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Abstract—Performance problems in parallel programs man-
ifest as lack of scalability. These scalability issues are often
very difficult to debug. They can stem from synchronization
overhead, poor thread scheduling decisions, or contention for
hardware resources, such as shared caches. Traditional profiling
tools attribute program cycles to different functions, but do
not generate immediate insight into issues limiting scalability.
Profiling information is very program-specific and is usually
processed manually by a human expert in a time-consuming and
cumbersome process.

Our experience in tuning performance of parallel applications
led us to discover that performance tuning can be considerably
simplified, and even to some degree automated, if profiling
measurements are organized according to several intuitive perfor-
mance factors common to most parallel programs. In this work
we present these factors and propose a hierarchical framework
composing them. We present three case studies where analyzing
profiling data according to the proposed principle led us to
improve performance of three parallel programs by a factor of
6-20×. Our work lays foundation for new ways of organizing
and visualizing profiling data in performance tuning tools.

I. INTRODUCTION

As parallel computing becomes more and more prevalent,

diagnosis of scalability problems in parallel programs becomes

increasingly important. In the recent literature, limiting factors

to parallel performance are often deduced based on aggregate

and general metrics such as overall speedup, rather than

being concretely identified and measured. There is a lack of

formal mechanisms for this type of performance analysis and

a corresponding lack of automatic tools to aid programmers.

A program is said not to scale if when executed on N cores

its speedup is less than a factor of N . There are many

factors that can contribute to a lack of scaling including

contention for locks, contention for cache and memory system

resources, overhead in the runtime work scheduler, inefficient

work distribution leaving processors idle, or very simply, there

could be not enough available parallelism. Profiling tools

measure where a program spends its time and attribute the

overhead to functions, synchronization primitives and even to

data structures [1], but fail to generate immediately actionable

insight into issues limiting scalability. Profiling data is specific

to a given program and is not organized in a way that allows us

to process it automatically and diagnose performance issues.

Instead, data must be examined manually by an expert. Build-

ing diagnosis and optimization solutions that are interactive,
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automatic or online remain a challenge in most cases.

Our experience in tuning parallel performance led us to

derive several intuitive performance factors that are common

to most parallel programs, and the corresponding hierarchical

framework to organize these factors. In this work, we present

a method for decomposing the program overhead according to

these factors and demonstrate, using three case studies, how

this decomposition method helped us identify performance

bugs and improve performance of three PARSEC applications

by 6-20× on a 24-core AMD platform. Our work lays the

foundation for more effective organization and visualization

of profiling data in performance tuning tools.

At the top of our hierarchy are three key factors: Work (time

spent on ‘useful’ instructions), Distribution (the overhead of

distributing work to processors and any load imbalance or

idleness), and Delay (the slow-down due to contention, or

cpu resources spent on ‘non-useful’ instructions such as failed

transactions). These three factors are aggregate values and can

be decomposed into finer-grained factors, as will be shown

in Section II. A concrete preview of applying the framework

can be found in Figure 1(a), which shows the breakdown

of the performance factors for the Swaptions program

in the PARSEC 2.1 suite [2]. The performance factors we

chose account for the entire execution time of the program,

so charts such as Figure 1(a) succinctly summarize program

behaviour as the number of threads increases. We see that in

Swaptions, Distribution constitutes a very large fraction of

the overhead. This breakdown immediately tells us that there



are some inefficiencies in how the work is distributed among

the cores. Analyzing work distribution lets us quickly pin-

point the problem: load imbalance. Compare this to a typical

speedup chart such as in Figure 1(b) which does show a

scaling issue, but does not immediately tell us where to look.

Addressing the load imbalance reduced the Distribution factor

and improved performance of Swaptions by as much as

a factor of six. This process and the results are detailed in

Section V.

The primary contributions of our work can be summarized

as follows:

• Elicitation of key performance factors contributing to

scalability issues in parallel programs.

• A new framework for hierarchically organizing these

factors. The hierarchical organization is critical as it

allows the inference of some factors when they cannot

be measured directly.

• Three case studies showing the framework applied to par-

allel scalability issues that led us to improve performance

of PARSEC benchmarks by as much as 20× in one case.

• Design and implementation of an automatic tuning algo-

rithm Partition Refinement that dynamically selects the

best partition size in a data-parallel program based on

the measurements supplied by the framework.

Categorization of performance overhead is not entirely new.

In 1994 Crovella and LeBlanc [3] introduced the concept of

lost cycle analysis to categorize and account for aspects of

parallel performance loss. Our contribution is the hierarchical

organization of performance factors (the importance of the

hierarchical view is described in the following section), and

the definition of the factors that accounts for the realities of

modern hardware and software, which have changed drasti-

cally in the intervening decades.

