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Abstract

The problem of scheduling on multicore systems re-
mains one of the hottest and the most challenging top-
ics in systems research. Introduction of non-uniform
memory access (NUMA) multicore architectures fur-
ther complicates this problem, as on NUMA systems
the scheduler needs not only consider the placement
of threads on cores, but also the placement of mem-
ory. Hardware performance counters and hardware-
supported instruction sampling, available on major CPU
models, can help tackle the scheduling problem as they
provide a wide variety of potentially useful information
characterizing system behavior. The challenge, how-
ever, is to determine what information from counters is
most useful for scheduling and how to properly obtain it
on user level.

In this paper we provide a brief overview of user-level
scheduling techniques in Linux, discuss the types of
hardware counter information that is most useful for
scheduling, and demonstrate how this information can
be used in an online user-level scheduler. The Clavis
scheduler, created as a result of this research , is released
as an open source project.

1 Introduction

In the era of increasingly multicore systems, memory
hierarchy is adopting non-uniform distributed architec-
tures. NUMA systems, which have better scalability po-
tential than their UMA counterparts, have several mem-
ory nodes distributed across the system. Every node is
physically adjacent to a subset of cores, but physical
address space of all nodes is globally visible, so cores
can access memory in a local as well as remote nodes.
Therefore, the time it takes to access data is not uni-
form and varies depending on the physical location of
the data. If a core sources data from a remote node,
performance may suffer because of remote latency over-
head and delays resulting from interconnect contention,

which occurs if lots of cores access large amounts of
data remotely [11]. These overheads can be mitigated
if the system takes care to co-locate the thread with its
data as often as possible [11, 24, 15, 23, 27, 9, 17, 22].
This can be accomplished via NUMA-aware scheduling
algorithms.

Recent introduction of multicore NUMA machines
into High-performance computing (HPC) clusters also
raised the question whether the necessary scheduling de-
cisions can be made at user-level, as cluster schedulers
are typically implemented at user level [25, 6]. User-
level control of thread and memory placement is also
useful for parallel programming runtime libraries [10,
20, 14, 16], which are subject to renewed attention be-
cause of proliferation of multicore processors.

The Clavis user level scheduler that we present in this
paper is a result of research reflected in several con-
ference and journal publications [11, 12, 28, 29]. It is
released as an open source [3]. Clavis can support var-
ious scheduling algorithms under Linux operating sys-
tem running on multicore and NUMA machines. It is
written in C so as to ease the integration with the default
OS scheduling facilities, if desired.

The rest of this paper is organized as follows: Section 2
provides an overview of NUMA-related Linux schedul-
ing techniques for both threads and memory. Section 3
describes the essential features that have to be provided
by an OS for a user level scheduler to be functional,
along with the ways to obtain them in Linux. Section 4
demonstrates how hardware performance counters and
instruction-based sampling can be used to dynamically
monitor the system workload at user level. Section 5 in-
troduces Clavis, which is built on top of these schedul-
ing and monitoring facilities.
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2 Default Linux scheduling on NUMA systems

Linux uses the principle local node first when allocat-
ing memory for the running thread.1 When a thread is
migrated to a new node, that node will receive newly
allocated memory of the thread (even if earlier alloca-
tions resulted on a different node). Figure 1 illustrates
Linux memory allocation strategy for two applications
from SPEC CPU 2006 suite: gcc and milc. Both appli-
cations were initially spawned at one of the cores local
to memory node 0 of a two-node NUMA system (AMD
Opteron 2350 Barcelona), and then in the middle of the
execution were migrated to the core local to the remote
memory node 1.

It is interesting to note in Figure 1 that the size of
thread’s memory on the old node remains constant af-
ter migration. This illustrates that Linux does not mi-
grate the memory along with the thread. Remote mem-
ory access latency, in this case, results in performance
degradation: 19% for milc and 12% for gcc. While gcc
allocates and uses memory on the new node after migra-
tion (as evident from the figure), milc relies exclusively
on the memory allocated before migration (and left on
the remote node). That is why, milc suffers more from
being placed away from its memory.

Linux Completely Fair Scheduler (CFS) tries to com-
pensate for the lack of memory migration by reducing
the number of thread migrations across nodes. This is
implemented via the abstraction of scheduling domains:
a distinct scheduling domain is associated with every
memory node on the system. The frequency of thread
migration across domains is controlled by masking cer-
tain events that typically cause migrations, such as con-
text switches [13, 5, 4]. With scheduling domains in
place, the system reduces the number of inter-domain
migrations, favouring migrations within a domain.

