Jumpgate: In-Network Processing as a Service for Data Analytics

Craig Mustard
Ivan Beschastnikh

Fabian Ruffy
Alexandra Fedorova

Anny Gakhokidze

University of British Columbia

Abstract

In-network processing, where data is processed by special-
purpose devices as it passes over the network, is showing great
promise at improving application performance, in particular
for data analytics tasks. However, analytics and in-network
processing are not yet integrated and widely deployed. This
paper presents a vision for providing in-network processing
as a service to data analytics frameworks, and outlines bene-
fits, remaining challenges, and our current research directions
towards realizing this vision.

1 Introduction

In-network compute capability is growing. Figure | illus-
trates the network-attached compute resources that are (or
are becoming) available in modern data centers. New pro-
grammable hardware includes packet processors that can effi-
ciently process packets using specialized hardware designs,
such as SmartNICs [20, 75], programmable switches [12],
and NPUs [13,58, 80]. In parallel, software data paths are
becoming increasingly programmable via tools like the Data
Plane Development Kit (DPDK) [69] or the eXpress Data Path
(XDP) [27], while network function virtualization platforms
are being optimized for flexible high-performance packet pro-
cessing [62, 65, 83].

Programmable network processors can improve applica-
tion performance. Prior work has shown the benefits of tak-
ing advantage of compute that is conveniently located along
the data-path [23,32,33,45-47,49,50,72]. However, existing
systems that have used in-network processing have been ap-
plication specific [45-47,50] or have only been feasible in the
research lab. Often, they require invasive changes to infras-
tructure or the use of unreliable network protocols [23,45,50].
How can we deploy in-network processing in real settings?
QOur vision: We propose In-Network Processing as a Service
(NPaaS)'. End-users continue to write high level programs
(e.g., SQL) and use existing data processing frameworks such

'We pronounce it similar to ‘impasse’.

[1

- — NPUs
ASIC/FPGAS

Storage NIC Programmable
Cluster Switch Ephemeral VMs

New Device
Opportunities

Data Path

NPUs

_l— Original
=1

ASIC/FPGAs

Programmable

) < 1> Compute
Ephemeral VMs Switch P> | NIC Cluspter
New Device

Opportunities

Figure 1: Opportunities for in-network processing. Darker
boxes show new programmable opportunities for processing.
The solid arrow shows the path that data takes from storage
to compute nodes.

as Apache Spark [7], but the framework would use NPaaS to
offload operations to processing elements along (or near) the
data path. A common scenario might be NPaaS initiating the
read from storage, pre-processing the data, and directing the
processed data to compute nodes of the framework. NPaaS
could be operated by cloud providers or as a user-run service
that requests lower level resources from the provider. Realiz-
ing this vision will require designing solutions to challenges
presented by this new type of computing, including changes to
the existing system stack (§2). To drive research into NPaaS,
we are developing a prototype called Jumpgate (§3).

1.1 Motivation

Why should data analytics adopt in-network processing?

Data analytics need to leverage new high performance
hardware. Data analytics is an expensive but common task.
Substantial effort has been spent to accelerate query work-
flows with high performance devices. We view network
processors as another heterogeneous processing device to
be adopted in order to improve performance. Just as data
analytics systems have integrated GPUs [70], TPUs [2],

DPUs [3], and FPGAs [37], they should also coordinate with
in-network processors. Since many analytics tasks can be
CPU-bound [60], offloading operations to network devices
helps to alleviate valuable CPU resources [20] while decreas-
ing workload execution time for the end user. Prior work and
our estimates show that in-network processing can accelerate
data analytics tasks by orders of magnitude, detailed in §1.2.

We believe that network processing devices, special-

purpose and resource constrained as they may be, can act
as specialized compute stages as part of data analytics
pipelines. For example, Reconfigurable Match Table (RMT)
switches [12], programmed in P4 [11], present a very chal-
lenging and restrictive programming environment. In spite
of this, prior work has used programmable switches to per-
form join-and-group-by operations [45], aggregations [72],
build replicated key-value stores [32,33], optimize consensus
and transaction protocols [46,47], offload network teleme-
try queries [25,57], and implement several network manage-
ment algorithms [73, 74]. Work like Domino [74] and Flow-
Blaze [68] provides even higher-level languages for these
devices.
We can’t move all compute to storage. Existing data pro-
cessing systems try to place compute near storage nodes to
reduce data movement costs [82]. But, modern cloud archi-
tectures are decoupling compute and storage to achieve better
resource utilization and fault tolerance. Instead of general
purpose machines with attached storage, we now have special-
purpose data serving machines [26, 38, 56] with very little
compute capability. In these deployments, the classic ‘move
compute to data’ optimization is no longer possible.

For instance, Facebook’s Bryce Canyon storage server com-

bines 72 high capacity hard drives with two Xeon D-1500
SoCs [16, 17], each with at most 16 cores — less than half a
core per drive. Since we can no longer place a lot of compute
on storage nodes, we should find ways to place computation
near data, and our next option is the network path.
Data analytics need flexible deployments. Data processing
systems behave inefficiently if their nodes are statically allo-
cated in advance and they assume no other compute resources
are available. For instance, to filter a large volume of data
quickly, we require many nodes. After applying a highly se-
lective filter, the data will be 10-1000x smaller but distributed
across the same nodes used to filter it. However, it is often
faster to process small datasets on a single machine because
it avoids distribution overheads [53]. NPaaS could be used
to push the filter operation into the network and ensure all
relevant records arrive at a single host.

Ephemeral (serverless) compute service (e.g., AWS
Lambda [1]) can address this need for flexibility [35], but
are currently hamstrung by the lack of direct access to the
network [26] and instead rely on inefficient cloud file systems
for state exchange [39]. If they had direct network access,
we could treat ephemeral compute services as in-network
Processors.

