
Collection-focused Parallelism

Micah J Best
Nicholas Vining

University of British Columbia
{mjbest, nvining}@cs.ubc.ca

Daniel Jacobsen
Gaslamp Games

daniel.jacobsen@gaslampgames.com

Alexandra Fedorova
Simon Fraser University

fedorova@cs.sfu.ca

Abstract
Constructing parallel software is, in essence, the process
of associating ‘work’ with computational units. The def-
inition of work is dependent upon the model of paral-
lelism used, and our choice of model can have profound
effects on both programmer productivity and run-time
efficiency. Given that the movement of data is responsi-
ble for the majority of parallelism overhead, and access-
ing data is responsible for the majority of parallelism
errors, data items should be the basis for describing par-
allel work. As data items rarely exist in isolation and are
instead parts of larger collections, we argue that subsets
of collections should be the basic unit of parallelism.
This requires a semantically rich method of referring
to these sub-collections. Sub-collections are not guar-
anteed to be disjoint, and so an efficient run-time mech-
anism is required to maintain correctness. With a focus
on complex systems, we present some of the challenges
inherent in this approach and describe how we are ex-
tending Synchronization via Scheduling (SvS) and other
techniques to overcome these difficulties. We discuss
our experiences incorporating these techniques into a
modern video game engine used in an in-development
title.

1. Introduction
Parallel programming is the new reality for an ever in-
creasing number of software developers. All the prob-
lems inherent in conventional software development are
still present, but with a new series of challenges. Ab-
stractions to allow programmers to easily construct se-
rial software have been explored for several decades,
but complementary abstractions for parallelism are still
in their infancy. Fundamental questions about the struc-

[Copyright notice will appear here once ’preprint’ option is removed.]

ture of parallel programs that go beyond programming
languages and caching strategies are still up for debate.
Nearly every domain of software has been affected in
some way and those attempting to wring parallel per-
formance out of complex systems such as web browsers
or video games face the steepest challenge.

By examining many proposed parallelism models,
it is clear that many in the field, both researchers and
practitioners, conceive of parallelism as a subdivision
process applied to code. In this traditional model, code
is broken into chunks and assigned to processors. This
misses one core aspect of parallelism: the movement of
data creates overhead on the processor and across the
bus, and it is this accessing of data that causes errors.

In this paper, we expand on and refine the argument
that data items should be the basic unit of parallelism
(Section 2). Data items, in the vast majority of software,
are not isolated entities; rather, they are part of larger
collections within some kind of structure, be it a simple
array or a complex graph. Given that the goal of par-
allelism is to make computation as separable as possi-
ble, we argue that the basic unit of parallel program-
ming should be (potentially overlapping) subsets of col-
lections, or sub-collections (Section 3). We describe a
commonly occurring parallel pattern in this model (Sec-
tion 4) and give details of how we are realizing a por-
tion of this concept by extending Synchronization via
Scheduling[8] (Section 5).

Most parallelism frameworks focus on either single-
algorithm applications, such as scientific concerns, or
provide tools for the parallelization of existing con-
ventional serial programs. Frameworks like OpenMP[3]
and Intel’s Thread Building Blocks [23] provide pro-
grammers with constructs to ‘chop up’ blocks of code,
generally loop iterations, for parallel execution. Facili-
ties for the manual protection of data accesses are pro-
vided. Languages such as Jade[24] and Cilk[15] are
more sophisticated in their approach to parallelism, but
are again based on traditional serial programming styles
with augmentations to facilitate splitting the flow of ex-
ecution onto multiple processing contexts. There exist
several alternate programming models such as the pop-

1 2013/5/14

ular MapReduce[14] which are not based on existing
serial models, but are limited to problems with a very
specific set of properties and not feasibly useful for par-
allelizing complex systems.

We focus our attention on video game development,
as it represents one of the major areas in consumer soft-
ware where efficient solutions for rapid parallelism are
required. Video games form a complicated collection
of interactive, highly responsible complex systems with
heterogeneous workloads, and their creation involves
multiple complex algorithmic patterns and a team of in-
dividuals with varying skill levels and familiarities with
parallel programming. As such, traditional methods of-
ten do not scale to the entire software program. Our
work is focused on solving these problems, and in mak-
ing Synchronization via Scheduling a practical tool for
video game development on upcoming hardware such
as the Playstation 4 and next-generation personal com-
puters.

2. Focus On Data, Not Code
Numerous proposals have been offered on how to orga-
nize parallel programs. A complete survey of the exist-
ing literature is beyond the scope of this work. Com-
plex consumer software, such as video games, com-
monly use one of two models: the threading model[16],
in which parallel streams of execution communicate
through shared memory, or the task-graph model, also
called the job model[5], which breaks the program code
into discrete ‘tasks’ that are organized into a partial or-
der respecting computational dependencies.

