and
the length of the study, we did not observe the participants in person. Instead, we used
Zoom to record the participants’ screens, so we could analyze later how they used the tools.
Participants were permitted to provide us with feedback on their experience with the user
study if they wished.
We gave participants access to the training material throughout this phase and allowed
them to take as much time as they liked to answer questions, only requiring participants to
finish within 6 hours, a generous time limit. Participants were also allowed to take breaks to
reduce the risk of them answering questions incorrectly due to user fatigue. We had initially
considered imposing strict time limits on how long participants had to answer questions
to prevent breaks but decided against it because pilot participants preferred having time to
familiarize themselves with the tools. We used the Qualtrics survey platform to automatically
present tools to participants, display the questions to participants, record the participants’
responses, and time how long it took them to answer the questions. The measurement
obtained from Qualtrics on how long it took a participant to answer a question included any
breaks the participant took.

5.7 Threats to Validity
The external threats of conducting our user study are the representativeness of the performance
analysis tasks, participants, and traces selected for the experiment. To mitigate the threat of task
representativeness, we designed our three tasks based on a case study on how developers debug
performance [19]. We initially designed the study so that participants perform a wider variety of
tasks, but the pilot participants felt the study was unreasonably long. We mitigated the threat of
participant representativeness by recruiting only professional computer engineers, or graduate
students with at least five computer engineering courses or at least one school term of software
development work experience. We addressed the threat of the representativeness of the traces by
using traces taken fromWiredTiger and RocksDB, two software systems where we knew developers
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tended to spent a lot of time fixing performance issues. We considered having participants analyze
traces from other systems as well, but this would have made the study duration unreasonably long.

Because the order questions presented to the participants was not fully randomized, one internal
threat is that findings from our user study might be due to other factors that are not directly related
to the specific tasks. The order of execution traces presented to participants was consistent, but
there was some randomization in the order of questions. Each participant analyzed each trace
twice: once with Non-Sequitur (treatment) and once with another tool (control). Participants
were randomly assigned to start with either the treatment or control condition for all traces.
The questions differed slightly between conditions, resulting in different sequences based on the
starting condition. Nevertheless, the order in which participants receive the questions was not
fully randomized because, within a trace, each participant received the questions in the same
order. We deliberately avoided randomizing the order for two reasons: to ensure observed effects
were due to the questions themselves, not their order, and to reduce cognitive load by presenting
easier questions first, followed by more difficult ones. This approach helped participants gradually
familiarize themselves with the tools and minimized user fatigue.

A second internal threat is the participants experiencing user fatigue from spending up to three
hours analyzing three execution traces using three different tools. We mitigated this threat by
allowing our participants to complete the performance analysis tasks at their own pace, provided
that they could complete the study within 6 hours. Additionally, we gradually increased the
complexity of the performance analysis tasks that the participants performed.
A third internal threat of our user study is bias towards exposing participants to the treatment

condition first or the control condition first for each execution trace. To mitigate this threat, we
relied on the Qualtrics survey platform to randomly assign participants to either always be exposed
to the treatment condition first or to the control condition first. We also relied on the Qualtrics
survey platform to measure how long it took participants to complete the performance analysis
tasks, thus mitigating the threat of bias in measuring time.

Another internal threat is potential bias towards evaluating how well participants performed on
the performance analysis tasks. For this, we created a rubric prior to conducting our user study,
and we strictly used this rubric for grading the participant responses.
The tools we selected for the control condition also pose an internal threat. We provided the

participants with Chrome TraceViewer for the small WiredTiger trace because it is representative
of a typical trace visualization tool. We provided the participants with OpTrack to analyze the
larger traces because it was designed to visualize large execution traces. We mitigate the threat
that participants perform worse over time due to fatigue by letting participants complete the
performance analysis tasks at their own pace.

A final internal threat is that participants used NonSequitur three times within the same session,
but they used Chrome TraceViewer once and OpTrack twice. There is the threat of underlying
carryover effect from participants growing accustomed to using NonSequitur over the duration
of the experiment and performing better with this tool during later trace analyzes. We believe
the threat of the underlying carryover effect is not a significant concern because we provided
all participants with training on how to use Chrome TraceViewer and OpTrack. Furthermore,
participants had access to these training materials when performing the performance analysis
tasks.

