
Practical Cross Program Memoization with KeyChain

Craig Mustard and Alexandra Fedorova
Department of Electrical and Computer Engineering

Universty of British Columbia

Abstract—Cross program memoization (CPM) reduces re-
source utilization and improves response times by enabling data
processing systems to re-use previously computed results between
programs. An under-explored requirement to implementing CPM
in general purpose data processing systems like Apache Spark
is computing identifiers for results of user-defined functions that
are valid between programs while avoiding degrading system per-
formance when sharing is not possible. In this paper we describe
and evaluate a technique, called KeyChain, that computes keys
for intermediate and final results of programs with user-defined
functions. We use KeyChain to implement CPM in Apache Spark,
and show that KeyChain’s simple design means it can be easily
added to relevant systems, incurs low runtime overheads, and
enables heuristic detection of equivalent programs so that CPM
can be added to more systems and useful results can be more
widely re-used.

I. INTRODUCTION

Data intensive programs can be long running and expensive
to execute, so it can be quite beneficial to share previously
computed intermediate and final results to speed up future
computations. For example, if Alice and Bobbie are explor-
ing the same data-set on the same infrastructure and Alice
performs a join query that takes a long time, it would be
ideal if the results of Alice’s query are re-used when Bobbie
runs the query. Similarly, if programs written by Alice and
Bobbie perform the same pre-processing steps, they should
also share their results. In general, it is desirable to share
many previously computed results as widely as possible to
improve performance and reduce resource usage. Since users
of these systems may not even know if and when sharing can
occur, the job of exploiting sharing opportunities falls to the
execution system. Cross Program Memoization (CPM) is
our name for optimizations that enable programs run on
shared infrastructure to re-use computation performed by
other programs.

In distributed data processing systems, cross program mem-
oization (CPM) can yield significant gains. Nectar [1] reports
a reduction in cluster execution time of up to 50% using
CPM, SQLShare [2] estimates that 37% of their system’s
total execution time could be saved and BigSubs [3] realizes
up to 40% machine time reduction on production clusters
at Microsoft. Despite these successes, a core part of CPM
implementations has remained under-explored in the literature:
low-overhead techniques to compute identifiers (keys) for the
results of final and intermediate computations with user-
defined functions (UDFs). Such keys are needed to search for
and look up results in a cache and to track metadata about
previous computations, such as if a result should be cached
next time it is computed.

Low-overhead key computation and CPM implementations
are important because the potential to share results can vary
widely between deployments. Ren et al [4] study a few deploy-
ments shared by researchers and find that different users share
less than 1% of files, probably because each user was working
on separate projects. Nectar’s evaluation of automatic caching
in production clusters shows some deployments experience
less than 10% reduction in runtime, but others experience
up to 50%. SQLShare [2] ran a long-term study on usage
patterns of SQL-as-a-service and found that CPM could reduce
total execution time by 37%, but most queries could either
significantly benefit from sharing with a 90% reduction in
execution time, or benefit very little, less than 10%.

Deployment-dependent variation in sharing potential
presents an awkward choice to either require every deployment
to somehow analyze benefits before enabling CPM, or leave it
disabled and potentially miss out on beneficial opportunities.
To break out of this dichotomy, we need key computation
techniques and, more generally, CPM implementations
that have low overheads so that sharing can be enabled
by default in order to put all deployments in a position to
exploit data sharing when it occurs. Despite this need, Nectar
did not report overhead of their key generation or CPM
implementation and Incoop [5], an incremental processing
system, can increase an application’s running time by 5-22%,
a high price when no benefit is to be had1.

Data processing systems like Apache Spark support UDFs
so that users can perform arbitrary computations on data
(§II-A). To increase sharing potential, a system would ideally
detect if UDFs used in different programs are equivalent2 so
that it could more widely re-use results produced by UDFs.
Systems that execute SQL are able to do this by analyzing
query syntax [7, 8, 9, 10]. In contrast, UDFs are often written
in the same general purpose language as the execution layer,
so it is not immediately clear how the execution layer can
detect UDF equivalence without implementing its own parser
and compiler.

A. Contributions

This paper describes and evaluates a technique, called Key-
Chain, that computes keys for intermediate and final results of
programs. We show this core component of CPM can be easily
added to an existing system, incurs low runtime overheads,

1Incremental processing systems are usually applied on a per-application
basis when the utility is known a-priori, so they are more tolerant to overheads
on the initial execution.

2Since program equivalence is undecidable [6], the system would take a
heuristic approach to keep overheads low.
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Fig. 1. Example execution layer augmented with KeyChain. Dotted lines
show the generation and use of KeyChain keys in the system.

and enables heuristic detection of equivalent programs so data
can be widely re-used. Figure 1 shows how KeyChain sits
within a generic execution layer. KeyChain generates string-
based keys that represent the intermediate and final results
of data processing programs. Keys are valid across programs,
so that different programs can re-use other program’s results.
KeyChain generates keys before the program is run by hashing
together representations of input metadata, communication
patterns, and the UDF bytecode. The execution layer of the
data processing system can use these keys to find and store
re-usable data in any storage system.

KeyChain addresses the challenge of computing a key that
identifies the results of computations. We use KeyChain to
implement a simple CPM in Apache Spark that enables sharing
of previously cached results. We do not focus on determining
which data to cache to achieve the best cost-benefit trade-
offs as this important aspect has been covered extensively
by prior work in memoization and automatic materialized
view selection [1, 3, 7, 8, 9, 10, 11, 12] (§VI). KeyChain
compliments this prior work by enabling systems to find more
reusable data.