Why provide network processing as a service? As we’ve
seen, in-network processing has a growing number of hard-
ware implementations, but as far as we know, there are no
proposals to manage and expose this plethora of new hard-
ware to end-users. However, the burden of managing all this
hardware should not fall to each data analytics framework,
as Lerner et al. propose [45]. Instead, analytics systems and
in-network processing should be decoupled with an inter-
face that allows the framework to specify desired operations,
while NPaaS manages instantiating requested operations on
appropriate hardware. NPaaS allows hardware to be managed
independently from the data analytics systems while saving
analytics developers from implementing device-specific code.
We describe potential general interfaces in §2, and our NPaaS
prototype in §3.

We want to inspire more network-aware hardware de-
signs. We believe network processors are good hardware ac-
celerators for data analytics. Recent work on near-storage [15,
24,31,34,41] or in-memory processors [3, 10,22, 81] tightly
couples storage with specialized processors, but as we’ve dis-
cussed, storage and compute are better utilized if they are
decoupled. We think more data processing devices could
be designed assuming data arrives over the network as co-
ordinated by NPaaS, and hope that our work inspires new
network-aware data analytics accelerators.

1.2 Performance Potential

In-network processing can reduce the overall work required
of end-hosts by performing computation in network, reducing
data volume and speeding up applications. To demonstrate,
we run an experiment and draw on prior work to show that
in-network processing will benefit data analytics.
Experiments. We estimate the effect of offloading common
analytics operations to the network by measuring reduction
in time and bytes transmitted on a query” run using Apache
Spark. We offload operations in the query that require no
storage (filter, projection, shuffle) or can be bounded (par-
tial aggregation). To measure traffic reduction, we pack each
record in a UDP packet and drop or modify packets as dictated
by the operation, measuring data sent over the wire before
and after. To measure query time, we simulate offloading
operators using Spark SQL to query pre-processed files that
contain data that would come from the offloaded operators.
This assumes operators work as fast as our cluster’ so our
measurements give an upper-bound on the benefits.

Table | summarizes our results, averaged over 5 runs. Filter
and Project reduce traffic commensurate with the amount
of rows or columns they remove. For our query test, shuffle
and partial aggregation also apply filter and project. Shuffle
eliminates the need for nodes to exchange records by sending

2 SELECT item_sk, sum(quantity) FROM store_sales GROUP BY
item_sk WHERE item_sk < I, where I selects 50% of records
3 A 4-node Spark cluster using Azure E4v3 VMs, with 4 cores each.

Spark Query Time

Operator Traffic

Offloaded Reduc. 13.7GB 68.9 GB
None 0% 56s +0.8s 256s +5s
Filter 50% 37s (-35%) 124s (-52%)
Project 85% 20s (-64%) 38s (-86%)
Shuffle 40% 14s (-76%) 31s (-88%)
Partial-Agg 90% 14s (-76%) 17s (-94%)

Table 1: Effect of in-network offload on traffic and Spark
query time. Input data is TPC-DS store_sales as JSON.

records to the right node in the first place with a network
operator. Based on traffic reduction, shuffle should improve
query time more, but Spark’s API lacked a way to declare
that data is pre-shuffled and our hand-written aggregation is
slower than Spark’s native SQL operators [44]. If Spark’s
optimizer had such an API, we could use the native operation.
Partial Aggregation, inspired by [25,57], aggregates within
a storage limit (§MB) by evicting partially aggregated records
and sending it to the end host. Overall, as we offload most
operations to the network, query time drops by 94% of the
baseline (a 16x speedup). Given partial-aggregation runs at
just 4 GB/s (on 4 nodes), assuming data can be processed as
fast as Spark reads seems reasonable because 40Gbps RMT
switches operate at 5 GB/s and the latest software JSON
parsers can operate at 2 GB/s per core [42,48].
Prior work has already shown benefits of performing in-
network operations. For in-network aggregation: Using RMT
switches, Sonata [25] reduced network telemetry traffic to
the end host by 3-7 orders, DAIET [72] reduces aggregation
traffic by 86-89% (6-8x). Using middleboxes, NetAgg [50]
increased search result aggregation throughput by 9.3x, and
reduced total Hadoop execution time by 4.5x. TAG [49] ag-
gregates sensor data and decreased traffic by 8x. Mellanox’s
SHATrP [23,54], a commercial in-network aggregator, shows
a 2x performance improvement on an MPI programs [23].
More complex operations and compilation strategies are
being explored: Netaccel [45] runs join-and-group-by on an
RMT switch and accelerates a TPC-H query fragment by
2x. The Marple [57] compiler translates network telemetry
queries to P4 code, and Sonata [25] partitions these queries
between end-host machines and programmable switches.
Floem [66] enables experiment with various NIC offload-
ing strategies, and improves data analytics throughput up to
96%.

2 NPaaS Design Challenges

#1: NPaaS requires extensive co-design.

Given an analytics task, data source and destination endpoint,
NPaaS must orchestrate the processing of data passing over

Byte stream Record / Datagram

Ex. TCP UDP, DCCP, SCTP

Reqs. Flow tracking. Record-packet alignment.

Pro Fewerchangestoex- Efficient per-packet pro-
isting software. cessing.

Con Must modify flow. Must packetize records.

Table 2: Comparison of transport layers for in-network pro-
cessing, showing known protocols, requirements, pros, cons.

the network by selecting and configuring available devices.
This is challenging because the devices that can be used
depend on the data format and transport protocols used to
send data, which in turn depend on where data is stored. For
example, Figure | shows on-path and off-path devices. On-
path devices operate at line-rate, but can only read a small
number of bytes of each packet, and have small amounts of
state [11, 14,45,72]. Off-path devices are more flexible, but
slower, and introduce latency. Achieving even basic network
processing requires co-designing storage systems, network
transport, and data formats with the capabilities of the avail-
able network processors.