6 Results for Controlled NonSequitur Evaluation
To determine how well the participants did on the tasks, we graded their responses to the questions
using a rubric that we created before conducting our user study. Questions with multiple correct
answers were worth between two and three points. For example, a two-point question might
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Fig. 18. The number of minutes the participants spent on each performance analysis task. ’N’ on the x-axis
stands for NonSequitur, while ’C’ and ’O’ stand for Chrome TraceViewer and OpTrack respectively.

ask participants to identify what threads experienced a latency spike and when the latency spike
occurred (task T2). To earn the full two points, participants had to correctly identify both the
threads and the timing of the latency spikes. In contrast, questions with only one correct answer
were worth one point. An example of a one-point question is asking participants to identify which
thread executed a specific kind of activity over time (task T1).
Participants who answered a question correctly received full marks. Those who answered

incorrectly received zero points. For questions worth multiple points, partial marks were awarded
if some but not all parts of the answer were correct. For example, a participant who correctly
identified the thread with a latency spike but not the timing would receive one point instead of
two. Participants never received negative points.
To compare how well a participant did on a performance analysis task with NonSequitur com-

pared to the alternatives, we used difference scores. Each difference score was calculated by taking
the score a participant obtained after completing a performance analysis task on an execution
trace using NonSequitur and subtracting the score the same participant obtained using a different
tool. Thus, a difference score greater than zero indicates the participant performed a performance
analysis task on an execution trace more accurately with NonSequitur than with the other tool.
Conversely, a difference score less than zero means the participant performed better using the
other tool. A difference score of zero means the participant achieved the same score with both tools.
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Table 5. P-values of the McNemar’s test and the Wilcoxon signed-rank test. P-values lower than 0.05 suggest
that the difference in scores achieved with NonSequitur and the scores with another tool is statistically
significant, leading us to reject the null hypothesis that there is no difference. Conversely, p-values above
0.05 indicate insufficient evidence to reject the null hypothesis, suggesting that any observed difference in
scores might not be statistically significant.

Trace Task Max
score Stat test P-Value

WT normal T1 1 McNemar 0.182
WT normal T2 3 Wilcoxon 0.883
WT normal First T3 3 Wilcoxon 1
WT normal Second T3 3 Wilcoxon 0.236
WT large T1 1 McNemar 1.192 × 10−7
WT large T2 3 Wilcoxon 9.537 × 10−7
WT large T3 1 McNemar 0.248
RDB large T1 1 McNemar 1.192 × 10−7
RDB large T2 3 Wilcoxon 6.110 × 10−6
RDB large T3 3 Wilcoxon 6.162 × 10−8

Figure 17 displays a scatter plot of difference scores. Note that we asked participants to perform
two T3 tasks for the normal WiredTiger trace (referred to as First T3 and Second T3 in Figure 17).
Figure 18 depicts a scatter plot showing the number of minutes participants spent on each task.

We used the McNemar’s test and the Wilcoxon signed-rank test to validate the statistical signifi-
cance of these findings. McNemar’s test is a non-parametric statistical test used to assess paired
binary outcome data; consequently, we used this test to assess the statistical significance of the
difference scores from questions worth one point. We used the Wilcoxon signed-rank test to as-
sess the statistical significance of the difference scores from questions worth multiple points. The
Wilcoxon signed-rank test is a non-parametric statistical test for comparing paired data to find out
if their population means ranks differ. Table 5 shows the p-values from each statistical test.

Figure 17, shows the following:
• When conducting performance analysis tasks on the normal WiredTiger trace, which was a
rather small trace that could be easily visualized with other tools, participants performed
equally well with both NonSequitur and Chrome Traceviewer.
• When conducting performance analysis tasks on the large WiredTiger trace, participants
performed better with NonSequitur than with OpTrack. However, most of the difference
scores for T3 on this trace were zero, meaning that participants generally achieved the same
score with both NonSequitur and OpTrack in this instance.
• When conducting performance analysis tasks on the large RocksDB trace, participants
performed better with NonSequitur than with OpTrack.

These data suggest the following: (1) Since users did equally well on the small trace, which can
be effectively visualized with Chrome TraceViewer, we can conclude that RegTime’s dropping of
information from the trace does not impede users from finding correct answers (RQ4). After all,
Chrome TraceViewer doesn’t drop any information from the trace, and our users did no worse
with NonSequitur. (2) For large traces, NonSequitur is generally more effective at providing the
needed information than OpTrack, the tool that splits the trace across many smaller visualizations
(RQ1-RQ3). At the same time, some tasks, such as T3 for WT large, may be completed equally well
with a simpler tool.