By presenting an evaluation of the feasibility and simplicity
of KeyChain, we hope to encourage the wider adoption of
CPM so that systems can share more data, reduce operating
costs, and improve user experience. To this end, this paper
makes the following novel contributions:
Simple Design. KeyChain is designed (§III) to be simple but
effective so that CPM can be easily added to existing data
processing systems that implement the DAG computational
model (§II-A). We added KeyChain to Apache Spark’s caching
layer (§II-B) in under 2100 lines (§IV) that enables CPM for
its existing in-memory cache (§V-B). The UDF hashing library
and Spark implementation are open-source so that others can
re-use and extend our work.
Low Overhead. KeyChain uses low overhead techniques to
compute keys and the overheads grow with program size, not
the data-set size. For example, prior work [1, 5] uses a hash of
the input data as the input representation, requiring significant
I/O costs to compute a key. Instead, KeyChain shows how to
use input meta-data (e.g. a filename or query string) while still

ensuring the computed keys reflect the most up-to-date input
data. Our tests show KeyChain hashes UDFs in under 350ms
(avg. 2ms) and our evaluation on TPC-DS [13, 14] shows
no significant impact on query times when no sharing occurs.
Low overhead means CPM can always be enabled because we
pay almost nothing when sharing does not occur, but benefit
significantly when sharing does occur (§V-D).
Evaluation of compiler-assisted UDF equivalence. Prior
work [15, 16, 17] has shown it is possible to leverage ex-
isting compilers to heuristically detect functionally equivalent
programs that are syntactically different. KeyChain’s UDF
hashing (§III-B) shows that we can use compiler-assisted
equivalence detection to share data between some functionally
equivalent UDFs, even if their syntax differs. To measure
how well this effect works in Spark and motivate its use in
other systems, this paper contributes a new benchmark suite to
evaluate this property, called syntactic resilience, for different
compilers (§V-C).

II. BACKGROUND AND MOTIVATION

A. DAG Computation Model

Many popular distributed data processing systems represent
computations as a directed acyclic graph (DAG), such as
MapReduce [18] and Apache Spark [19]. In a DAG, each
node represents an operation that produces data, and an edge
from node x to y means that the output of x is used as
input to y. DAGs enable an execution layer to understand data
dependencies, which aids fault tolerance in the event of data
loss, as well enabling optimization and scheduling decisions
to be made before the program is executed.

For this paper, there are two important classes of DAG
nodes: Input nodes and Transformation Nodes. Input nodes
represent data read from some outside source, such as a
network filesystem, database, or even randomly generated data.
Input nodes have no incoming edges in the DAG, because
they produce data from outside the computation model. Trans-
formation nodes represent an operation applied to the node’s
input data to produce output data. Operations are defined as
a combination of communication pattern (such as map, filter,
reduce, and join) and a user defined function (UDF).

UDFs are an important part of the DAG computation model
because they enable users to perform arbitrary computations
on data, such as specialized transformations of input data
objects, custom business logic, and development of new data
mining and machine learning algorithms. To enable this flex-
ibility, UDFs are written in a general purpose programming
language, such as Java or Scala for Spark, and C/C++ for the
original MapReduce [18]. UDFs provide such flexibility that
Spark itself implements high level operations by combining
UDFs with its lower-level operators such as building a join
operation out of map and reduce.

As Spark and MapReduce do, this work assumes that UDFs
are deterministic. Deterministic UDFs enables efficient fault
tolerance mechanisms because any lost data can simply be re-
computed using the information stored in the DAG. Neither
Apache Spark or Hadoop MapReduce actually check UDFs
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Fig. 2. How a key is generated by KeyChain.

for determinism, but we found this assumption to hold in all
data processing programs we encountered.

B. Spark: A Motivating Example

Apache Spark is a distributed implementation of the DAG
computation model3. In Spark, users use a simple API to
compose together nodes. This DAG model also serves as the
physical execution layer for higher level Spark APIs, such as
Spark SQL and Dataframes [20]. In Spark, data in each node
is not materialized until a user requests the data. At this time,
the Spark execution layer will pipeline several transformations
from related nodes together to produce an execution plan of
stages to be executed.

To improve performance, authors of Spark programs can
materialize and cache data of an important node to speed
up subsequent computations4. As fig. 1 illustrates, when a
node is to be materialized, the execution layer checks for any
cached data that could be used, and if found, incorporates the
data into the execution plan. However, data and computation
duplication occurs because Spark identifies cached data using
increasing integer IDs assigned to each DAG node. Since
different Spark programs assign the same IDs for different
data, it is not possible to share data between programs, even
when they have equivalent nodes5.

To share cached data more widely, we use KeyChain keys to
identify cached data so that equivalent nodes will be assigned
the same key. As we will show in the evaluation, this helps
to share data when the same program has multiple equivalent
nodes or when different programs have equivalent nodes.

III. KEYCHAIN

KeyChain generates strings that represent a DAG node’s
output, which we refer to as keys. Figure 2 shows an
overview of how KeyChain computes a key: string rep-
resentations of the communication pattern (§III-A), UDF
(§III-B), and input data (§III-C) are combined into strings
that represent each node. The string that KeyChain gener-
ates is: KeyChain(node) = ‘<communication pattern>
<UDF> <input metadata>’. This key can be used to
query any storage system to find previously computed results
that can speed up the computation.

3DAG nodes are called Resilient Distributed Datasets (RDDs) by the Spark
authors

4Usually intermediate data is cached in memory, but it could also be
serialized and written to an external storage system.