The rest of the paper is organized as follows. Section II

presents the performance factors and the framework. Sec-

tion III introduces visual representation of performance fac-

tors and explains their hierarchical composition. Section IV

explains what changes must be made to a parallel program

or runtime library in order to categorize the overhead accord-

ing to the framework. Sections V-VII present case studies.

Section VII also presents the partition refinement algorithm.

Section VIII discusses related work and Section IX presents

our conclusions.

II. FACTORS OF PARALLEL PERFORMANCE OVERHEAD

The premise underlying the overhead decomposition method

is that most parallel programs spend their time in one of the

following states: doing actual work, scheduling activities (both

scheduling and waiting for work), and resource competition.

This leads to the highest level categories of our performance

factor hierarchy which are as follows:

Work: cycles spent on executing the actual logic of the

program; and is the same as the number of cycles the

program would execute in a pure serial implementation.

Distribution: cycles spent on distributing the work across

processors or waiting for work when none is available.

Parallel Performance Factors

Delay Distribution

Software Hardware
Load 
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Fig. 2. Deconstruction Framework

Delay: Cycles wasted when the components of the pro-

gram that run in parallel compete for resources. The

resources can be software-constructed (e.g., locks) or

can be actual hardware resources (e.g., caches, memory

controllers, etc.). These can also be cycles wasted on

superfluous calculations such as a failed transaction.

Figure 2 expands on these factors for deconstructing over-

head and we now elaborate on the factors comprising Distri-

bution and Delay.

A. Distribution

Distribution is the process of dealing work to proces-

sors, rebalancing the work when needed, and waiting for its

completion. These tasks are usually performed by a parallel

runtime system such as OpenMP [4], Intel TBB, Cilk [5]

or Map/Reduce [6]), which are responsible for creating and

mapping tasks or threads to processors, pre-empting processors

when needed, and supplying work to idle processors. These

scheduling actions can add to the runtime of the program. They

are identified in our framework as Scheduling Overhead.

Serial sections in the algorithm will affect parallel speedup,

so it is crucial for the programmer to be aware of them. This

overhead is labeled in our framework as Serialization.

If the scheduler assigns work such that some processors are

working while others are idle and not waiting on synchro-

nization primitives, performance of the parallel program may

suffer. In that case, it is important to know about the number

of cycles that are unnecessarily idle when work is available.

We refer to this class of overhead as Load Imbalance.

Serialization and Load Imbalance have a high degree of

similarity as they both manifest as idle time on some pro-

cessors while others are doing work, but it is important that

they be separated as each requires a different class of remedies.

Serialization overhead dictates changes to the algorithm to pro-

duce more parallelism. Load Imbalance can often be addressed

entirely by the scheduler, without changing the underlying

algorithm, through better distribution of work.



B. Delay

When work is performed in parallel, performance may be

limited by availability of hardware and software resources.

When tasks or threads compete for these resources they are

unable to make as much progress as when they are running in

isolation and so parallel scalability is limited.

Delay in our framework is subdivided into two components:

Software and Hardware. Software delay accounts for time

spent waiting on synchronization primitives (e.g., locks) or

re-executing aborted software transactions. Hardware Delay

accounts for cycles wasted on contention for resources such

as the processor pipeline in hyperthreaded processors, shared

caches when the cache miss rate increases because the data

is evicted by another core, or other memory subsystem com-

ponents, such as memory buses, memory controllers, system

request queues or hardware pre-fetchers [7].

The category Memory subsystem also includes the memory

access overhead and communication latencies on systems

with non-uniform memory (NUMA) hierarchies. On NUMA

systems the latency of data exchange depends on relative

locations of the cores involved in the exchange. Furthermore,

accesses to a remote memory node take more time than local

accesses.

III. VISUAL REPRESENTATION OF PERFORMANCE

FACTORS
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Fig. 3. Activity Graph example

Before we explain how we measured the performance

factors introduced in the previous section and how we used

the resulting analysis to track scalability issues, we introduce

the concept of an activity graph, which visually demonstrates

how the running time is subdivided according to various

components of the program.

Figure 3 shows an example of an activity graph. The y-axis

denotes time and the x-axis shows the physical cores running

the application. Colour-coded blocks show how the running

time is subdivided between Application logic, Scheduling, and

Idleness. Application logic in this context corresponds to the

combined Work and Delay factor as the application logic may

be slowed down due to contention. Scheduling corresponds to

the Scheduling overhead factor in the Distribution category,

and idleness corresponds to Load Imbalance (also in the

Distribution category).

The total time accounted by the activity graph, Ttotal, is:

Ttotal = Tp × P (1)

Where Tp is the absolute start to finish time of the application

and P is the number of cores. Each of the performance factors

in the framework accounts for a fraction of Ttotal, and so we

naturally have the following relationship:

Work +Delay +Distribution = 100% (2)

The real benefit of expressing each of these performance

factors as a fraction of Ttotal is that it creates a standard metric.