Thread affinity to its local scheduling domain does im-
prove memory locality, but could result in poor load bal-
ance and performance overhead. Furthermore, memory-
intensive applications (those that issue many requests to
DRAM) could end up on the same node, which results in
contention for that node’s memory controller and the as-
sociated last-level caches. Ideally, we need to: (a) iden-
tify memory intensive threads, (b) spread them across
memory domains, and (c) migrate memory along with

1From now on we assume 2.6.29 kernel, unless it is explicitly
stated otherwise.

the threads. Performance benefits of this scheduling pol-
icy were shown in previous work [11, 12, 28].

Section 3 describes how to obtain the necessary in-
formation to enforce these scheduling rules on user
level. Section 4 shows how to identify memory intensive
threads using hardware performance counters. Section 5
puts it all together and presents the user-level scheduling
application.

3 User-level scheduling and migration tech-
niques under Linux

Linux OS provides rich opportunities for scheduling at
user level. Information about the state of the system and
the workload, necessary to make a scheduling decision,
can be accessed via sysfs and procfs. Overall, schedul-
ing features available at user level can be separated into
two categories: those that provide information for mak-
ing the right decision – we call them monitoring fea-
tures, and those that let us enforce this decision – action
features. Monitoring features provide relevant informa-
tion about the hardware, such as the number of cores,
NUMA nodes, etc. They also help identify threads that
show high activity levels (e.g., CPU utilization, I/O traf-
fic) and for which user level scheduling actually matters.
Table 1 summarizes monitoring features and presents
ways to implement them at user level. Action features
provide mechanisms for binding threads to cores and
migrating memory. They are summarized in Table 2.

As can be seen from the tables, many features are
implemented via system calls and command-line tools
(for example, binding threads can be performed via
sched_setaffinity call or taskset tool). Us-
ing system calls in a user level scheduler is a preferred
option: unlike command-line tools they do not require
spawning a separate process and thus incur less over-
head and do not trigger recycling of PIDs. Some com-
mand line tools, however, have a special batch mode,
where a single instantiation remains alive until it is ex-
plicitly terminated and its output is periodically redi-
rected to a file or to stdout. In Clavis, we only use
system calls and command-line tools in batch mode.

4 Monitoring hardware performance counters

Performance counters are special hardware registers
available on most modern CPUs as part of Performance
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Figure 1: Memory allocation on Linux when the thread is migrated in the middle of its execution and then stays
on the core it has migrated on. New memory is always allocated on the new node, old memory stays where it was
allocated.

Monitoring Unit (PMU). These registers obtain the in-
formation about certain types of hardware events, such
as retired instructions, cache misses, bus transactions,
etc. PMU models from Intel and AMD offer hundreds
of possible events to monitor covering many aspects of
microarchitecture’s behaviour. Hardware performance
counters can track these events without slowing down
the kernel or applications. They also do not require the
profiled software to be modified or recompiled [18, 19].

On modern AMD and Intel processors, the PMU offers
two modes in which profiling can be performed. In the
first mode, the PMU is configured to profile only a small
set of particular events, but for many retired instruc-
tions.2 This mode of profiling is useful for obtaining
a high level profiling data about the program execution.
For example, a PMU configured in this mode is able
to track the last level cache (LLC) miss rate and trig-
ger an interrupt when a threshold number of events have
occurred (Section 4.1). This mode, however, does not
allow us to find out which particular instruction caused
a cache miss.

In the second mode, the PMU works in the opposite
way: it obtains detailed information about retired in-
structions, but the number of profiled instructions is very

2The exact number of events that can be tracked in parallel de-
pends on available counter registers inside the PMU and usually
varies between one and four. A special monitoring software like
perf or pfmon, however, can monitor more events than there are
actual physical registers via event multiplexing.

small. The instruction sampling rate is determined by a
sampling period, which is expressed in cycles and can
be controlled by end-users. On AMD processors with
Instruction-Based Sampling (IBS), execution of one in-
struction is monitored as it progresses through the pro-
cessor pipeline. As a result, various information about
it becomes available, such as instruction type, logical
and physical addresses of the data access, whether it
missed in the cache, the latency of servicing the miss,
etc. [19, 2] In Section 4.2 we provide an example of us-
ing IBS to obtain logical addresses of the tagged load
or store operations. These addresses can then be used
by the scheduler to migrate recently accessed mem-
ory pages after migration of a thread [11]. On In-
tel CPUs similar capabilities are available via Precise
Event-Based Sampling (PEBS).