5Nodes are equivalent if they share the same input data, communication
pattern, and UDF, thus producing the same output.

Keys for all DAG nodes are computed before the DAG is
executed so that the cache can be checked for prior results.
Prior work can also use this key to identify results that are
useful to cache (§VI). Keys are computed starting from the
input nodes, and the key of input nodes is used as the input
data representation for transformation nodes (§III-C1). The
next sections describe the representations KeyChain uses for
input, communication patterns and UDFs.

A. Communication Pattern Representation
As described in §II-A, a communication pattern is an

operation such as map, group by, or reduce, and this name
can be used as the string representation. For instance, the
‘map‘ string describes a map operation that applies a UDF
to each element. If the communication pattern takes any extra
parameters that affect the output, such as the hash key for a
shuffle operation, those parameters should be included in the
string. (§III-C3).

B. UDF Hashing
A hash of the UDF is used as the UDF string in the

key. Assuming the program is deterministic (§II-A), source
code or any executable representation can be passed to the
hash function. For the JVM (Java Virtual Machine), the best
representation we found was the bytecode of the UDF because:
(1) Overheads are low because bytecode is already produced
during compilation, so KeyChain only needs to hash it. (2)
Bytecode is less sensitive than program source to syntax
variations like white-space, variable names, and comments,
which means some functionally equivalent programs can share
data, investigated further in §V-C. (3) Bytecode is accessible
to programs running on the JVM (§IV). To further reduce
runtime overhead in the future, it is possible for compiler to
hash the bytecode at compile time. For instance, we developed
an LLVM pass that hashes each function at compile time and
stores the hash for lookup via function pointer at runtime.

The hash should capture the entire behaviour of the UDF,
so our implementation hashes the UDF and all its callees. If a
function is common across all programs in the system (such as
the Java standard library) it is possible to skip hashing these
functions and just include the fully qualified method name
since no information about program behaviour would be lost.

C. Input Representation
We break computing input representations into two cases:

input originating from outside the DAG, and from other nodes.
1) Internal Data: Chaining: To represent input from other

nodes in the DAG, KeyChain uses the key of the node that
supplies the input, called chaining. For example, if node x
takes input from node y, then Key(x) = ‘<communication
pattern> <UDF> Key(y)’. Since the key of input nodes
is computed before other nodes, Key(y) will be known when
Key(x) is computed. Chaining enables computation of the key
for all nodes in a large DAG without executing any parts of
the DAG.

In the next section (§III-C2), we describe a case where the
system falls back to assigning DAG nodes integer based IDs



(i.e. not KeyChain). All DAG nodes that receive input from
nodes with integer IDs must also be assigned integer IDs and
are not able to use KeyChain because integer IDs are not valid
across programs (§II-B).

2) Outside Data: Origin Descriptors: The string represen-
tation of input data needs to encode when the input data last
changed, so that out-of-date cached data will not be referenced.
For instance, when a file is cached and the file contents
change, a different key should be used to search for file so
that old data is not referenced. Prior systems such as Nectar
and Incoop accomplish this by using a hash of the data as
the representation, which ensures the representation reflects
the latest data, but significant I/O costs will be incurred to
read large inputs (although the filesystem can be modified to
compute this hash, as in Incoop).

Instead, KeyChain uses an origin descriptor (OD) to rep-
resent outside data. ODs should: (1) describe where the data
came from (i.e. the file path) and (2) include when the data
was last changed, or the timeframe it is valid for (i.e. the file’s
last modified time). Since the OD is computed whenever the
key is computed, the key will reference the up to date data.

The exact way ODs are computed depends on the metadata
available for a particular storage system. When the storage sys-
tem does not have metadata about when data was last modified,
the user could specify a time window for acceptably up-to-date
data. For instance, a database query of total revenue might be
acceptably up to date so long as it includes yesterday’s sales,
and this could be reflected in the OD as: ‘<query string>
<current day/month/year>’. If users of different pro-
grams read the same data, but disagree on the acceptably up-
to-date value, their programs will compute different keys and
not share data.

If neither of the above approaches are possible because the
storage system doesn’t provide a last modified time and the
program must read the most up-to-date data, this is a sign
that the program and data it produces might not be suitable
for memoization. In this case, we should also avoid hashing
input. When KeyChain detects that there is no OD, it falls
back to simple integer IDs as described in §II-B.

The one advantage that hashing data brings over the above
techniques is that hashing data can ensure programs will share
data even when they read from logically different places, such
as duplicate files. Incoop relies on the storage system hashing
stored data. KeyChain does not require that data is hashed, but
could use a hash as the origin descriptor, if present.

3) Random Input Data: Random data can be generated two
ways: by input nodes, or by a UDF in a transformation node.
Generating random data in a UDF introduces non-determinism
and is usually avoided when writing data processing programs
(§II-A,III-D). However, random data is often generated by
an input node, such as when initializing machine learning
algorithms or generating test data. Since pseudo random
number generators are deterministic with respect to their
parameters [21], KeyChain assigns these nodes an OD that
includes those parameters, such as the name of the algorithm,
the seed, and the size of data generated.

D. KeyChain Assumptions and Limitations

Some limitations of KeyChain stem from limitations of UDF
hashing: (1) Programs compiled by different compilers that
produce different output will never match. (2) There is no
guarantee that functionally equivalent programs will produce
the same hash. If a compiler produces different output for
equivalent programs that have minor syntax differences, then
data can only be shared between UDFs that have exactly the
same syntax. These limitations don’t cause fundamental issues
for CPM (sharing is still possible), but it is ideal to share data
between programs that are functionally equivalent even if they
are not syntactically identical. We investigate this further in
§V-C.