Network Transports. Table 2 covers network transports
NPaaS could use to send data. Our main constraint is many
network devices (see §1.1) only operate on packets, and can’t
buffer data across packets in a network flow. To operate per-
packet, a complete record must be in a single packet. In other
words, each record must be packetized.

Stream protocols like TCP require fewer modifications to
existing systems. But, operating on a flow requires buffering
data, observing all packets, and modifying TCP state; tasks
that are outside the capabilities of packet processors. Even if
records are chunked into individual TCP packets, they cannot
be reordered or dropped without tracking the behavior of
the TCP state machine per flow. In practice, modifying TCP
streams requires a proxy, stream processor or middlebox.

Prior work has thus sent records over UDP-based protocols

(e.g., Netaccel [45]). In practice, we need a reliable protocol to
ensure data has been processed. Fortunately, reliable datagram
protocols, such as SCTP [76] and DCCP* [40], are available
in the Linux kernel today. However, the downside to datagram
protocols is that the sender must packetize records.
Data Formats. Table 3 covers data formats NPaaS might sup-
port. Our main concern is the ability to process popular data
formats while guaranteeing the packet content is parseable by
the network devices we wish to support. For instance, RMT
switches can only process 200-500 bytes of fixed-length data
from each packet [12,72,73].

Unstructured formats, like JSON, are prevalent but are diffi-
cult to parse quickly [42,48,61], although there are promising

4 Assuming a reliable layer on top of the congestion control protocol.

Flat Nested Unstructured
Columnar Columnar

Examples:

ORC,Arrow,Albis Parquet,Dremel CSV, JSON

[5,59,77]
Storage Pro/Cons:
Low storage overhead, but mustbe No conversion,

[6,55]

converted. high overhead.
Packetizing complexity:
Fixed/length- Reassembly Newline search

prefixed records [36]

Table 3: Data formats categorized by their storage-side bene-
fits, and challenges for storage-side record alignment.

hardware accelerators [18]; binary formats can be parsed more
quickly. We argue NPaaS should support both unstructured
data (JSON) for general applicability and binary formats for
best performance and compatibility with hardware. Not all
in-network processors need to support all formats, but NPaaS
should allow for processing of different formats.

Data formats vary in how complex it is to find record bound-
aries to packetize data. JSON or CSV records are easily found
by searching for newlines [8, 28] and flat binary formats
just need offset calculations, but binary formats for nested
schemata require complex algorithms [36].

Storage System Requirements. As said earlier, to send data
via record transport, a storage system needs to packetize
records. We must also be careful with distributed file systems
that split data files into chunks, like HDFS [9] or Ceph [79].
Since chunking is done without awareness of records, records
can span multiple chunks, and it is possible to see incomplete
records at the flow level. If we want to use a record transport,
one solution is to have a middlebox read all chunks that make
up a file, transcoding data into a record transport on the fly.
Open Research Questions. There are many more research
questions along the road to co-designing NPaaS. Here is a
short selection. Q1: How should we allocate and schedule
processing with respect to the network topology? How long
will processing pipelines need to last? Q2: Can middleboxes
perform fast enough to make a difference to applications?
Even though hardware packet processors are faster, it is worth-
while to implement operators in software, even to just provide
a performance baseline. Q3: Are existing transport protocol
sufficient for NPaaS or do we need custom protocols? Cus-
tomized protocols allow for domain-specific optimizations
but require significant development effort.

#2: Integration with Analytics Frameworks.

Multiple data analytics systems need to communicate their
operations to NPaaS. Is there a common format? What opera-
tions can be supported? Conveniently, most data processing

systems model programs as dataflow between nodes in an
abstract graph [2, 4, 30, 82] and have equivalent operators:
many support SQL dialects and functional style operations
(e.g., filter, project, map, reduce, group-by, shuffle) that can
be directly mapped between frameworks [21].

When an analytics framework requests computation, the
task for NPaaS is to map the desired operations to imple-
mentations on network processors. A simple way is to use
pre-written or templated implementations for each device. To
support framework-specific operators, or avoid hand-coding a
multitude of operators, NPaaS could draw on cross-framework
intermediate representations that enable compilation to differ-
ent backend devices (e.g., Weld [63,64], Dandelion [71]).

#3: Multi-tenancy and Isolation.

How can we run user code on hardware that lacks isolation?
If NPaaS only uses client-allocated resources, such as VMs
and containers, isolation and multi-tenancy is, arguably’ ad-
dressed by existing isolation mechanisms. But, if NPaaS runs
user-provided code on provider-managed devices that lack
hardware isolation, such as programmable switches, a major
challenge is to ensure user programs don’t abuse access to
the switch. A promising option is software isolation (SI), as
proposed by Singularity [43], where user supplied programs
are type and memory safe and restricted to use specific in-
terfaces. Proposals to support this notion of isolation already
exist for switches [51] and Netbricks [65] uses SI to eliminate
hardware-isolation costs to improve performance. Similarly,
Azure SmartNICs let users write policies for the Virtual Fil-
tering Platform (VFP) [19], which implicitly restricts them to
the user’s network. NPaaS can provide operations which are
guaranteed to only act on traffic belonging to the requester.

#4: Failure handling and debugging.

How should NPaaS recover from failure? NPaaS systems will
be composed of heterogeneous devices with their own fail-
ure modes. Detecting failures will be an ongoing issue that
NPaaS systems must address. Prior work handles failures by
restarting jobs on new nodes [23,45] or by routing around
the failure [50]. The best option depends on the expected life-
time of the pipeline, likelihood of a failure, and any existing
failure recovery mechanisms. For short-lived jobs, failure is
unlikely and restarting is fast, so a lightweight mechanism like
restarting is ideal [45]. For longer-lived jobs, partial recovery
becomes ideal [50]. In either case, the calling framework may
provide better failure recovery than NPaaS can provide (e.g.,
Spark’s lineage graph [82]).