To further substantiate these conclusions, we dig deeper into how the participants used the tools.
T1 tasks To perform task T1, participants needed to identify what threads were executing

functions of interest and then observe when these threads execute these functions. From analyzing
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the Zoom video recordings, we saw that participants liked to use the search bar in NonSequitur
to determine what threads were executing these functions. The participants also clicked on the
functions in the legend to highlight them. Because RegTime summarized the behavior of threads
with multiple RegTime expressions, participants could identify, at a high-level, when threads
executed functions. For example, participants could see if a thread executed a function at the
beginning, middle, or end of its lifetime.

Although participants were able to perform the T1 task for the normal WT trace using Chrome
TraceViewer, we saw from our review of the Zoom video recordings that participants needed to
make repeated use of Chrome TraceViewer’s navigation features to complete T1. For example,
participants would attempt to highlight functions of interest with Chrome TraceViewer, only to
find that calls to those functions were too small to be easily spotted despite being displayed in
prominent colours. Participants then needed to zoom into the visualization to determine what
threads executed these functions. If participants zoomed into a Chrome TraceViewer visualization,
they would need to scroll horizontally along the timeline of the visualization so they can see
when the threads executed the functions over time. The participants’ need to constantly use the
navigation features with Chrome TraceViewer explains why we see in Figure 18 that participants
tended to spend more time using Chrome TraceViewer than NonSequitur.

On average, participants scored three times higher on the T1 task with the large WT trace with
NonSequitur than with OpTrack. Participants also on average scored 11 times higher on the T1
task with the large RocksDB trace with NonSequitur than with OpTrack. Participants struggled to
use OpTrack to perform T1 tasks for large traces because OpTrack does not provide users with
any navigation features beyond selecting what time intervals to display. Thus, participants found
it difficult to use OpTrack to identify what threads called functions of interest or what threads
were doing over time. Participants’ strategies when using OpTrack were limited to a) randomly or
methodically selecting time intervals, and b) spending time studying the visualization of the time
interval to determine whether a thread invoked a function of interest. Consequently, Figure 18
shows that participants spent more time using OpTrack than NonSequitur. The participants spent
on average twice as much time using OpTrack to perform the T1 task on the large WT trace. The
average amount of time the participants spent using OpTrack to perform the T1 task on the large
RocksDB trace was 1.7 times longer than the average time spent using NonSequitur.
T2 tasks We observed from the Zoom video recordings that, when using NonSequitur, partici-

pants used the search bar and legend together to determine what threads executed outlier events.
Because RegTime leaves outlier events uncompressed, participants were also able to identify when
threads executed these outlier events. On average, participants scored 2.6 times higher performing
the T2 task on the largeWT trace with NonSequitur than with OpTrack. Participants also on average
scored twice as high when performing the T2 task on the large RocksDB trace with NonSequitur
than with OpTrack.
Figure 18 shows that participants generally spent more time performing T2 tasks with both

Chrome TraceViewer and OpTrack than with NonSequitur. With Chrome TraceViewer, participants
needed to spend time scrolling to find the threads that executed the outlier events. Meanwhile,
participants using OpTrack needed to spend a lot of effort studying multiple time intervals to find
outliers. The participants spent on average twice as much time using OpTrack on the T2 task with
the large WT trace. The average amount of time the participants spent using OpTrack on T2 task
with the large RocksDB trace was three times longer than the average time using NonSequitur.

T3 tasksWhen using NonSequitur, participants made extensive use of linked highlighting to
explore what threads were doing when the outlier events occurred. When the boundaries of the
RegTime expressions lined up with the start and end of outlier events, as depicted in Figure 5,
participants scored four times higher with NonSequitur than with OpTrack.
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Fig. 19. An example of when NonSequitur is not able to assist software developers with T3 tasks.

However, participants struggled to perform the T3 task if the RegTime Visual Encoding bound-
aries did not line up. For instance, Figure 19 shows what happened when participants attempted to
use linked highlighting to perform the T3 task for the large WT trace. Participants were able to iden-
tify the outlier event, whichwas an unusually long invocation of the function __wt_cond_wait_signal
in thread 18. However, they were unable to understand what thread 20 was doing when the unusu-
ally long invocation of the function __wt_cond_wait_signal occurred because the RegTime Visual
Encoding boundaries in thread 20 did not line up with the start and end of this outlier event.

Interestingly, the average time participants spent performing the T3 task with OpTrack was less
than with NonSequitur. From reviewing the Zoom video recordings, we believe many participants
simply gave up using OpTrack to perform this task. One participant told us after completing the
study that "using OpTrack for this will be very time consuming and tedious."