4.1 Monitoring the LLC miss rate online

As an example of using hardware performance coun-
ters to monitor particular hardware events online, we
will show how to track LLC miss rate per core on an
AMD Opteron systems. Previous research showed that
LLC miss rate is a good metric to identify memory in-
tensive threads [21, 11, 12, 28]. Threads with a high
LLC miss rate will perform frequent memory requests
(hence the term memory-intensive) and so their perfor-
mance will strongly depend on the memory subsystem.
LLC misses have a latency of hundreds of cycles, but
can take even longer if the necessary data is located on
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Monitoring feature Description, how to get on user level
Information about core
layout and memory hi-
erarchy of the machine
(which caches are shared,
cache size, etc)

Directories with the necessary files for each core on the system are located at
/sys/devices/system/cpu/, including:
./cpu<ID>/cpufreq/cpuinfo_cur_freq - current frequency of the given core.
./cpu<ID>/cache/index<CID>/shared_cpu_list - cores that share a <CID>-th level
cache with the given core.
./cpu<ID>/cache/index<CID>/size - cache size.

Information about which
cores share every NUMA
memory node on the sys-
tem

Can be obtained via sysfs by parsing the contents of
/sys/devices/system/node/node<NID>/cpulist The same information is also avail-
able with the numactl package by issuing numactl --hardware from the
command line.

Information about which
core id the given thread is
currently running on

The latest data is stored in the 39-th column of the /proc/<PID>/task/<TID>/stat
file, available via proc pseudo fs.

Detection of multi-
threaded applications

For the purpose of scheduling, it is often necessary to identify, which threads belong
to the same multithreaded application. All threads of such program share a single
memory footprint and often benefit from co-scheduling together on the same shared
cache or memory node. In Linux, threads are mostly treated as separate processes.
To determine, which of them belong to the same application, the scheduler can read
/proc/<PID>/task/<TID>/status file, which contains TGID field common to all the
threads of the same application. The thread for which TID = PID = TGID is the
main thread of the application. If it terminates, all the rest of the threads are usually
terminated with it.

The amount of memory
stored on each NUMA
memory node for the
given application

The file /proc/<PID>/numa_maps contains the node breakdown information for each
memory range assigned to the application in number of memory pages (4K per page).
In case of multithreaded programs, the same information can also be obtained from
/proc/<PID>/task/<TID>/numa_maps.

Detection of compute
bound threads

These are the threads that consume a significant portion of machine’s computational
resources (more than 30% of a core usage in our implementation). The threads can
be detected by measuring the number of jiffies (a jiffy is the duration of one tick
of the system timer interrupt) during which the given thread was scheduled in user
or kernel mode. This information can be obtained via /proc/<PID>/task/<TID>/stat
file (columns 13th and 14th). The top command-line tool provides similar data, if
invoked with -H option that shows per-thread statistics (not aggregated for the entire
multithreaded application) and if its "K" field is enabled.

Detection of I/O bound
threads

These threads spend a significant portion of their execution time waiting for the data
from the storage to process. The iotop command-line tool provides the information
about read and write traffic from hard drive per specified interval of time for every
such thread on the system.

Detection of network
bound threads

Just like I/O bound, these threads are often waiting for the data, this time from the
network. The nethogs command-line tool is able to monitor the traffic on the given
network interface and break it down per process.

Detection of memory in-
tensive threads

Refer to Section 4.

Table 1: Scheduling features for monitoring as seen from user level.



2011 Linux Symposium • 85

Action
feature

Description, how to get on user level

Thread bind-
ing

To periodically rebind the workload threads, user level scheduler can use sched_setaffinity
system call that takes cpu mask and rebinds the given thread to the cores from the mask. The thread
will then run only on those cores as is determined by the default kernel scheduler (CFS). The same
action can be performed by the taskset command line tool.

Specifying
memory
policy per
thread

Detailed description is provided in the Linux Symposium paper by Bligh et al. also devoted to
running Linux on NUMA systems [13].