Using this standard metric allows us to make performance and

overhead comparisons between different platforms, implemen-

tations, program regions, and core counts. It also allows for

the direct comparison between different sources of parallel

overhead.

Ideally, we would like to see very little idle and scheduling

time on an activity graph. The portion that these two com-

ponents cover the activity graph constitutes the Distribution

factor of the parallel run time and is calculated as:

Distribution =
Scheduling + Idle

Tp × P
(3)

As mentioned earlier, the Work time is equal to the amount

of time that application would take to run serially, and there-

fore the Work factor is:

Work =
Ts

Tp × P
(4)

Where Ts is the serial run time.

Likewise, the Delay component can be computed by taking

the difference between the sum of the Application logic in

the parallel and serial executions. Alternatively, any one of

these three components can be inferred if the other two are

known since the sum of all three must add to 100%. This rule

generalizes to all levels of the hierarchical framework. The

overheads represented by a set of sibling nodes add up to the

overheads represented by their parent. For instance, Scheduling

Overhead, Load Imbalance and Serialization must add up to

the overhead accounted by Distribution. The identification of

these subcomponents in some cases can be done with the

use of finer grained labelling in the activity graph. In other

cases such as distinguishing cache contention from memory

controller contention, heuristic measures would currently need

to be used. However, the use of a hierarchical system allows

us to place bounds on how much those factors are limiting

scalability of the program. These complexities are explained

further in Section IV

Before concluding this section, we bring up two important

points about negative delay and super-linear speedup.

An interesting characteristic of Delay is that it can be

negative under some circumstances. The parallel version may

execute less code by finding an early exit condition as with

the parallel depth first search as seen in Figure 4. Properties of

hardware may also produce this effect as when cores that share

the same cache exhibit a cooperating behaviour by sharing data



(a) Serial DFS

(b) Parallel DFS

Fig. 4. Example showing how a parallel depth first search could execute less
code by finding an early termination condition. Nodes checked are highlight
black. Target node in red.

or when the application is too large to fit in a single CPU’s

cache but is small enough to fit into the aggregate cache of

multiple CPU’s.

If the Delay is negative but the Distribution is zero, then

the Work must be greater than one. A Work greater than one

indicates that super-linear speedup occurred. However, having

negative delay does not guarantee super-linear performance

as the performance gain can be offset by performance loss

of Distribution. This highlights the need for fine-grained

performance factors. It is possible that an application may

exhibit P times improvement on P cores, but be capable

of having a greater than P times improvement. A situation

that would be undetectable without looking for cases such as

negative Delay.

IV. IMPLEMENTATION

In this section we describe how to measure and categorize

the overhead according to the framework in a practical im-

plementation. Some of the overhead sources, especially those

induced by the software, can be measured directly. Those

stemming from the hardware are difficult to measure directly

on modern systems and thus need to be inferred. Experiments

were done on a 4 socket AMD Opteron 8435 running Gentoo

Linux with Kernel 3.2.1. Each socket contained 6 cores for a

total of 24 cores.

A. Measuring software-induced overhead

Measuring overhead related to software (Distribution and

Software Delay) is relatively simple. The software needs

to be instrumented to measure the timings of all program

components (functions) that define the boundaries of various

performance factors related to work distribution and software

contention: e.g., Scheduling Overhead, Load Imbalance, etc.

Load Imbalance and Serialization can be measured by

counting the cycles when a core is idle or busy-waiting for

work (and not waiting on synchronization primitives) while

another core (or cores) are busy doing work1. Distinguishing

between Load Imbalance and Serialization is tricky, as they

both show up as processor idle cycles while a thread is either

1We assume that the program is not I/O-bound.

busy-waiting or sleeping. The way to address this issue is

to label the idle cycles as Load Imbalance or Serialization

depending on how the parallel work is generated in a given

section of code. For example, in the parallel section of code

created from a parallel-for loop in OpenMP or a map directive

in a Map/Reduce framework, idle cycles would be labeled as

Load Imbalance, because there is a high probability (although

not always) that the idle cycles could be created by inefficient

distribution of work by the schedulers. For instance, when

scheduling data-parallel operations, if the scheduler gives an

equal number of work items to each processor, but the amount

of computation per work item is not fixed or if some processors

are running slower than others due to system asymmetry,

some processors will end up being idle while others are

doing work. In that case, work must be re-distributed, as is

commonly done in Map/Reduce frameworks. Labelling these

idle cycles as Load Imbalance will signal the programmer (or

the auto-tuning algorithm) that the parameters affecting work

distribution may need to be altered.