Impact of Performance Debugging Experience We see from Figure 18 that the participants
who were willing to spend the most time performing the performance analysis tasks tended to
be WT developers and experienced performance debuggers. We speculate that these participants
were used to spending a lot of time debugging performance and were therefore more patient with
completing the performance analysis tasks during our study.

Summary of Findings. We conclude that RegTime and NonSequitur are well suited for understand-
ing what threads were doing over time (RQ1); detecting outlier events (RQ2); and understanding
what threads were doing over time fwhen these events occurred (RQ3). For these performance
analysis tasks, the fact that RegTime drops information from traces did not prevent users from
completing the task successfully. Even for small traces, the users answered questions correctly and
more quickly than with conventional tools (RQ4).
For larger traces, participants were able to accomplish the task successfully more often with

NonSequitur than with other tools, and took less time doing so. At the same time, some of the
visual encoding techniques used in NonSequitur prevented users from identifying what threads
were doing during long outlier events and in certain trace conditions. Finding ways to improve
NonSequitur for these scenarios is a promising direction for future work.

7 RegTime Algorithm Evaluation
Table 6 shows the compression ratios achieved by RegTime when compressing the traces of threads
in WT, RocksDB, and the Chrome browser. The WT and RocksDB traces were collected using
XRay, a function call tracing system developed by Google [8]. XRay is supported by LLVM, which
automatically instruments the application given a compilation flag. We obtained Chrome traces
using Windows process Monitor [7].
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Table 6. Compression ratios achieved with RegTime. 𝑛𝑏𝑒𝑓 𝑜𝑟𝑒 is the number of events in the trace before
compression. 𝑛𝑎𝑓 𝑡𝑒𝑟 is the number of events in the trace after compression. The compression ratios of the
trace sizes in MB were approximately the same.

System Thread # unique
events

𝑛𝑏𝑒𝑓 𝑜𝑟𝑒 𝑛𝑎𝑓 𝑡𝑒𝑟 Compression
Ratio

RocksDB 0 74 2,466,295 323 7,635
RocksDB 1 316 2,762,774 2,485 1,111
WiredTiger 0 115 7,784,936 546 14,258
WiredTiger 1 81 6,935,791 209 33,185
Chrome 0 34 274,361 96 2,857
Chrome 1 8 46,464 56 829

For this experiment, we configured RegTime with the following threshold values. We empirically
found that these values tend to produce most compact yet useful visualizations.
• 𝐶𝑎𝑙𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ : Function calls are considered to be short if its duration is less 1% of
the thread’s total execution time.
• 𝐶𝑎𝑙𝑙𝐺𝑎𝑝𝑇ℎ𝑟𝑒𝑠ℎ : The time between two consecutive function calls is considered short if that
time is less than 0.1% of the thread’s total execution time.
• 𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ : The time interval occupied by a compressible function sequence
cannot exceed 13% of a thread’s total execution time.

Table 6 shows that RegTime compression ratios have a high variance, which depends on the shape
of the call stacks in the trace. However, in all cases RegTime produced a compressed trace that can
be easily inspected using NonSequitur. This is critical because existing tools are frequently unusable
at scale. Achieving the high compression ratios in Table 6 enables user-friendly visualization of
large traces, but also requires dropping some information. This is a trade-off in our design, which
means that RegTime and NonSequitur are suitable for certain performance-analysis tasks, but not
for others. For example NonSequitur would not be useful for within-function optimizations or tasks
where the precise order of executed functions is crucial information.

8 Conclusion
Debugging performance issues in multi-threaded applications requires tools that scale to accom-
modate large amounts of runtime information. We described a trace compression algorithm called
RegTime to assist developers with investigating performance bugs in multi-threaded applications.
RegTime achieves compression ratios exceeding 1,000, allowing developers to analyze execution
traces with millions of events. We also described NonSequitur, a trace visualization tool for de-
velopers to analyze the RegTime-compressed execution traces. We presented three case studies
which demonstrate how we used NonSequitur to analyze real-world performance issues with
WiredTiger and RocksDB. We also carried out a structured user study with 42 participants. Our
study participants scored 11 times higher when using NonSequitur for performance analysis on
large traces as compared with other tools. Additionally, for some performance analysis tasks, the
participants spent on average three times longer with other tools than with NonSequitur.
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The software described in Sections 3 and 6 is available on Zenodo [46].
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