Memory mi-
gration

Memory of the application can be migrated between the nodes in several ways:
A coarse-grained migration is available via numa_migrate_pages system call or
migratepages command line tool. When used, they migrate all pages of the application with
the given PID from old-nodes to new-nodes (these 2 parameters are specified during invocation).
Fine-grained migration can be performed with numa_move_pages system call. This call allows
to specify logical addresses of the pages that have to be moved. The feature is useful if the
scheduler is able to detect what pages among those located on the given node are "hot" (will be
used by the thread after its migration to the remote node).
Automatic page migration. Linux kernel since 2.6.12 supports the cpusets mechanism and its
ability to migrate the memory of the applications confined to the cpuset along with their threads
to the new nodes if the parameters of a cpuset change. Schermerhorn et al. further extended
the cpuset functionality by adding an automatic page migration mechanism to it: if enabled, it
migrates the memory of a thread within the cpuset nodes whenever the thread migrates to a core
adjacent to a different node. The automatic memory migration can be either coarse-grained or fine-
grained, depending on configuration [26]. Automigration feature requires kernel modification (it
is implemented as a collection of kernel patches).

Table 2: Scheduling features for taking action as seen from user level.

the remote memory node. Accessing remote memory
node requires traversing the cross-chip interconnect, and
so LLC-miss latency would increase even further if the
interconnect has high traffic. As a result, an application
with higher LLC miss rate could suffer higher perfor-
mance overhead on NUMA systems than an application
which does not access memory often.

Many tools to gather hardware performance counter
data are available for Linux, including oprofile,
likwid, PAPI, etc. In this paper we focus on two
tools that we use in our research: perf and pfmon.
The choice of a tool depends on the Linux kernel ver-
sion. For Linux kernels prior to 2.6.30, pfmon [19] is
probably the best choice as it supports all the features es-
sential for user level scheduling, including detailed de-
scription of a processor’s PMU capabilities (what events
are available for tracking, the masks to use with each
event, etc), counter multiplexing and periodic output of
intermediate counter events (necessary for online mon-

itoring). Pfmon requires patching the kernel in order
for the user level tool to work. The support for pfmon
was discontinued since 2.6.30 in favour of the vanilla
kernel profiling interface PERF_EVENTS and a user-
level tool called perf [18]. Perf generally supports
the same functionality as pfmon (apart from a periodic
output of intermediate counter data, which we added).
PERF_EVENTS must be turned on during kernel com-
pilation for this tool to work.

The server we used has two AMD Opteron 2435 Istan-
bul CPUs, running at 2.6 GHz, each with six cores (12
total CPU cores). It is a NUMA system: each CPU has
an associated 8 GB memory block, for a total of 16 GB
main memory. Each CPU has 6 MB 48-way L3 cache
shared by six cores. Each core also has a private uni-
fied 512 KB 16-way L2 cache and a private 64 KB 2-
way L1 instruction and data caches. The client machine
was configured with a single 76 GB SCSI hard drive.
To track the LLC miss rate (number of LLC misses per
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instruction), the user-level scheduler must perform the
following steps:

1) Get the layout of core IDs spread among the nodes
of the server. On a two socket machine with 6 core
AMD Opteron 2435 processors, the core-related output
of numactl would look like:

# numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 2 4 6 8 10
node 1 cpus: 1 3 5 7 9 11

2) Get the information about L3_CACHE_MISSES and
RETIRED_INSTRUCTIONS events provided by the
given PMU model (the event names can be obtained via
pfmon -L):

# pfmon -i L3_CACHE_MISSES
Code : 0x4e1
Counters : [ 0 1 2 3 ]
Desc : L3 Cache Misses
Umask-00 : 0x01 : [READ_BLOCK_EXCLUSIVE] :
Read Block Exclusive (Data cache read)
Umask-01 : 0x02 : [READ_BLOCK_SHARED] :
Read Block Shared (Instruction cache read)
Umask-02 : 0x04 : [READ_BLOCK_MODIFY] :
Read Block Modify
Umask-03 : 0x00 : [CORE_0_SELECT] :
Core 0 Select
Umask-04 : 0x10 : [CORE_1_SELECT] :
Core 1 Select
<...>
Umask-08 : 0x50 : [CORE_5_SELECT] :
Core 5 Select
Umask-09 : 0xf0 : [ANY_CORE] :
Any core
Umask-10 : 0xf7 : [ALL] :
All sub-events selected

# pfmon -i RETIRED_INSTRUCTIONS
Code : 0xc0
Counters : [ 0 1 2 3 ]
Desc : Retired Instructions

As seen from the output, L3_CACHE_MISSES has a
user mask to configure. The high 4 bits of the mask
byte specify the monitored core, while the lower ones
tell pfmon what events to profile. We would like to
collect all types of misses for the given core. Hence, all
three meaningful low bits should be set. We will con-
figure the "core bits" as necessary, so that, for example,
core 1 user mask will be 0x17.