The easiest way to implement the overhead profiling and

categorization is inside a parallel runtime, where parallelism

is extracted automatically by the parallelizing runtime or com-

piler. In this case, parallelism is harvested by way of directives

in the serial code (e.g., parallel-for in OpenMP) or by explicitly

invoking the interfaces that assist in parallelization (e.g., in

Intel TBB). This gives us a very clear separation of application

code (code required in a serial implementation) from parallel

library code. For categorization of parallelization overheads, it

is relatively easy for the developer implementing the library to

add the instrumentation and labelling according to the desired

categories.

When parallelization is performed directly by the program-

mer using low-level tools such as pthreads, instrumentation

can be inserted automatically, by typical profiling tools or by

a binary instrumentation tool such as Pin. The programmer,

however, needs to provide a mapping between a function name

and the overhead type. This can be a cumbersome process, so

our hope is that the proposed overhead-deconstruction frame-

work will be primarily implemented de facto in massively

emerging parallel programs and frameworks, as opposed to

being added to existing programs as an afterthought.

Identifying synchronization-contention overhead deserves

special discussion. Overall, it is trivial to measure the time

spent while waiting on locks, barriers or other synchronization

primitives. It is worth noting, however, that some of that over-

head comes from the hardware, such as coherence protocol

latency when multiple cores are using the lock. However, for

the purposes of fixing scalability issues it is more convenient

to classify this overhead as Lock Contention as opposed to

Hardware, and so we treat it as such.

Another interesting point related to synchronization is how

to treat busy-waiting and blocking. In the implementation of

synchronization primitives, blocking is sometimes used to give

up the processor when waiting for the primitive takes too long.

While blocking is definitely a part of lock contention, it is

also arguably a part of scheduling, as effectively argued in



the work by Johnson [8]. Essentially, the action of giving up

the processor to make way for other threads is a scheduling

activity, and it may be more convenient, for performance

debugging purposes, to treat it as such. This is what we chose

to do in our implementation (although another implementation

may make a different choice), and so processor-idle cycles

occurring because a thread blocks on a lock show up as Load

Imbalance.

The key take-away from this section is that all performance

factors induced by software can be measured directly by

automatic or manual instrumentation. Next we discuss how

to infer hardware-related overheads.

B. Inferring hardware-related overheads

Hardware overheads are difficult to quantify, because the ad-

ditional cycles that they generate cannot be measured directly.

Despite hundreds of hardware performance events available

for monitoring on modern processors, it is very difficult to

determine precisely how many cycles are being wasted due to

contention for caches or other hardware in the memory system.

Performance modelling can be used to estimate hardware-

related overhead, as was done in [9], but given complexity

of a typical system no model can be completely accurate.

We observe that hardware contention related to paralleliza-

tion will show up as the increase in the time attributed to the

total Delay factor. If both total delay and software delay factors

are known, then the hardware overhead is simply the difference

between the two. However, to compute the total delay, we

must know the values of Work factor and Distribution factor.

Since the Distribution factor is entirely software related, we

can compute this value. And the Work factor is the serial time

divided by Ttotal (time parallel × number of cores). We can

therefore infer the hardware contention portion.

Although this implies that Hardware overhead cannot be

measured precisely without having a serial execution time as a

reference point, this does not discount implementation of auto-

tuning algorithms for “online” scenarios where this reference

point is hard to obtain. For long-running parallel programs

that iteratively execute parallel sections many times (e.g.,

animation, simulation, image analysis and many others), the

runtime system can search the parameter configuration space

by varying their settings and observing how they affect the

changes in the Hardware overhead. Recent work has shown

that after enough repetitions, we are statistically likely to arrive

at the optimal configuration with a high probability [10].

C. Our implementation

In order to perform our evaluations of this model, we were

required to hand instrument the timing events into the code

base. This process is simple for programs which spawn one

worker thread per core as the chance of a thread being pre-

empted by the OS is low. If a thread were to be interrupted

while a timer is running, then the time the thread was spent

suspended would also need to be taken into account. We instru-

mented selected benchmarks from PARSEC suite that fit the

one-worker-per-core model. For our timing implementation,

we measured the duration of each code segment which would

also have been required to be in the serial implementation.

The time accumulated by all these code segments would equal

Work + Delay. Since Work is the serial completion time, we

can infer both the Distribution and Delay components with

the given timing information. The program completion time

is measured as the time to complete the Region of Interest

(ROI) [2]. All reported measurements were averaged over five

runs. The overhead induced by the added timing code was less

than standard deviation of the run, unless otherwise noted.

Sections V-VII will show how deconstructing parallel per-

formance overheads even at a coarse level can provide valuable

insight into program behaviour. Sections V and VI will show

how the factor analysis can be used in “manual” performance

debugging. Section VII will show how it can be used to imple-

ment an algorithm that automatically chooses the best program

configuration parameters based on repeated measurement.