KeyChain assumes that it is possible to access a hash
of UDF bytecode. Bytecode is easily available at runtime
from the JVM, but we are not aware of this feature in
other languages/runtimes aside from the experimental pass we
developed for LLVM. We hope that this paper leads to interest
in adding such capability to other systems.

As discussed in §II-A, KeyChain assumes that UDFs are
deterministic: that a program’s output is determined by its
source code and input. KeyChain does not add any program
requirements, because this assumption is already made by
Spark, MapReduce and others to enable fault tolerance.

KeyChain does not enforce access control. An attacker could
compute a key for a file path they cannot access and try to read
the data from a cache. Enforcing access control on cached data
is challenging as access control is very deployment dependent
and is outside the scope of this paper. But, one way to enforce
access control to cached data would be to ensure it can only
be read by users that can access the original data. If a storage
system is unable to enforce such access control, the cached
data could be encrypted, and the encryption key(s) made
available to those with the proper access rights.

IV. KEYCHAIN IN APACHE SPARK

This section describes our implementation of KeyChain in
Apache Spark 2.2. Since one contribution of this work is
showing the simplicity of a CPM implementation, we describe
our implementation, some challenges we encountered, and
what made it simple. Overall, we wrote under 2100 lines of
code, including a UDF hashing library for the JVM (<1000
lines) (§IV-A) and modifications to Spark’s execution layer
to enable KeyChain (§IV-B) and transfer data between Spark
contexts (§IV-C) (<1100 lines). None of the changes require
modifications to existing Spark programs. Our changes to
Spark are publicly available6.

A. UDF Hashing Library

We wrote a UDF hashing library in Scala, and have made
it publicly available7.
Usage. The library provides Hash(func), which accepts a
reference to a JVM function and returns a string containing

6https://github.com/craiig/spark-keychain/tree/branch-2.2-keychain
7https://github.com/craiig/keychain-tools/tree/master/udf-hash



its hash. When a node is added to the DAG, Spark passes the
node’s UDF to Hash and stores the result.
Implementation. Hash uses the ASM analysis frame-
work [22] to read the bytecode of the function and its callees.
Class reflection [23] is used to find and hash all referenced
variables. Hash applies filtering to remove unnecessary details
from ASM’s output (below), and passes the remainder to
a cryptographic hash (SHA256). To improve performance,
Hash caches previously hashed function bytecode (but not
variable values).
Challenges. The largest challenge in using the UDF hashing
library is ensuring that hashes don’t needlessly vary. One
way this happens is that Spark assigns a random UUID [24]
to each JVM and tags all SQL expressions with it, making
otherwise equivalent UDFs produce different hashes. To find
such problems, Hash can output a JSON trace and our library
includes tools to compare traces. We used traces to identify the
UUID issue, and added filters to exclude hashing the UUID.

B. Execution Layer Modifications

Key computation. Since Spark implements the DAG model,
it was simple to add KeyChain to the execution layer. Spark
already has the information needed for KeyChain to compute
keys and the program structure to chain keys from input
nodes. Communication pattern strings were taken directly
from Spark’s names for DAG operations. Origin Descriptors
were added for input nodes that read from HDFS and local
files. UDFs were hashed using our library.
Using keys to identify data. As described in §II-B and shown
in fig. 1, Spark’s execution layer indexes the cache using the
integer ID of each DAG node to be materialized. Instead,
we modified Spark to use keys generated by KeyChain. We
retained the ability to use numeric IDs for cases where we
could not compute or did not implement an origin descriptor
(§III-C2). Spark computes the IDs for every DAG node once
so it does not add lots of extra computation to call KeyChain
to generate keys. Overall, to support the entirety of TPC-DS,
we added KeyChain to 26 different DAG node types in Spark,
with each change averaging 14 lines.
Handling complex operations Our treatment of Spark’s
shuffle operation highlights how simple adding KeyChain
can be, even with complex code. Shuffle is an all-to-all
communication primitive used to implement reduce, group
by, and join operations. Shuffle requires the movement of
many data blocks between worker nodes, and each block is
tracked using a numeric ID. We could have changed the shuffle
implementation to use KeyChain keys for shuffle block IDs,
but this was not necessary because only the final result of the
shuffle is useful to cache. Instead of deeply modifying the
shuffle implementation, we just used KeyChain to compute a
key for the final output.

C. Cross Instance Sharing

Users often share a single Spark context, allowing them to
share data that is cached in the same process, but users also
use separate contexts for resource isolation. To enable sharing

between separate contexts, we modified Spark so contexts can
query one-another for cached data. So that applications do
not inadvertently share data identified by numeric IDs, only
KeyChain keys are requested from other contexts. (§II-B).
In our current implementation, contexts are manually linked
via an API call and no access control checks are performed
when sending cached data to another context. Sharing between
contexts requires extra computation to serialize and transfer
the data to another context (§IV-D), evaluated in §V-B.

D. KeyChain in Spark Limitations

The largest issue with adding CPM (via KeyChain) to Spark
is that the lifetime of cached data can be short. Data in Spark’s
in-memory cache is managed by an application (driver in
Spark terminology), so cached data is lost when an application
shuts down. However, applications can be long lived when
they are used interactively, such as when Spark is used in a
shared notebook system like Jupyter [25] or Zeppelin [26]. To
extend the lifetime, cached data could be stored on external
storage such as HDFS [27] or Alluxio [28] with KeyChain
being used to compute the filenames, so data can be found by
later applications.