How can we debug in-network programs? Data processing
errors are often data dependent and difficult to trace because
errors are caused by a few malformed data records [29]. As
with existing distributed computation systems, NPaaS should

SPutting aside recently discovered side-channel vulnerabilities.

Logical Plan Compiler Orchestrator
read . Physical
0 =2 O
data
Maps logical Deploys
filter ->9’§;P to physical physical plan

praad v

Physical Operators Deployment| Available Devices
[Filter + Project (tcp-Json) || Constraints |[Virtual Machines]
[Shuffle (Tcp-Json)] [RMT Switches |
[Nics][NPUs]

[Partial Agg (Tcp-Json)]

Figure 2: Overview of the how Jumpgate will interact with a
data processing system to compile and orchestrate in-network
processing.

return a summary of any problems encountered during execu-
tion to the framework, including enough context to help find
the problematic record(s).

#5: Who should provide NPaaS?

Is it better if the cloud provider or the user operates NPaaS?
The cloud provider has a privileged view of the network topol-
ogy, lower level control over the hardware and network con-
figuration, and often more money to pay experts to develop
fast operators. On the other hand, users have a better un-
derstanding of their specific workload and could implement
workload-specific operators. Users may also prefer to keep
any needed encryption keys on infrastructure they own. One
way to capture the best of both is for the user to operate the
NPaaS system, while allocating proprietary in-network opera-
tors from the cloud provider.

3 Jumpgate: Our NPaaS implementation

We are developing Jumpgate, a compiler and orchestration
system that can provide NPaaS. Jumpgate provides a client-
facing API and maps client requests to relevant devices using
an extensible architecture that simplifies adding new operators
and devices without modifying the client.

Figure 2 shows an overview of a client’s interaction with
Jumpgate. Step 1: the compiler receives a logical plan of op-
erations from data analytics frameworks (e.g., filter, project,
shuffle, partial or full aggregation) and maps logical opera-
tions to stages of physical operators that can be deployed on
available devices. Step 2: the orchestration layer coordinates
runtime execution of the physical plan on devices. Devices are
allocated and initialized to perform the physical operations’.
After initialization, network addresses are known and can be

SIf any physical operators need to generate and compile code, it could
happen at this point.

propagated as needed (e.g., end-host addresses, or next-hop
addresses in a processing pipeline).

Client API. Jumpgate’s API allows a client to specify in-
put data sources (files or network tuples), a DAG of logical
operations to apply to the input data, and the destination net-
work tuples for receiving processed data. We plan to expand
the API as our evaluations determine a need for it (e.g., to
communicate skew and cardinality of input data).

Mapping. The compiler maps logical operations to stages
of pipelines of physical operators. For example, joins require a
build stage to load data into the device and then a probe stage
to output matched records. Since in-network operations exe-
cute concurrently in pipelines, we must make sure that other
operators execute at the correct time to feed and receive data
from the join. Jumpgate computes all needed stages and which
stage(s) each operator executes in using a dependency-driven
simulation. Logical operators are then mapped to physical op-
erators, as determined by each physical operator’s matching
functions (below).

Extensibility. Jumpgate supports adding new logical and
physical operators. For instance, a logical operator that trans-
lates unstructured to structured data, or a physical operator
that runs filters on supporting storage systems. Logical op-
erations are represented as typed nodes in the DAG with
specified input/output connectivity and stage logic. Physical
operators are comprised of: (1) matching functions and (2)
a controller used to drive device allocation and execution.
Matching functions determine which logical operators can
be replaced based on type and properties, such as available
resources and operator-specific parameters. We plan to evalu-
ate heuristic and optimal approaches (e.g., SMT solvers) for
exploring the space of potential logical to physical matches.
Limitations and Future Work A compiler and orchestration
layer are bare necessities for providing NPaaS, but are not
sufficient for a full NPaaS system. At the very least, NPaaS
also needs failure handling and topology-aware scheduling.
For now, we are focused on enabling analytics applications
to execute in-network computations on software and pro-
grammable in-network devices, supporting common opera-
tions (e.g., TPC-DS [67], BigDataBench [78]), and measuring
performance. Our eventual goal is to share Jumpgate with
other researchers in order to answer broader challenges posed
by this paper and lay fertile groundwork for research into
making in-network processing available to more users.

4 Conclusion

In-network compute capability is growing, and the benefits to
data analytics are clear. To allow all analytics systems to ben-
efit, this paper advocated for providing in-network processing
as a service (NPaaS) that abstracts the desired operations on
data from their low-level implementation on network proces-
sors. We are developing Jumpgate to provide NPaaS and help
drive research and adoption of in-network processing.

5 Contributions to Workshop Discussion

Feedback desired and open issues: We are not cloud
providers and have little knowledge about the day-to-day de-
ployment and management challenges such a company might
face if they offered NPaaS. While we have covered many
open issues in §2, we are hoping to hear about additional
challenges we have not addressed. Examples include the inte-
gration of NPaaS into cloud systems and potential security,
fairness, reliability, and usability concerns. In particular, we
are interested in discussing difficulties deploying applications
to FPGAs and network accelerators currently used in data
centers, so that we can work on addressing them in Jumpgate.
Discussion: More generally, we are hoping to spark a discus-
sion of how best to expose in-network processing hardware
to end users and allow them to accelerate their applications,
ideally without writing low-level code. For example, are an-
alytics operators the right abstractions to expose in-network
processors to users? Are there other abstractions that could
be more useful or more easily deployed?