V. LOAD IMBALANCE IN Swaptions
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Fig. 5. Breakdown of overhead in Swaptions according to performance
factors: original pthread implementation and the improved load-balanced
implementation (bottom)

Our first case study looks at how the framework helps us

manually tune the Swaptions benchmark from the PARSEC [2]

suite. In this benchmark, Monte Carlo simulations are used to

price swaptions in a financial portfolio. The only synchro-

nization mechanism for the program is locks. Running a large

simulation with 8 cores requires only 23 lock acquisitions in

total [2]. This program scales well with a small number of

cores. However, with a larger number, the parallel performance

suffers greatly; obtaining only about a 3.5 times speedup with

24 cores on the large input set. As the only synchronization

in the program is locks, a programmer may naively conclude

that the poor parallel performance is due to lock contention.

However, by looking at the parallel factor analysis (top half of

figure 5) we see that poor scalability is mostly a Distribution

issue.

If fine-granular timing information were incorporated into

the parallel runtime environment (pthreads, in this case), then

we would be able to automatically derive how much of

the distribution factor was due to overhead, serialization or

imbalance. Even without this detailed breakdown, analyzing

the swaptions activity graph (Figure 6) tells us that the work
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is not being distributed evenly amongst the cores. Taking

advantage of our knowledge that there is no sizeable serial

region in this program, we conclude that the culprit is load

imbalance, and looking at the code that is responsible for

distributing chunks of work in the pthread implementation,

we see why the load imbalance is occurring.

int chunksize = items/nThreads;

int beg = tid*chunksize;

int end = (tid+1)*chunksize;

if (tid == nThreads -1 )

end = items;

for(int i=beg; i < end; i++) {

...

}

What the code attempts to do is evenly distribute N swaptions

to P threads by picking a chunk size N/P and giving each

thread N/P swaptions to compute. The very last thread

handles any odd swaptions left over. This works fine if there

is a large number of swaptions and a few cores, but that is

not the case for this benchmark. For example, the simmedium

input set contains only 32 swaptions. If there were 16 threads,

each thread would compute two swaptions each and so the

work would be evenly distributed among threads. But if there

were, for instance 17 threads, the first 16 would compute one

swaption and the 17th thread would compute the remaining

16, resulting in a very large load imbalance. Moreover, this

explains why we see the scaling performance zigzag with

the number of cores, as the workloads become more or less

balanced. Fixing this imbalance and distributing work more

evenly across the threads (as shown the top part of the figure)

improves performance by as much as a factor of six in some

cases.

This same load imbalance issue was also discovered in the

work of Thread Reinforcer [11]. However, our methodology

clearly identified a scheduling issue from the very start,

whereas Thread Reinforcer determined the best number of

cores to run on.

VI. INEFFICIENT BARRIER IMPLEMENTATION

Streamcluster is a data-mining application from the PAR-

SEC benchmark suite. We observed that this particular bench-

mark had very poor scaling when run on a large number of

cores
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Fig. 7. Parallel performance decomposition of Streamcluster with simlarge,
simmedium, and simsmall inputs

cores and that parallel performance gains were only realized

when using a very large input. Previous work on evaluating

the performance of PARSEC note that for Streamcluster, “95%

of compute cycles are spent finding the Euclidean distance

between two points” and that “Scaling is sensitive to memory

speeds and bus contention” [12]. However, our analysis reveals

that the performance issue for Streamcluster does not stem

from where compute cycles are being spent, but rather where

they are not being spent.

It is immediately apparent from the top part of Figure 7

that Distribution is the primary cause of performance loss.

Examining the activity graph of Streamcluster, Figure 8, gives

us a further insight and reveals a striking lack of activity, as

indicated by the empty portions of the activity graph. This

idleness could indicate either blocking or executing in the OS,

as these cycles would not be captured by our simple user-level

implementation.
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Visible execution chunks are associated with calculating a distance cost func-
tion (streamcluster.cpp:1036-1067). Additional execution chunks are present,
but are too small to be visible.

Observing that Streamcluster uses barriers for synchroniza-

tion we suspected that this may be the cause of the large

amounts of inactivity. Code analysis revealed that the pthreads

library uses a yielding implementation of a barrier, where a

thread voluntarity gives up the CPU if it is unable to execute

the barrier after initial spinning. Performance begins to suffer

when many successive barriers are used in a short timeframe.

As more threads are added to the system, the time they take

to synchronize increases, and it becomes increasingly likely

that a thread will yield after a time-out at the barrier. When

a thread yields and resumes, it will be delayed in starting the

next stage and arrive at the next barrier late, causing the other



threads to spin too long and eventually yield, creating a vicious

cycle.