While RETIRED_INSTRUCTIONS is a core-level
event and can be tracked from every core on the
system, L3_CACHE_MISSES is a Northbridge (NB),
node-level event [2]. Northbridge resources, includ-
ing memory controller, crossbar, HyperTransport and
LLC events are shared across all cores on the node. To
monitor them from user level on AMD Opteron CPUs,
the profiling application must start only one session per
node from a single core on the node (any core on the
node can be chosen for that purpose). Starting more than
one profiling instance per node for NB events will result
in a monitoring conflict and the profiling instance will
be terminated.

3) To get periodic updates on LLC misses and retired in-
structions for every core on the machine, the scheduler
needs to start two profiling sessions on each memory
node. One session will access a single core on the node
(let it be core 0 for the first node and core 1 for the sec-
ond) and periodically output misses for all cores on the
chip and instructions for this core by accessing NB miss
event and this core’s instruction event. Another instance
will access the rest of the cores from the node and col-
lect retired instruction counts from the other cores. The
two sessions for node 0 would then look like so:

pfmon --system-wide --print-interval=1000 \
--cpu-list=0 --kernel-level --user-level \
--switch-timeout=1 \
-e L3_CACHE_MISSES:0x07,L3_CACHE_MISSES:0x17,\
L3_CACHE_MISSES:0x27,L3_CACHE_MISSES:0x37 \
-e L3_CACHE_MISSES:0x47,L3_CACHE_MISSES:0x57,\
RETIRED_INSTRUCTIONS

pfmon --system-wide --print-interval=1000 \
--cpu-list=2,4,6,8,10 --kernel-level \
--user-level \
--events=RETIRED_INSTRUCTIONS

In the first session, there are two event sets to mon-
itor, each beginning with --events keyword. The
maximum number of events in each session is equal
to the number of available counters inside PMU (four,
according to pfmon -i output above). Pfmon will
use event multiplexing to switch between the measured
event sets with the frequency --switch-timeout
milliseconds. Monitoring is performed per core as is
designated by --system-wide option3 in kernel and

3Pfmon and perf can monitor the counters in two modes:
system-wide and per-thread. In per-thread mode, the user speci-
fies a command for which the counters are monitored. When the
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user level for all events. Periodic updates will be given
at 1000 ms intervals.

The scheduler launches similar profiling sessions on the
rest of the system nodes, but replaces the core IDs as is
seen in numactl --hardware output.

4) At this point, scheduler has the updated information
about LLC misses and instructions for every core on the
system, thus it can calculate the miss rate for every core.
The data collected with perf and pfmon on each node
contains ”LLC missrate – core” pairs that characterize
the amount of memory intensiveness within each node
online. In order to make a scheduling decision, we need
to find out the id of the thread that is running on a given
core so the pair will turn into ”LLC missrate – thread
ID”. This can be done via procfs (see Table 1). While
it is possible to tell which threads are executing on the
same core, there is currently no way to attribute individ-
ual miss rate to every thread due to limitation of mea-
suring NB events on user level4. Fortunately, we did
not find this to be a show stopper in implementing the
user-level scheduler: the LLC miss rate as a metric of
memory intensiveness is only significant for compute
bound threads, and those threads are usually responsi-
ble for most activity on the core (launching a workload
with more than one compute-bound thread per core is
not typical).