Controversial points: Placing more functionality than just
packet processing on networking devices is highly controver-
sial. For instance, McCauley et al. [52] argue strongly against
pushing complex operators to the network, on the basis that
it is unnecessary for performance and too restrictive to ap-
plications semantics. Detractors might suggest we instead
develop more efficient data analytics software. However, we
believe that network processors present a unique hardware
architecture that is distinct from classical out-of-order CPU
designs, that can benefit data analytics so much (§1.2) that
it is worthwhile exploring ways to make them available to
end-users.

Circumstances in which the whole idea might fall apart:
This project hinges on the assumption that network proces-
sors will become ubiquitous in datacenters. This requires that
these devices are cost-effective and flexible enough to be
widely used. Currently, this is at a stand-still: users can’t ben-
efit from in-network processing until cloud providers make
programmable network processors available, but providers
won’t bother if there are no popular use-cases. By proposing
NPaaS we hope to break this deadlock.

References

[1] AWS Lambda: Run code without thinking about servers.
https://aws.amazon.com/lambda/.

[2] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, lan Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Rajat Monga, Sherry Moore, Derek Mur-

(3]

(5]

(6]

(8]

[9]

(10]

ray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaogiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

Sandeep R Agrawal, Sam Idicula, Arun Ragha-
van, Evangelos Vlachos, Venkatraman Govindaraju,
Venkatanathan Varadarajan, Cagri Balkesen, Georgios
Giannikis, Charlie Roth, Nipun Agarwal, and Eric
Sedlar. A many-core architecture for in-memory
data processing. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-50 17, pages 245-258, New York, NY,
USA, 2017. ACM.

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava
Chernyak, Rafael J Ferndndez-Moctezuma, Reuven
Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric
Schmidt, et al. The dataflow model: a practical approach
to balancing correctness, latency, and cost in massive-
scale, unbounded, out-of-order data processing. Pro-
ceedings of the VLDB Endowment, 8(12):1792—-1803,
2015.

Apache Software Foundation. Apache Arrow. http://
arrow.apache.org/. [Online; accessed 5-Dec-2018].

Apache Software Foundation. Apache Parquet. http:
//parquet .apache.org/. [Online; accessed 5-May-
2018].

Apache Software Foundation. Apache Spark. http:
//spark.apache.org/. [Online; accessed 10-April-
2017].

Apache Software Foundation. Apache Spark: JSON
Files. https://spark.apache.org/docs/latest/

sgl-data-sources-json.html. [Online; accessed
18-Dec-2018].

Apache Software Foundation. HDFS Architecture

Guide. https://hadoop.apache.org/docs/rl.2.
1/hdfs_design.html. [Online; accessed 10-April-
2017].

Cagri Balkesen, Nitin Kunal, Georgios Giannikis, Pit
Fender, Seema Sundara, Felix Schmidt, Jarod Wen,
Sandeep Agrawal, Arun Raghavan, Venkatanathan
Varadarajan, Anand Viswanathan, Balakrishnan Chan-
drasekaran, Sam Idicula, Nipun Agarwal, and Eric Sed-
lar. Rapid: In-memory analytical query processing en-
gine with extreme performance per watt. In Proceedings
of the 2018 International Conference on Management
of Data, SIGMOD ’18, pages 1407-1419, New York,
NY, USA, 2018. ACM.

https://aws.amazon.com/lambda/
http://arrow.apache.org/
http://arrow.apache.org/
http://parquet.apache.org/
http://parquet.apache.org/
http://spark.apache.org/
http://spark.apache.org/
https://spark.apache.org/docs/latest/sql-data-sources-json.html
https://spark.apache.org/docs/latest/sql-data-sources-json.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard,
Nick McKeown, Jennifer Rexford, Cole Schlesinger,
Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: Programming protocol-independent
packet processors. SIGCOMM Comput. Commun. Rev.,
44(3):87-95, July 2014.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
sdn. In Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM, SIGCOMM ’13, pages 99-110,
New York, NY, USA, 2013. ACM.

Cavium. Liquidio ii network appliance smart
nics. https://www.cavium.com/liquidio-II-
network-appliance-adapters.html.

Sean Choi, Boris Burkov, Alex Eckert, Tian Fang,
Saman Kazemkhani, Rob Sherwood, Ying Zhang, and
Hongyi Zeng. Fboss: building switch software at scale.
In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages
342-356. ACM, 2018.

Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik
Park, Kwanghyun Park, and David J. DeWitt. Query pro-
cessing on smart ssds: Opportunities and challenges. In
Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD 13,
pages 1221-1230, New York, NY, USA, 2013. ACM.

Facebook Inc. Bryce Canyon Storage Specification.
https://www.opencompute.org/contributions?
query=bryce%20canyon%20spec. [Online; accessed
20-Dec-2018].

Facebook Inc. Mono Lake Server Specification.
https://www.opencompute.org/contributions?
query=mono%20lake. [Online; accessed 20-Dec-
2018].

Yuanwei Fang, Chen Zou, Aaron J. Elmore, and An-
drew A. Chien. Udp: A programmable accelerator for
extract-transform-load workloads and more. In Pro-
ceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-50 17, pages
55-68, New York, NY, USA, 2017. ACM.

Daniel Firestone. Vfp: A virtual switch platform for
host sdn in the public cloud. In Proceedings of the
14th USENIX Conference on Networked Systems Design
and Implementation, NSDI’ 17, pages 315-328, Berke-
ley, CA, USA, 2017. USENIX Association.

(20]

(21]

(22]

(23]

(24]

[25]

(26]

Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg.
Azure accelerated networking: Smartnics in the pub-
lic cloud. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages
51-66, Renton, WA, 2018. USENIX Association.