As explained earlier, in our implementation we chose to

represent blocking events (even those resulting from failed

synchronization attempts) as Load Imbalance, which falls

under the Distribution factor. Therefore, the inefficiencies

associated with excessive yielding on the barrier show up in

Figure 7 under the Distribution category.
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The detrimental effects of pthread barriers on this partic-

ular application can be alleviated by replacing the yielding

pthread barriers with a spinning implementation. The bottom

of Figure 7 shows the improved breakdown of execution time,

as the Work factor takes a much larger portion of time than

Distribution and Delay. Figure 9(b) shows the performance

difference between the two implementations. The 24-core

performance of the simsmall input set represents a twenty

times performance improvement as the pthread implementa-

tion is many times slower than the serial version. Further

investigation reveals that the remaining Distribution factor that

appears even with the spin barrier is due to serial sections of

the application.

Even though the spin barrier implementation shows tremen-

dous improvements over the pthread barrier for this benchmark

in this case it is certainly not a solution for all barrier related

problems. If, for example, the number of threads exceeds the

number of available cores, then the performance of a spin

barrier can degrade drastically. A dynamic locking primitive

that switches between spinning and blocking implementation

depending on the number of runnable threads has been pro-

posed by Johnson [8] and could be used in this case.

VII. PARTITION REFINEMENT

In the previous sections we showed how the performance

analysis framework can be used for the manual tuning of par-

allel programs. In this section we show how it can be used for

automatic tuning. We incorporate it into an online algorithm

to find an optimal configuration for runtime parameters.

Our partition refinement algorithm addresses the problem

of dynamically determining the right size of a data partition

in a data-parallel program. If the data partition is too small,

then the cost of creating and scheduling the tasks is large

relative to the execution time of the task. In other words, we
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Fig. 10. (a) Percentage of cells requiring locking as number of participating
cores increases. (b) Speedup comparison of the implementation using Multi-

colour Partitioning vs. the original pthread implementation (simlarge). Pthread
version is restricted to core counts of powers of two.

suffer excessive Scheduling Overhead. On the other hand, if

the task is too large, we may find that some processors are idle

and unable to steal work, while others are working on very

large tasks. This stuation would show up as Load Imbalance.

During the runtime, our tuning algorithm will measure the

Scheduling Overhead compared to the Load imbalance and

will dynamically change the size of the data partition to arrive

at the optimal task size.

Since the partition refinement algorithm works by observing

the performance factors and iteratively adjusting the partition

size, it is applicable to programs that repeatedly re-execute

data-parallel code sections. The repeated processing pattern

occurs often in simulation algorithms, video games, multime-

dia and many other interactive and soft-realtime applications.

A. Fluidanimate

To illustrate the algorithm, we use the Fluidanimate bench-

mark from the PARSEC suite. This application operates on a

3D grid to simulate an incompressible fluid by modelling the

movements of particles in space. The fluid space is divided

into cells, each holding a maximum of 16 particles.

The cell size is chosen in such a way that the particles in

one cell can only influence the particles in the adjacent cells. If

the cells are divided for parallel processing among the threads,

we must make sure to avoid race conditions, as it is possible

that some cells could be modified concurrently. Since each cell

has a fixed ‘influence radius’ mutual exclusion requirements

for a cell are predictable from its coordinates alone. A common

technique to deal with the mutual exclusion requirement can be

seen in the pthread implementation of Fluidanimate. The cells

of the simulation are divided into roughly P equal partitions

where P is the number of available threads. Cells that lie on

the border of these partitions must be locked before they can

be modified. Using locks in this scenario can severely limit

scalability. In Figure 10(a) we can see that as we increase

the number of partitions, the percentage of cells that require

locking increases to the point where almost every cell requires

a lock.

We applied a multi-color partitioning method [13], an

extension of red-black partitioning, which we use to eliminate

the locks from the original version included with PARSEC.



(a) red black partitioning (b) Multi-colour partitioning

Fig. 11. Unlike red-black partitioning, Multi-colour Partitioning applies to
problems where exclusive access constraint includes diagonal cells.

Multi-colour partitioning is a variant and generalization of
red-black partitioning, applicable for data in any number of

dimensions and with diagonal dependencies of the cells in

the grid. With Multi-colour partitioning, the cells are divided

into small partitions with a minimum size of 2 × 2 × 2
when considering three dimensions. These partitions are then

coloured such that no partition is adjacent to another partition

with the same colour. The computation is then carried out

in a sequence of stages where each stage processes all the

partitions of the same colour. Each colour partition can be

computed independently without any synchronization. In order

to satisfy the exclusive access constraint of all neighbour cells,

including diagonal cells, eight colours are required with 3D

grids. Figure 11 shows the difference between the red-black

colouring and Multi-colour Partitioning for a 2D grid.