The above steps also apply when using perf instead of
pfmon under the latest kernel versions (we used 2.6.36
kernel with perf). The only challenge is that perf
only includes several basic counters (cycles, instructions
retired and so on) into its symbolic interface by default.
The rest of the counters, including NB events and their
respective user masks have to be accessed by directly
addressing a special Performance Event-Select Register
(PerfEvtSeln) [1]. Below are the invocations of perf
with raw hardware event descriptors for the two sessions
on node 0:

perf stat -a -C 0 -d 1000 \

process running that command is moved to another core, the profil-
ing tool will switch the monitored core accordingly. In the system-
wide mode, the tool does not monitor a specific program, but instead
tracks all the processes that execute on a specific set of CPUs. A
system-wide session cannot co-exist with a per-thread session, but
a system wide session can run concurrently with other system wide
sessions as long as they do not monitor the same set of CPUs [8].
NB events can only be profiled in system-wide mode.

4We are currently working on kernel changes that will allow
measuring per-thread LLC at user level.

-e r4008307e1 -e r4008317e1 -e r4008327e1 \
-e r4008337e1 -e r4008347e1 -e r4008357e1 \
-e rc0

perf stat -a -C 2,4,6,8,10 -d 1000 -e rc0

As can be seen, the names or raw hardware events in
perf begin with an "r". Bits 0-7, 32-35 of the regis-
ter are dedicated to the event code. Bits 8-15 are for
the user mask. Bits 16-31 are reserved with the value
0x0083. If the event code is only 1 byte long (0xC0 for
RETIRED_INSTRUCTIONS), there is no need to spec-
ify the rest of the code bits and, hence, mention all the
reserved bytes in between.

4.2 Obtaining logical address of a memory access
with IBS

IBS is AMD’s profiling mechanism that enables the pro-
cessor to select a random instruction fetch or micro-op
after a programmed time interval has expired and record
specific performance information about the operation.
The IBS mechanism is split into two modules: instruc-
tion fetch performance and instruction execution perfor-
mance. Instruction fetch sampling provides information
about instruction TLB and instruction cache behavior
for fetched instructions. Instruction execution sampling
provides information about micro-op execution behav-
ior [2]. For the purpose of obtaining the address of the
load or store operation that missed in the cache, the in-
struction execution module has to be used as follows:

1) First of all, the register MSRC001_1033 (IbsOpCtl,
Execution Control Register) needs to be configured to
turn IBS on (bit 17) and set the sampling rate (bits
15:0). According to the register mnemonic, IbsOpCtl
is in MSR (Model Specific Registers) space with the
0xC0011033 offset. MSR registers can be accessed
from user level in several ways: (a) through x86-
defined RDMSR and WRMSR instructions, (b) through
command-line tools rdmsr and wrmsr available from
msr-tools package, (c) by reading or writing into
/dev/cpu/<CID>/msr file (MSR support option must be
turned on in the kernel for that)5.

5Although accessing MSR registers from user level is straight-
forward, they are not the only CPU registers that can be config-
ured that way. For example, turning a memory controller prefetcher
on/off can only be done via F2x11C register from PCI-defined con-
figuration space. For that, command line tools lspci and setpci
from pciutils package can be used under Linux [7].
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2) After IBS is configured, execution sampling engine
starts the counter and increments it on every cycle.
When the counter overflows, IBS tags a micro-op that
will be issued in the next cycle for profiling. When the
micro-op is retired, IBS sets the 18th bit of IbsOpCtl to
notify the software that new instruction execution data is
available to read from several MSR registers, including
MSRC001_1037 (IbsOpData3, Operation Data 3 Regis-
ter).

3) At that point, the user level scheduler determines if
the tagged operation was a load or store that missed
in the cache. For that, it checks the 7th bit of IbsOp-
Data3. If the bit was set by IBS, the data cache address
in MSRC001_1038 (IbsDcLinAd, IBS Data Cache Lin-
ear Address Register) is valid and ready to be read from.

4) After the scheduler gets the linear address, it needs to
clear the 18th bit of IbsOpCtl that was set during step
2, so IBS could start counting again towards the next
tagged micro-operation.

5 Clavis: an online user level scheduler for
Linux

Clavis is a user-level application that is designed to test
efficiency of scheduling algorithms on real multicore
systems6. It is able to monitor the workload execution
online, gather all the necessary information for making a
scheduling decision, pass it to the scheduling algorithm
and enforce the algorithm’s decision. Clavis is released
as an Open Source project [3]. It has three main phases
of execution:

• Preparation. During this phase, Clavis starts
the necessary monitoring programs in batch mode
(top, iotop, nethogs, perf or pfmon, etc.)
along with the threads that periodically read and
parse the output of those programs. In case the
workload is predetermined, which is useful for test-
ing, Clavis also analyzes a launch file with the
workload description and places the information
about the workload into its internal structures (see
below).