Ionel Gog, Malte Schwarzkopf, Natacha Crooks,
Matthew P Grosvenor, Allen Clement, and Steven Hand.
Musketeer: all for one, one for all in data processing sys-
tems. In Proceedings of the Tenth European Conference
on Computer Systems, page 2. ACM, 2015.

V. Govindaraju, S. Idicula, S. Agrawal, V. Vardara-
jan, A. Raghavan, J. Wen, C. Balkesen, G. Giannikis,
N. Agarwal, and E. Sedlar. Big data processing: Scala-
bility with extreme single-node performance. In 2017
IEEE International Congress on Big Data (BigData
Congress), pages 129-136, June 2017.

Richard L. Graham, Devendar Bureddy, Pak Lui, Hal
Rosenstock, Gilad Shainer, Gil Bloch, Dror Goldenerg,
Mike Dubman, Sasha Kotchubievsky, Vladimir Koush-
nir, Lion Levi, Alex Margolin, Tamir Ronen, Alexander
Shpiner, Oded Wertheim, and Eitan Zahavi. Scalable Hi-
erarchical Aggregation Protocol (SHArP): A Hardware
Architecture for Efficient Data Reduction. In Proceed-
ings of the First Workshop on Optimization of Communi-
cation in HPC, COM-HPC ’16, pages 1-10, Piscataway,
NJ, USA, 2016. IEEE Press.

Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo,
Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moon-
sang Kwon, Chanho Yoon, Sangyeun Cho, Jacheon
Jeong, and Duckhyun Chang. Biscuit: A framework for
near-data processing of big data workloads. In Proceed-
ings of the 43rd International Symposium on Computer
Architecture, ISCA * 16, pages 153-165, Piscataway, NJ,
USA, 2016. IEEE Press.

Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Walter Willinger. Sonata:
Query-driven streaming network telemetry. In Proceed-
ings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’ 18, pages
357-371, New York, NY, USA, 2018. ACM.

Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonza-
lez, Johann Schleier-Smith, Vikram Sreekanti, Alexey

https://www.cavium.com/liquidio-II-network-appliance-adapters.html
https://www.cavium.com/liquidio-II-network-appliance-adapters.html
https://www.opencompute.org/contributions?query=bryce%20canyon%20spec
https://www.opencompute.org/contributions?query=bryce%20canyon%20spec
https://www.opencompute.org/contributions?query=mono%20lake
https://www.opencompute.org/contributions?query=mono%20lake

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Tumanov, and Chenggang Wu. Serverless computing:
One step forward, two steps back, 2018.

Toke Hgiland-Jgrgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller. The express data path: Fast
programmable packet processing in the operating sys-
tem kernel. In Proceedings of the 14th International
Conference on Emerging Networking EXperiments and
Technologies, CONEXT ’18, pages 54-66, New York,
NY, USA, 2018. ACM.

Tan Ward. Documentation for the JSON Lines text file
format. http://jsonlines.org/. [Online; accessed
18-Dec-2018].

Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muham-
mad Ali Gulzar, Seunghyun Yoo, Miryung Kim, Todd
Millstein, and Tyson Condie. Titian: Data provenance
support in spark. Proc. VLDB Endow., 9(3):216-227,
November 2015.

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: distributed data-parallel
programs from sequential building blocks. In ACM
SIGOPS operating systems review, volume 41, pages
59-72. ACM, 2007.

Zsolt Istvan, David Sidler, and Gustavo Alonso. Caribou:
Intelligent distributed storage. Proc. VLDB Endow.,
10(11):1202-1213, August 2017.

Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. Netchain: Scale-free sub-rtt coordination. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 35-49, Renton,
WA, 2018. USENIX Association.

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP ’17, pages
121-136, New York, NY, USA, 2017. ACM.

Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk
Kang, Sangyeun Cho, Daniel D. G. Lee, and Jacheon
Jeong. Yoursql: A high-performance database system

leveraging in-storage computing. Proc. VLDB Endow.,
9(12):924-935, August 2016.

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Sto-
ica, and Benjamin Recht. Occupy the cloud: Distributed
computing for the 99In Proceedings of the 2017 Sympo-
sium on Cloud Computing, SOCC ’17, pages 445451,
New York, NY, USA, 2017. ACM.

(36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Julien Le Dem. The striping and assembly algorithms
from the Dremel paper. https://github.com/
julienledem/redelm/wiki/The-striping-and-
assembly-algorithms-from-the-Dremel-paper.
[Online; accessed 18-Dec-2018].

Ahmed Khawaja, Joshua Landgraf, Rohith Prakash,
Michael Wei, Eric Schkufza, and Christopher J. Ross-
bach. Sharing, protection, and compatibility for recon-
figurable fabric with amorphos. In 13th USENIX Sym-
posium on Operating Systems Design and Implemen-
tation (OSDI 18), pages 107-127, Carlsbad, CA, 2018.
USENIX Association.

Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu
John, and Sanjeev Kumar. Flash storage disaggregation.
In Proceedings of the Eleventh European Conference
on Computer Systems, EuroSys ’16, pages 29:1-29:15,
New York, NY, USA, 2016. ACM.

Ana Klimovic, Yawen Wang, Christos Kozyrakis,
Patrick Stuedi, Jonas Pfefferle, and Animesh Trivedi.
Understanding ephemeral storage for serverless analyt-
ics. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 789-794, Boston, MA, 2018.
USENIX Association.

Eddie Kohler, Mark Handley, and Sally Floyd. Design-
ing dccp: Congestion control without reliability. In
Proceedings of the 2006 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’06, pages 27-38, New
York, NY, USA, 2006. ACM.

Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Kr-
ishna Giri Narra, Jing Li, Hung-Wei Tseng, Steven
Swanson, and Murali Annavaram. Summarizer: Trading
communication with computing near storage. In Pro-
ceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-50 ’17, pages
219-231, New York, NY, USA, 2017. ACM.