We applied Multi-colour Partitioning to Fluidanimate using

OpenMP and the consequent elimination of locks allowed

for distribution of work at a finer granularity. The speedup

of parallel regions using Multi-colour Partitioning is shown

in Figure 10(b). Values are shown for combined times of

Compute Densities and Compute Forces sections of

the application as Multi-colour Partitioning was not applicable

to other regions. These two sections make up the bulk of the

execution time for the benchmark.

As mentioned previously, there is a trade-off between

Scheduling Overhead and Load Imbalance. To highlight this

effect, we magnified the possible work imbalance by padding

the simulation space with empty cells. This was done by

increasing the simulation space by a factor of 2 in each

dimension, thereby increasing the total number of cells by

a factor of 8. This enlarged simulation space is used for the

partition refinement experiments. Figure 12 shows combined

speedup values, relative to the serial implementation, of the

Compute Densities and Compute Forces regions of

the code over varying partition sizes, program inputs, and core

counts.

We observe that there is not a single fixed partition size

that achieves the best speedup across all core counts and input

sizes. The black tick marks on the graph show what partition

size would have been chosen if each stage of the Multi-colour

Partitioning had been divided into 8× P partitions, where P
is the number of cores. This value is chosen to demonstrate

that simply dividing the work into some multiple of P cannot

find the optimal value across a wide range of parameters.
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partition sizes required to give each core 8 partitions.

B. Partition Refinement Algorithm

As mentioned previously, we focus on applications that

exhibit periodic behaviour. We are therefore able to take

advantage of performance metrics measured in one iteration

to inform what changes need to be made in the next. The

two metrics that we are interested in are Scheduling Overhead

and Load Imbalance. If the Scheduling Overhead is large,

this is a signal that the partition size should be increased.

On the other hand, if the Load Imbalance is large then this

indicates that partition size should be decreased. However,

these adjustments must be made intelligently in order for the

algorithm to converge quickly and avoid large oscillations.

To satisfy these objectives, we imagine the worst case

imbalanced scenario where there are P cores and N items,

but all the work items are assigned to only one core. In order

to rectify the situation, we must, at the very least, divide N

items into P partitions. Another way to perform that operation

is to decrease the partition size by a factor of P (assuming that

the partition size is less than or equal to N). Load Imbalance

is, therefore, considered as a force that decreases the partition

size. If there is a maximum imbalance, then the partition size

is reduced by a factor of P. If there is no imbalance, then

partition size is not reduced. We decrease the partition size in

proportion to the measured Load Imbalance as the fraction of

the maximum possible Load Imbalance.

The maximum possible Load Imbalance is simply a function

of the number of cores P and can be computed as follows. Sup-

pose that all work is done by a single core. We can compute the

Work factor by summing the execution of all the work kernels

and dividing it by Ttotal. Assuming conservatively that load

imbalance is the only cause of overhead, all the execution time

Tp will be used to execute the work kernels (load imbalance

shows up as idle time). So the aggregate time spent in work

kernels is simply Tp. The Work factor, in this case, becomes
Tp

Tp×P
, or simply 1

P
. Given our conservative assumption that

Load Imbalance is the only factor besides Work, then the

maximum Load Imbalance is (1− 1
P

).

Just as Load Imbalance signals the need for a decrease in



the partition size, Scheduling Overhead signals a need for an

increase. The equations below summarize how the partition

size is adjusted depending on the the values of Load Imbalance

and Scheduling Overhead:

decrease% = P ·

LoadImbalance

(1− 1
P
)

(5)

increase% = P ·

Sch.Overhead

(1− 1
P
)

(6)

sizenew = sizeold
1 + increase%

1 + decrease%
(7)

sizenew = sizeold ·
1 + P ·

Sch.Overhead

(1− 1

P
)

1 + P ·
LoadImbalance

(1− 1

P
)

(8)

Simplification yields the formula:

sizenew = sizeold ·
P 2

· Sch.Overhead+ P − 1

P 2
· LoadImbalance+ P − 1

(9)

This removes the possibility of dividing by 0 when Load

Imbalance is 0, except when the core count is 1; in which

case the partition refinement algorithm would not be needed.

C. Results

Since the partition refinement algorithm requires an initial

partition size, we tried two different initial starting sizes: the

smallest (2x2x2) and the size obtained by dividing the data

into 2× P partitions, where P is the number of cores.

For both starting configurations, we executed with all given

input files and core counts. These results are compared to the

best measured speedup for each input and core configuration,

which was determined experimentally. The summary of the

results is shown as a histogram in Figure 13. For the majority

of the input configurations, the partition refinement algorithm

works well and is able to converge to a value within 10%

of the best achievable performance as measured in Figure 12.