Like Spark itself, we rely on the programmer (or a higher
level library) to mark useful results to cache. Prior work has
shown how to automatically decide what to cache, and even
how to re-write programs to achieve better sharing, so we did
not investigate these issues in this work (§VI-3).

The main drawback of reading cached data from other Spark
instances or from a network file system is that serialization
and deserialization overheads can greatly impact the speedup
achievable from sharing (§V-B). Serialization overhead in
Spark has been investigated by Ousterhout et al. [29] and
Neutrino [12], and Skyway [30] presents a way to reduce JVM
serialization overheads.

V. EVALUATION

First, we show a situation where data sharing occurs to show
how CPM (as implemented by KeyChain) can help to achieve
more data sharing and high speedups thanks to the re-use of
cached data (§V-B). Next, we show how UDF hashing can
identify some functionally equivalent programs, so that sharing
can occur in more situations (§V-C). Finally, we show that
the overheads of KeyChain are negligible so it can be safely
enabled even when data sharing may not occur and systems
and users can benefit from CPM when sharing does occur
(§V-D).

A. Experimental Setup

Test machines. We ran the tests in §V-B and V-D1 on a
machine with two 2.6 Ghz AMD Six Core Opteron 2435
processor with 32GB of RAM with a 160GB 7200rpm HDD
used to store Spark shuffle data. For our larger scale tests in
§V-D2, we used Microsoft Azure, described later.
Spark. We tested an unmodified version of Spark 2.2 and our
KeyChain implementation in Spark. For brevity in this section,
we call our modified version KeyChain. We setup Spark to use



all cores and all available memory. For our interprocess tests
in §V-B, each instance used half the available memory.
Benchmarks and Test Data. For a source of realistic data and
queries, our tests use TPC-DS [13, 14], a benchmark designed
to represent modern decision support tasks, including ad-hoc
and reporting queries. TPC-DS includes query and data gen-
erators. We used the TPC-DS benchmarking framework from
Databricks [31] configured to generate and use Parquet [32]
format data.
Avoiding JVM bias. Most of our tests ran on the JVM, which
has a just-in-time compiler (JIT) that optimizes the program
as it runs and a garbage collector that runs across allocated
memory. To ensure consistent results (but not necessarily the
best performance), we restart the JVM after each test so that
later tests do not benefit from prior tests warming up the JIT
optimizer [33, 34] and so that later tests are not hindered by the
garbage collector cleaning up memory allocations performed
by earlier tests. For our TPC-DS tests, we restarted the JVM
after each full run of all queries.

B. How KeyChain Enables More Sharing

To highlight the gains that CPM can achieve through sharing
data more widely, we perform a series of experiments to mimic
an interactive use of Apache Spark in a context where data
sharing occurs. Returning to the example from the introduc-
tion, we simulate Alice and Bobbie beginning to explore a
data-set and running the same tasks: (1) scanning the TPC-
DS store_sales table and caching it in memory for faster
access, and (2) joining store_sales to the customer
table and then caching those results in memory. Both tasks
are written using the Spark Dataframe API. Our tests were run
on a 2GB dataset on a Spark instance with 13GB in-memory
cache.
Performance improvements of caching. Table I shows the
overall performance of Alice and Bobbie running both tasks.
Alice runs her query first and the data is loaded and cached
in memory (Cache Miss in table I). When Bobbie runs the
same tasks, they re-use the data loaded by Alice (Cache Hit)
leading to a 189x and 281x speedup for each task.

The above speedups are high because data is re-used from
the same process without serialization or data transfer over-
head. Table II shows the performance when data is serialized
in memory and transferred to another process on the same
machine. When serialized data is read from the same process,
speedups drop to 2.6x-4.4x, and to 2.2x-3.6x when serialized
data is transferred to another process. High serialization over-
heads are endemic to Spark, and not due to anything added
by KeyChain. Not all systems will have such high interprocess
overhead.
KeyChain’s increased sharing potential. Now, we look at
if sharing will occur when Alice and Bobbie run their tasks
in different sharing scenarios, and how CPM (as implemented
by KeyChain) can achieve more cache hits than unmodified
Spark. One way that these scenarios occur in practice is when
users are using interactive notebooks like Jupyter [25] or
Zeppelin [26], which allows users to work collaboratively on

the same code or just share a connection to a single Spark
context. Table III shows the results. Same Code is when Alice
and Bobbie are collaborating to write the same program and
can reference each other’s variables. This is the only case in
which unmodified Spark can make use of cached data. Same
Process and Diff. Process are when Alice and Bobbie write
completely separate code, but that code is run in either the
same or different process. KeyChain achieves more cache
hits than Spark because KeyChain enables cross program
memoization.

TABLE I
PERFORMANCE OF CACHE HITS AND MISSES FOR BOTH EXAMPLE

QUERIES WHERE THE DATA IS SHARED WITHIN A PROCESS.
Shared Process Scan Join

Cache Miss 39±4.8s 101±2s
Cache Hit 0.21±0.02s 0.36±0.02s
Speedup 189x 281x

TABLE II
PERFORMANCE OF CACHE HITS AND MISSES FOR BOTH EXAMPLE

QUERIES WHERE THE DATA IS shared between processes.
Interprocess (Serialized) Scan (s) Join (s)

Cache Miss 151±6s 98±3s
Cache Hit 56±2 22±1

Cache Hit w/ Data Xfer 69±6s 27s±1.1s
Hit Speedup 2.6x 4.4x

Hit w/ Data Xfer Speedup 2.2x 3.6x

TABLE III
CACHE HITS AND MISS ACHIEVED IN DIFFERENT SHARING SCENARIOS.