Geoff Langdale and Daniel Lemire. simdjson : Parsing
gigabytes of JSON per second. https://github.com/
lemire/simdjson.

James Larus and Galen Hunt. The singularity system.
Commun. ACM, 53(8):72-79, August 2010.

Jacek Laskowski. Spark’s Whole-Stage Java Code
Generation. https://jaceklaskowski.gitbooks.
io/mastering-spark-sql/spark-sql-whole-
stage-codegen.html.

Alberto Lerner, Rana Hussein, and Philippe Cudre-
Mauroux. The Case for Network-Accelerated Query
Processing. CIDR 2019, 2019.

http://jsonlines.org/
https://github.com/julienledem/redelm/wiki/The-striping-and-assembly-algorithms-from-the-Dremel-paper
https://github.com/julienledem/redelm/wiki/The-striping-and-assembly-algorithms-from-the-Dremel-paper
https://github.com/julienledem/redelm/wiki/The-striping-and-assembly-algorithms-from-the-Dremel-paper
https://github.com/lemire/simdjson
https://github.com/lemire/simdjson
https://jaceklaskowski.gitbooks.io/mastering-spark-sql/spark-sql-whole-stage-codegen.html
https://jaceklaskowski.gitbooks.io/mastering-spark-sql/spark-sql-whole-stage-codegen.html
https://jaceklaskowski.gitbooks.io/mastering-spark-sql/spark-sql-whole-stage-codegen.html

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris:
Coordination-free consistent transactions using in-
network concurrency control. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP 17,
pages 104-120, New York, NY, USA, 2017. ACM.

Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana
Szekeres, and Dan R. K. Ports. Just say no to paxos
overhead: Replacing consensus with network ordering.
In Proceedings of the 12th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’ 16,
pages 467483, Berkeley, CA, USA, 2016. USENIX
Association.

Yinan Li, Nikos R. Katsipoulakis, Badrish Chan-
dramouli, Jonathan Goldstein, and Donald Kossmann.

Mison: A fast json parser for data analytics. Proc. VLDB
Endow., 10(10):1118-1129, June 2017.

Samuel Madden, Michael J. Franklin, Joseph M. Heller-
stein, and Wei Hong. Tag: A tiny aggregation service
for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev.,
36(SI):131-146, December 2002.

Luo Mai, Lukas Rupprecht, Abdul Alim, Paolo Costa,
Matteo Migliavacca, Peter Pietzuch, and Alexander L.
Wolf. Netagg: Using middleboxes for application-
specific on-path aggregation in data centres. In Proceed-
ings of the 10th ACM International on Conference on
Emerging Networking Experiments and Technologies,
CoNEXT ’14, pages 249-262, New York, NY, USA,
2014. ACM.

Mario Baldi. Exposing Data Plane Programmability
- Mario Baldi. https://www.inf.usi.ch/faculty/
soule/baldi.pdf. [Online; accessed 16-Jan-2019].

James McCauley, Aurojit Panda, Arvind Krishnamurthy,
and Scott Shenker. Thoughts on load distribution and
the role of programmable switches. ACM SIGCOMM
Computer Communication Review, 49(1):18-23, 2019.

Frank McSherry, Michael Isard, and Derek Gordon Mur-
ray. Scalability! but at what cost? In HotOS, 2015.

Mellanox Technologies. Mellanox Scalable Hi-
erarchical Aggregation and Reduction Protocol
(SHARP)™, http://www.mellanox.com/page/
products_dyn?product_family=26l&mtag=sharp.
[Online; accessed 7-Jan-2019].

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geof-
frey Romer, Shiva Shivakumar, Matt Tolton, and Theo
Vassilakis. Dremel: Interactive analysis of web-scale
datasets. Proc. VLDB Endow., 3(1-2):330-339, Septem-
ber 2010.

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Mihir Nanavati, Jake Wires, and Andrew Warfield. Deci-
bel: Isolation and sharing in disaggregated rack-scale
storage. In NSDI, pages 17-33, 2017.

Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,
Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-
malkumar Jeyakumar, and Changhoon Kim. Language-
directed hardware design for network performance mon-
itoring. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, SIG-
COMM ’17, pages 85-98, New York, NY, USA, 2017.
ACM.

Netronome. Smartnics overview. https://www.
netronome.com/products/smartnic/overview/.

Apache ORC. Orc specification vl1.
apache.org/specification/ORCv1/.

https://orc.

Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott
Shenker, and Byung-Gon Chun. Making sense of per-
formance in data analytics frameworks. In Proceedings
of the 12th USENIX Conference on Networked Systems
Design and Implementation, NSDI’ 15, pages 293-307,
Berkeley, CA, USA, 2015. USENIX Association.

Shoumik Palkar, Firas Abuzaid, Peter Bailis, and Matei
Zaharia. Filter before you parse: Faster analytics on raw
data with sparser. Proceedings of the VLDB Endowment,
11(11), 2018.

Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang,
Aurojit Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott
Shenker. E2: A framework for nfv applications. In Pro-
ceedings of the 25th Symposium on Operating Systems
Principles, SOSP ’ 15, pages 121-136, New York, NY,
USA, 2015. ACM.

Shoumik Palkar, James Thomas, Deepak Narayanan,
Pratiksha Thaker, Rahul Palamuttam, Parimajan Negi,
Anil Shanbhag, Malte Schwarzkopf, Holger Pirk, Saman
Amarasinghe, Samuel Madden, and Matei Zaharia. Eval-
uating end-to-end optimization for data analytics appli-
cations in weld. Proc. VLDB Endow., 11(9):1002-1015,
May 2018.