• Main loop. In each scheduler iteration, Clavis
monitors the workload, passes the collected infor-
mation to the scheduling algorithm and enforces

6The word clávis means "a key" in Latin. In the past, Clavis
greatly helped us to "unlock" the pros and cons of several scheduling
algorithms that we designed in the systems lab at SFU.

algorithm’s decision on migrating threads across
cores and migrating the memory. It also maintains
various log files that can be used later to analyze
each scheduling experiment. The main cycle of
execution ends if any of the following events oc-
cur: the timeout for the scheduler run has been
reached; all applications specified in the launch file
have been executed at least NR times, where NR is
a configuration parameter specified during invoca-
tion.

• Wrap-up. In this stage, the report about the sched-
uler’s work and the workload is prepared and saved
in the log files. The report includes average execu-
tion time of each monitored application, the total
number of pages that were migrated, the configu-
ration parameters used in this run and so on.

Clavis can either detect the applications to monitor on-
line or the workload can be described by the user in a
special launch file. In the first case, any thread on the
machine with high CPU utilization (30% as seen in the
top output), high disk read/write traffic (50 KB/sec) or
high network activity (1MB/sec on any interface) will be
detected and its respective process will be incorporated
into scheduler’s internal structures for future monitor-
ing. All the thresholds are configurable. Alternatively,
the user can create a launch file in which case the sched-
uler will start the applications specified in it and monitor
them throughout its execution. Launch file can contain
any number of records with the following syntax:

<label> <launch time> <invocation string>

***rundir <rundir>

***thread 0 [<CPU ID>] -or-

***numa thread 0 [<CPU ID>, <NODE ID>]
<...>

***thread N [<CPU ID>] -or-

***numa thread N [<CPU ID>, <NODE ID>]

Each record describes a single application, possibly
multithreaded. In the record, the user can specify a label
that will be assigned to the application, which will then
represent the application in the final report. If no label
is specified, or if the application was detected at run-
time, the binary name of the executable is used as a la-
bel. The launch time of the application since the start of
the scheduler is entered next. This field is ignored when
Clavis was started with "random" parameter, in which
case the scheduler randomizes workload start time. The
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invocation string and run directory for each program are
mandatory fields. In case of multithreaded applications,
user can specify additional parameters that will be asso-
ciated with the program threads. Usually, they are core
and node IDs the given thread and its memory should be
pinned to. The user, however, can utilize these fields to
pass any data to the devised scheduling algorithm (e.g.
offline signatures for each program thread).

Clavis is a multithreaded application written in C. It has
the following file structure:

• signal-handling.c - implementation of the sched-
uler’s framework: monitoring, enforcing schedul-
ing decisions and gathering info for the logs.

• scheduler-algorithms.c - the user defined imple-
mentation of the scheduling algorithms is located
here. This file contains several examples of
scheduling algorithm implementations with differ-
ent complexity to start with.

• scheduler-tools.c - a collection of small helpful
functions that are used throughout the scheduler
work.

• scheduler.h - a single header file.

Possible modes of Clavis execution will depend on the
number of implemented scheduling algorithms. Clavis
supports two additional modes on top of that: (1) a sim-
ple binding of the workload to the cores and/or nodes
specified in the launch file with the subsequent log-
ging and monitoring of its execution; (2) monitoring the
workload execution under the default OS scheduler. Ta-
ble 3 lists the log files that Clavis maintains throughout
its execution. The source code of the scheduler, sam-
ples of the log files, algorithm implementation examples
and the user level tools modified to work with Clavis are
available for download from [3].

6 Conclusion

In this paper we discussed facilities for implement-
ing user-level schedulers for NUMA multicore systems
available in Linux. Various information about the mul-
ticore machine layout and the workload is exported to
user space and updated in a timely manner by the kernel.
Programs are also allowed to change workload thread

schedule and its memory placement as necessary. Hard-
ware performance counters, available on all major pro-
cessor models, are capable of providing additional pro-
filing information without slowing down the workload
under consideration. The Clavis scheduler introduced
in this paper is an Open Source application written in
C that leverages opportunities for user level scheduling
provided by Linux to test the efficiency of scheduling
algorithms on NUMA multicore systems.
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