Same Code Spark Hit Hit
KeyChain Hit Hit

Same Process Spark Miss Miss
KeyChain Hit Hit

Diff. Process Spark Miss Miss
KeyChain Hit Hit

C. Syntactic Resilience Evaluation

This section investigates how compilers transform syntacti-
cally different but functionally equivalent input programs into
the same output, a property we call syntactic resilience. If the
compiler produces the same output for equivalent programs,
then the UDF hash is the same, and computation can be shared
across equivalent programs written by different users. Our
goals in studying syntactic resilience is to: (RQ1) justify our
choice of hashing UDF bytecode versus using program source,
(RQ2) understand the limitations of using compiler output to
detect program equivalence, and (RQ3) measure the current
syntactic resilience of different compilers.

1) Methodology: One way to measure syntactic resilience
is to collect real-world programs, manually verify (or create)
equivalent UDFs, and then check if a compiler produces
identical outputs. However, this does not help predict whether
or not this effect will generalize to other UDFs that are not
in the test set. Therefore, we developed a test suite to test
compiler’s resilience to specific syntactic variations to better
understand the limitations of each compiler and syntactic
resilience in general.

To create our test suite, we surveyed several sources (de-
scribed below) to create a corpus of 64 syntactic variations that
can be applied to change a program’s syntax without changing
its functionality. For each variation, we derived a test case
of at least two code snippets, where the variation has been



applied to the first to create the second. Table IV lists some
of these variations and example test cases. We have made our
benchmark publicly available8.

We do not claim our set of variations is exhaustive, but
we do cover a larger variety of non-functional syntactic
differences than prior work. Prior evaluations of syntactic
resilience [15, 16, 17, 35] tested variations that change a
programs functionality, such as adding a postfix increment
operator to every variable reference and biased their results
by repeatedly testing the same variation sometimes thousands
of times.

We briefly describe our sources, why we chose them, and
how we derived variants from each. We have made our
full methodology and source data available, with direct links
provided as footnotes on each source.
Source 1: TPC-DS9 (7 test cases). To identify variations
that can appear in data processing programs, we surveyed
all expressions from TPC-DS and considered ways to re-
write them while still retaining functional equivalence, and
then added those variations to the corpus. For instance, if an
expression included a commutative binary operator, then the
operands could be swapped, which resulted in us adding the
Swap Operands variation to the corpus.
Source 2: Compiler Documentation10 (41 test cases). Since
syntactic resilience is dependent on a compiler’s optimizations,
we exhaustively surveyed LLVM and GCC’s optimizations and
canonicalizations [36, 37]. When an optimization would trans-
form equivalent code into the same output, such as LLVM and
GCC’s tree reassociation pass that canonicalizes mathematical
expressions, we included a variation to test that optimization.
Compiler optimizations are not guaranteed to produce the
same output as a hand optimized version, but we find many do.
We chose not to include some optimizations when the resulting
test case would simply compare an unoptimized version to
a hand optimized version that we felt was unrealistic for
a programmer to write, such as auto-vectorization or jump-
threading.
Source 3: Related Work11 (11 test cases). TCE [15] tested
against a set of manually verified equivalent programs taken
from real world code. We grouped these equivalent programs
into 11 test cases that tested distinct variations. We excluded
TCE test cases that overlapped with existing tests in our
corpus, but kept tests that were more complex than our prior
test cases to evaluate real-world examples.
Source 4: Miscellaneous. The remaining 5 tests in our
suite include a test for resilience to whitespace, if(x!=0)
equivalence to if(x), associative constant folding, pointer
dereference equivalence to array indexing, and a for-loop with
a single iteration.
Studied Compilers. We evaluate several compilers because
while Java and Scala are used by Apache Spark, this is not
the only choice for data processing systems. Data processing

8https://github.com/craiig/keychain-tools/tree/master/resilience eval
9https://github.com/craiig/keychain-tools/tree/master/tpcds analysis
10https://github.com/craiig/keychain-tools/tree/master/compiler analysis
11https://github.com/craiig/keychain-tools/tree/master/tce analysis
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Fig. 3. Overall Syntactic Resilience benchmark outcome.

systems that compile to native code can outperform JVM-
based systems [38, 39], so we test GCC and Clang (LLVM)
to see if they are a better choice for equivalence checking.
To ensure the code snippets were consistent in each compiler,
we ported tests to each language with template-based code
generation. Scala lacks a post- and prefix increment operators,
so our Scala test skips those tests. To measure resilience,
we compile each variant with each compiler and hash the
output. For Java and Scala we use the UDF hashing library
from KeyChain (§IV-A). For Clang/GCC output we hash the
assembly output.