Shoumik Palkar, James J Thomas, Anil Shanbhag,
Deepak Narayanan, Holger Pirk, Malte Schwarzkopf,
Saman Amarasinghe, Matei Zaharia, and Stanford Info-
Lab. Weld: A common runtime for high performance
data analytics. In Conference on Innovative Data Sys-
tems Research (CIDR), 2017.

Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls,
Sylvia Ratnasamy, and Scott Shenker. Netbricks: Taking

https://www.inf.usi.ch/faculty/soule/baldi.pdf
https://www.inf.usi.ch/faculty/soule/baldi.pdf
http://www.mellanox.com/page/products_dyn?product_family=261&mtag=sharp
http://www.mellanox.com/page/products_dyn?product_family=261&mtag=sharp
https://www.netronome.com/products/smartnic/overview/
https://www.netronome.com/products/smartnic/overview/
https://orc.apache.org/specification/ORCv1/
https://orc.apache.org/specification/ORCv1/

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

the v out of nfv. In Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implemen-
tation, OSDI’ 16, pages 203-216, Berkeley, CA, USA,
2016. USENIX Association.

Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine
Kaufmann, Simon Peter, Rastislav Bodik, and Thomas
Anderson. Floem: A programming system for nic-
accelerated network applications. In 13th USENIX Sym-
posium on Operating Systems Design and Implemen-
tation (OSDI 18), pages 663—-679, Carlsbad, CA, 2018.
USENIX Association.

Meikel Poess, Bryan Smith, Lubor Kollar, and Paul Lar-
son. Tpc-ds, taking decision support benchmarking
to the next level. In Proceedings of the 2002 ACM
SIGMOD International Conference on Management of
Data, SIGMOD °02, pages 582-587, New York, NY,
USA, 2002. ACM.

Salvatore Pontarelli, Roberto Bifulco, Marco Bonola,
Carmelo Cascone, Marco Spaziani, Valerio Bruschi, Da-
vide Sanvito, Giuseppe Siracusano, Antonio Capone,
Michio Honda, Felipe Huici, and Giuseppe Siracusano.
Flowblaze: Stateful packet processing in hardware. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 531-548, Boston,
MA, 2019. USENIX Association.

DPDK Project. Data plane development kit (dpdk).
https://www.dpdk.org/.

Christopher J Rossbach, Jon Currey, Mark Silberstein,
Baishakhi Ray, and Emmett Witchel. Ptask: operating
system abstractions to manage gpus as compute devices.
In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, pages 233-248. ACM,
2011.

Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-
Philippe Martin, and Dennis Fetterly. Dandelion: A
compiler and runtime for heterogeneous systems. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP *13, pages 49-68,
New York, NY, USA, 2013. ACM.

Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan,
Marco Canini, and Panos Kalnis. In-network compu-
tation is a dumb idea whose time has come. In Pro-
ceedings of the 16th ACM Workshop on Hot Topics in
Networks, HotNets-X VI, pages 150156, New York, NY,
USA, 2017. ACM.

Naveen Kr. Sharma, Antoine Kaufmann, Thomas An-
derson, Changhoon Kim, Arvind Krishnamurthy, Jacob
Nelson, and Simon Peter. Evaluating the power of flexi-
ble packet processing for network resource allocation.

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

In Proceedings of the 14th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI' 17,
pages 67-82, Berkeley, CA, USA, 2017. USENIX As-
sociation.

Anirudh Sivaraman, Alvin Cheung, Mihai Budiu,
Changhoon Kim, Mohammad Alizadeh, Hari Balakr-
ishnan, George Varghese, Nick McKeown, and Steve
Licking. Packet transactions: High-level programming
for line-rate switches. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, pages 15-28,
New York, NY, USA, 2016. ACM.

Brent Stephens, Aditya Akella, and Michael M Swift.
Your programmable nic should be a programmable
switch. In Proceedings of the 17th ACM Workshop
on Hot Topics in Networks, pages 36—42. ACM, 2018.

Randall Stewart. Stream control transmission protocol,
rfc 4960. Technical report, IETF, 2007.

Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Adrian
Schuepbach, and Bernard Metzler. Albis: High-
performance file format for big data systems. In 2018
USENIX Annual Technical Conference (USENIX ATC
18), pages 615-630, Boston, MA, 2018. USENIX Asso-
ciation.

L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He,
W. Gao, Z. Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu,
K. Zhan, X. Li, and B. Qiu. Bigdatabench: A big data
benchmark suite from internet services. In 2014 IEEE
20th International Symposium on High Performance
Computer Architecture (HPCA), pages 488-499, Feb
2014.

Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE
Long, and Carlos Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proceedings of
the 7th symposium on Operating systems design and
implementation, pages 307-320. USENIX Association,
2006.

Wikipedia. Tilera.
wiki/Tilera.

https://en.wikipedia.org/

Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A.
Kim, and Kenneth A. Ross. Q100: The architecture and
design of a database processing unit. In Proceedings
of the 19th International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’ 14, pages 255-268, New York, NY,
USA, 2014. ACM.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.

https://www.dpdk.org/
https://en.wikipedia.org/wiki/Tilera
https://en.wikipedia.org/wiki/Tilera

Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’ 12, pages 2-2, Berkeley, CA,
USA, 2012. USENIX Association.

[83] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah,

Phillip Lopreiato, Gregoire Todeschi, KK Ramakrish-
nan, and Timothy Wood. Opennetvm: A platform for
high performance network service chains. In Proceed-
ings of the 2016 workshop on Hot topics in Middle-
boxes and Network Function Virtualization, pages 26—
31. ACM, 2016.

	Introduction
	Motivation
	Performance Potential

	NPaaS Design Challenges
	Jumpgate: Our NPaaS implementation
	Conclusion
	Contributions to Workshop Discussion