Figure 14 summarizes the performance improvements that the
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Fig. 13. Histogram of experimental data points under partition refinement.
In most experiments partition refinement performs very closely to the optimal
configuration.

partition refinement algorithm achieves over the implementa-

tion that partitions the data statically. We compare to the two

static partitioning scenarios that are used as the baseline for

the partition refinement algorithm: the smallest possible (small

start) and 2 · P . We observe that in most cases performance

improvements are very substantial: 20-80%.

Effective decomposition of profiling measurements into

actionable performance factors, Scheduling Overhead and

Load Imbalance in this case, enabled us to quickly isolate

performance-limiting factors and design a simple algorithm

that finds the best setting for a tuneable parameter across many

inputs and core counts.
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Fig. 14. Summary of improvement of dynamic partition refinement over
static partitioning.

VIII. RELATED WORK

There is a plethora of profiling tools that allow gathering

and examining performance data, but to the best of our

knowledge none of them offers the analysis similar to what

we proposed in this work. Profilers can tell us how much time

the program spends executing different functions, waiting on

locks, or idling the CPU, but come short of organizing the data

according intuitive performance factors. The closest works

that comes to achieving this goal are Lost Cycle Analysis [3]

(LCA), by Crovella et al, and Speedup Stacks [14].

LCA decomposes the execution time into the following

components: load imbalance, insufficient parallelism (serial-

ization), synchronization contention, cache contention, and re-

source contention. While these factors are similar to some used

in our framework, our contribution is a complete hierarchical

framework that accounts for all sources of work and overhead

and can be thus used as the basis for automatic performance

tuning. Completeness and hierarchical organization are crucial,

because not all of the performance factors can be measured

directly, and must be inferred from others. LCA also required

completeness, however, the authors were fortunate enough to

work with a platform [15] that allowed for direct measurement

of all hardware delays, which cannot be done on current

hardware.

Speedup Stacks is a contemporary paper that identifies

the lost scaling performance using approximately the same

categories which we identify. This work exemplifies what

what our framework would like to measure if we had perfect

knowledge about the system. Speedup Stacks was able to

directly attribute cycles to fine grained components of the

application with the use of a simulator. Our method is limited



in that only some performance categories can be measured.

However, with the use of a hierarchy, we were able to infer

other performance metrics. Furthermore, we demonstrated that

the information gathered is sufficient to drive an adaptive

algorithm which balances synchronization overhead with load

imbalance.

Representing all performance factors as the fraction of total

time, as is done in our framework, helps design automatic

tuning algorithms, such as partition refinement, that examine

the relative contribution of each factor and tune parameters

based on this relation.

Another area of related work includes algorithms that au-

tomatically discover the right configuration parameters for

the parallel program. Examples of the more recent work in

this area include Thread Reinforcer [11] and Feedback-Driven

Threading [9]. In both cases, the algorithms aim to find the

optimal number of threads in a parallel program, and show a

good example of the kind of optimization that could be built

on top of our framework. The strength of our framework is that

it can be used to tune many parameters that are responsible

for various sources of overhead.

A more general approach to parameter tuning is via machine

learning. Brewer investigated machine learning techniques that

find good configuration parameters for the application [16].

Ganapathi, et al. also apply a machine learning technique to

tune application parameters [17]. Ganapathi’s technique re-

duces a large search space of 4×107 parameters down to 1500

random samples, and finds configurations for two programs

that are within 1% and 18% of the version optimized by an

expert. However, this is still an offline technique that takes

hours. Our factor decomposition framework could be used to

further guide machine learning techniques to reduce the search

space and identify the most crucial tuning parameters.

IX. CONCLUSIONS

Through our experience of finding and fixing scalability

bottlenecks in parallel applications, we discovered that perfor-

mance debugging can be substantially simplified if profiling

measurements are organized according to several intuitive

performance factors, common to most parallel programs. The

key performance factors we proposed are Work, Delay and

Distribution; each of them is further decomposed into addi-

tional sub-factors, forming a hierarchy. As the key contribution

of our work we presented and described this hierarchy.

We further showed how the performance factor analysis

can be used in practice for fixing scalability issues in par-

allel applications. We discovered and eliminated an inefficient

barrier implementation in one application and improved a

work distribution algorithm in another. These changes led to

performance improvements of 6-20×. Finally, to demonstrate

how the framework can be used for automatic performance

analysis and tuning, we presented a partition refinement al-

gorithm that repeatedly compares Scheduling Overhead and

Load Imbalance, the components of Distribution, to balance

between the two and obtain the optimal partition size in data-

parallel applications. This algorithm performs 20-80% better,

in most cases, than simple static partitioning and is robust

across different inputs and core counts.

Our hope is that the instrumentation required to measure the

proposed performance factors is incorporated in future paral-

lel libraries, facilitating performance debugging and enabling

proliferation of automatic performance tuning techniques.
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