2) Results: We classify how well a compiler successfully
performs on each test based on the number of unique outputs
relative to other compilers. Pass (P) is when a compiler
produces one unique output from a number of unique input
programs. Qualified Pass (QP) is when a compiler produces
more than one unique output, but no other compiler produces
fewer. Qualified passes ensures we don’t penalize compilers
for difficult tests when no other compilers can do better.
Partial Fail (PF) is when a compiler produces fewer unique
outputs than it has inputs, but does not achieve a pass or
qualified pass. Fail (F) is when a compiler produces the same
number of unique outputs as unique inputs.
RQ1: Is hashing bytecode an improvement over program
source? Table IV presents selected results from our benchmark
to highlight common program variations. The Whitespace row
shows all compilers can provide basic resilience to whitespace,
comments and variable name differences, an improvement over
using program source.
RQ2: What are the limits of compiler-assisted equivalence?
All compilers fail Logical Operand Swap (LOS) because,
strictly speaking, this variation is not functionally equivalent.
Short circuit evaluation for logical-or means operand ordering
changes execution behaviour, even though the order may be
irrelevant. LOS highlights the limits of syntactic resilience:
when syntax variations imply changes in execution behaviour,
these differences are not optimized away by the compiler.
This applies to memory allocations, side effects, early exit
conditions, and more.
RQ3: What is the syntactic resilience of different com-
pilers? Fig. 3 shows the aggregate results for each compiler.



TABLE IV
SELECTED RESULTS FROM SYNTACTIC RESILIENCE BENCHMARKS.

Name and Description Example(s) Scala 2.12 Java 1.8 Clang 7 GCC 7
Optimizations Off / On (where applicable)

Whitespace
Add, change, remove whitespace,
comments, variable names

( x+y )
( x + y )
( x + /∗ h e l l o ∗ / y )
(w+z )

P/P P P/P P/P

Swap Operands
Swap the operands of a binary
commutative operator

x+y −> y+x F/F F F/P F/F

Logical Operand Swap
Swap the operands of a logical
comparison. Short circuiting in lan-
guage specifications disallow treat-
ing these statements as equivalent.

x | | y
y | | x

F/F F F/F F/F

Constant Folding
Replace a constant with an equiva-
lent expression

x+2
x+1+1
x +(1+1)
1+1+x

PF/PF PF PF/P P/P

Algebraic Tree Reassociation
Reassociate commutative expres-
sions to promote better constant
propagation [36]

( x+y )−(z+v )
( ( x+y )−z )−v
( x+y−z )−v
x+y−z−v

PF/PF PF PF/P PF/PF

Comparison Invert
Apply De Morgan’s laws to a com-
parison operation

( x ==1) && ( y ==2)
! ( ( x ! = 1 ) | | ( y ! = 2 ) )

P/P P PF/P P/P

Comparison Swap
Invert the comparison statement
and swap the basic blocks of an
if-statement (*Passes on GCC 4.9
-O3)

i f ( x ){re turn y ;}
e l s e {re turn x ;}

i f ( ! x ){re turn x ;}
e l s e {re turn y ;}

F/F F F/P F/F*

Loop Invariant Hoisting
Move a loop invariant from the
inside of a loop. All tests are qual-
ified pass as no compilers canoni-
calize to our hand hoisted version.

i n t a = 0 ;
f o r ( . . . ) { i f ( x ){ a=y ; } . . . }

i n t a = 0 ;
i f ( x && l o o p c o n d i t i o n )

{ a = y ;}
f o r ( . . . ) { . . . }

QP QP QP QP

Compilers that perform more ahead of time optimizations are
better at canonicalizing functionally equivalent code. Clang
and GCC include many ahead of time optimizations and are
the state-of-the-art for syntactic resilience. Scala and Java have
less ahead of time optimizations because they rely on JIT
optimization , but Scala with ahead of time optimizations
(-opt) performs better than without. We also found GCC and
Clang could be improved: most failures were due to variations
in label names, register allocation, and ordering of independent
instructions.

Overall our tests show that compiler canonicalization and
optimization passes can be used to detect some equivalent
programs. KeyChain leverages this effect to achieve more data
sharing. While the syntactic resilience of Scala and Java lags
behind GCC and Clang, finding equivalent programs by hash-
ing JVM bytecode is more likely than using program source
or simple integers (§II-B) to identify UDF computations, and
our test suite can help guide future improvements.

D. Overheads

Now we examine the overheads of using KeyChain to
implement CPM in Spark. We first measure the standalone
performance of the UDF hashing library (§V-D1) and then
the overall impact on TPC-DS when there is no potential for
sharing (§V-D2).
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Fig. 4. Overall time to hash Java and Scala functions from our resilience
benchmark using the UDF hashing library.

1) UDF Hashing: Fig 4 shows the time to hash each of
our Java and Scala syntactic resilience tests (§V-C) . The
time to hash a UDF is determined by the number of bytes
and functions hashed. The largest UDF takes under 350
milliseconds, while the smallest takes under 150 milliseconds.
This shows UDF hashing performance in the conservative
case, because each test is hashed using a newly created JVM
with no cached results.

Table V shows UDF12 hashing time for TPC-DS queries
during the tests in (§V-D2). We also show performance when

12The UDFs in this case are Spark’s database operators.



debug tracing is active and logging all hashing traces to disk,
which is only used to debug UDF hashing (§IV-A). It takes
18 seconds to hash all UDFs used in TPC-DS, for an average
of 2ms per UDF. There are over 9000 UDFs because Spark’s
operators are implemented as UDFs (§II-A). Compared to our
prior results with the UDF hashing library, UDF hashing in
a realistic scenario is much faster due to caching previously
hashed functions and a warmed-up JVM.

TABLE V
UDF HASHING OVERHEAD ON TPC-DS. DURING Normal OPERATION,

AND Debug WHEN UDF TRACING IS ENABLED FOR DEBUGGING.
Mode Max Avg Min Sum Total
Normal 265ms 2ms 0.07ms 18s 9,345
Debug Miss 322ms 65ms 4ms 1.1s 17
Debug Hit 1.5s 11ms 0.1ms 108s 9,328

2) End to End Spark Performance: To show that KeyChain
allows CPM to be enabled in all deployments without incur-
ring high overheads, we compare the performance of TPC-
DS with and without KeyChain when there is no sharing. In
both cases, the empty cache is checked for relevant results.
In the original Spark, the cache is indexed with integers. In
the KeyChain version, the cache is indexed with KeyChain
keys. Tests were run on large and small scale clusters on
Microsoft Azure. Machine details and TPC-DS parameters are
in table VI. HDFS was used to store data. TPC-DS includes
104 queries, but we disabled query 72 on Large due to too
much shuffle data for some nodes, and 77 due to a memory
leak when over 40,000 tasks were generated.

TABLE VI
MACHINE AND TPC-DS CONFIGURATION FOR END TO END TESTS.

Name Small Large
TPC-DS Scale Factor 10 1000
Partitions 50 160
Masters:Workers 1:3 1:20
Instance Type D4S v3 E8 v3
vCPUs per node 4 8
Memory per node 16GB 60GB
Storage per node 32GB 200GB

TABLE VII
PERFORMANCE OF TPC-DS. AVERAGE TOTAL COMPLETION TIME
(ATCT ) IS THE AVERAGE TOTAL RUNTIME OF EACH TPC-DS RUN.

Small Large
Spark KeyChain Spark KeyChain

Iterations 5 5 3 3
ATCT (s) 3628 3684 34,328 33,732
Std.Dev.(s) 75 83 1002 857

2% 2.2% 2.9% 2.5%

Table VII shows the results of our tests. Overall, we find that
KeyChain has a negligible impact when there is no sharing,
because the performance is within the standard deviation of
the original Spark. We estimate that sources of system jitter
like garbage collection [40], JIT compilation [33, 34], and
stragglers [18, 41] make a larger impact than KeyChain. While
our CPM implementation is decidedly simple, we have shown
that KeyChain can implement CPM without incurring high
run-time overheads when sharing is not possible.

VI. RELATED WORK

1) Memoization: Early work on memoization investigated
how caching can help single programs [42] and what kinds

of programs are suitable for caching [43]. KeyChain applies
memoization between data processing programs.

2) Explicit Sharing and Incremental Processing Systems:
When programs are known to benefit from prior results,
programmers will write them to explicitly share data. For
instance, Spark users often use Alluxio [28]13, an in-memory
cache for distributed file systems, to store data they know can
be shared. If a program can re-use its own results, incremental
processing frameworks can be used. For instance, Incoop
reports overheads of 5-22% for initial runs with no cached
data, but this pays off with 3-1000x run time improvement on
subsequent runs [5]. However, explicit sharing or incremental
processing depends on individual programmers knowing about
a sharing opportunity ahead of time. Low-overhead techniques
to identify results of computation like KeyChain are useful
when opportunities for sharing are not guaranteed or might
be difficult for programmers to identify.

Nectar [1] uses similar techniques to KeyChain and re-
ported a 20-50% reduction in computation time on Microsoft’s
clusters due to CPM. Nectar hashes C# bytecode but also
hashes input data, a source of overhead that KeyChain avoids.
Nectar does not report overhead, implementation complexity,
or syntactic resilience of the hashing technique and their im-
plementation is not publicly available. This paper contributes
an improved design with negligible overhead so that CPM
can be deployed more widely, and a evaluation of syntactic
resilience that tests the limits of UDF hashing.

3) Materialized view selection and cache placement algo-
rithms: Materialized view selection techniques analyze past
SQL queries to determine subexpressions to cache for the
benefit of future queries, but do not consider UDFs [3, 7, 8] or
if equivalent UDFs can be shared between programs [9, 10].
Spark’s SQL caching layer will search for relevant cached
SQL expressions, but not UDFs and does not work across
Spark instances. KeyChain computes identifiers for the results
of UDF computations that these techniques can use to decide
what is beneficial to cache [11, 12]. For instance, [3] shows
that they can save up to 40% of machine hours in their cluster.
However, these benefits can only be realized once the common
subexpressions can be identified.

4) Value Numbering in Compilers: Value Numbering
(VN) [45] is a compiler pass that eliminates redundant expres-
sions by computing identifiers for expressions in a basic block
by hashing operands and operators. KeyChain can be seen as
applying ideas from VN to the data processing setting.

5) Program Equivalence Detection: UDF hashing is a
heuristic equivalence detection technique. Program equiva-
lence is undecidable [6] so feasible approaches are either
provers or heuristics. Provers, such as Cosette [46], search for
a series of valid transformations to transform one program
to another, but are not ideal for low overhead equivalence
checking because they cannot guarantee termination and would
need pair-wise comparisons over all programs with cached
data. Clone detection [35] detects similar programs, but con-

13Formerly Tachyon [44]



siders programs with different functionality to be similar,
which is not suitable for CPM. Trivial Compiler Equivalence
(TCE) [15, 16, 17] eliminates redundant test cases by compil-
ing and removing test cases with duplicate outputs. KeyChain
uses this same effect to gain wider sharing potential, and
our evaluation tests only functionally equivalent variations
(§V-C1).

VII. CONCLUSION

This work showed that KeyChain enables cross program
memoization implementations to achieve significant perfor-
mance benefits when sharing occurs, while incurring negligible
overheads when sharing is not possible. We hope these results
encourage the addition of CPM to more data processing
systems.
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