However, we argue that this focus on how to divide
the code is asking the wrong question. It is not the exe-
cution of code that causes the problems, or yields the
rewards, in parallel programming. For example, con-
sider the costs of moving data on the 16-core, 4 NUMA
domain, AMD Barcelona processor[12]. Accessing the
L1 cache takes a mere 3 cycles. Accessing a remote L1
cache increases the cost to 121 cycles, and accessing
a remote memory node can be as high as 327 cycles.
These potential hobbling penalties have, of course, not
gone unaddressed by the research community and many
optimizations have been suggested [4][22]. However,
we advocate that the programing model be aligned as
closely as possible with an execution model that mini-
mizes costs and maximizes throughput so that program-
mers with no particular expertise will tend to write au-
tomatically optimizable software.

In the context of a video game, the accumulation
of cache miss penalties can significantly impact perfor-
mance. Furthermore, the vast majority of errors in paral-
lel programming are caused when data is accessed in an
order that the programmer did not foresee. These errors

induce deadlock, livelock, corruption by simultaneous
writes, and many other forms of undesirable behavior.

It follows that correct, efficient parallelism requires
a schedule that organizes not the distribution of code
across multiple processors, but the movement of data.
Code and data have a symbiotic relationship, but most
parallelism models explicitly parallelize the execution
of code; this in turn implicitly organizes the movement
of data. We argue that this should be inverted in that
the first consideration is the movement of data and the
applicable code is subordinate to this.

The dataflow model[17], as the name suggests, in-
corporates notions of the movement of data through
the system as a sequence of steps. Each step modifies
the data in a particular way until the operation is com-
plete. The dataflow model, while compatible with the
task-graph model, is a bad fit for complex systems that
rarely exhibit the type of homogenous, pipelined exe-
cution that dataflow processing thrives on. When par-
allelizing complex systems on shared memory architec-
tures, ‘sending’ data from stage to stage is considered to
be too expensive; the programmer then resorts to point-
ers or similar indirect methods in order to describe the
work that must be performed. This indirection can cre-
ate multiple problems, including state conflicts.

Data-Informed Scheduling [7] has been proposed to
address the movement of data. We will expand on these
ideas, and suggest (in the next section) a method for
increasing the semantic value of indirect references for
safer, easier parallelism.

3. Collections and Sub-Collections
The term data implies a collection of individual ele-
ments, which we typically view as a collection. We then
speak of running data through an algorithm, in which
we apply the same process to different instances of a
problem. Additionally, items in a collection of data of-
ten have non-trivial relationships with each other; the
processing of one datum, in anything but the most em-
barrassingly parallel of algorithms, often involves the
state of other pieces of data.

Almost all implementations of the stencil pattern[21],
for example fluid simulation[9], involve evaluating mul-
tiple cells in a grid simultaneously. Some cells are writ-
ten, and some cells are read. For these algorithms to be
executed correctly, each subset of the grid must be eval-
uated atomically; that is to say, no grid members can
be changed between the start of the evaluation and its
completion.

Often the subset of concern is not so easily described.
In mesh refinement[11], the collection of data to be re-
fined takes the form of a connected, triangular graph.
The refinement processes deals with ‘bad’ triangles that
have undesirable angles. In order to fix these bad trian-

2 2013/5/14

gles, it must not only atomically deal with the three ver-
tices in the triangle, but the neighborhood surrounding
it as well.

Of course, there are many algorithms, the so-called
embarrassingly parallel ones, that only examine one
item at a time. In raytracing, for instance, each pixel can
be processed independently of any other pixels. This can
be seen as a degenerate form of subset processing.

Working with subsets of collections is so common
that it shows the necessity for support for first class col-
lections in a parallelism framework. By this, we mean
that the concept of a collection should be understood
by the language, the compiler/interpreter, and the run-
time. As the above discussion indicates, collections are
not the solution by themselves. To fully capitalize on
the observed patterns of parallelism, support is needed
in the framework for describing and indirectly referring
to subsets of a collection that is understood by all levels
of the framework.

It should be noted that most lower level languages,
C++ for example, do not support first class collec-
tions. The concept is reflected in their standard libraries,
but their compilers understand only arrays and point-
ers/references. All semantic information contained in
the statement myVector.push back(foo) is lost at
compilation time as it is expanded into a series of vari-
able modifications and pointer assignments.

Consider the problem of spatial data structures in
video games. Different data structures (BSP trees, oc-
trees, quadtrees, etc.) may be used for different tasks,
but all data structures share the common properties of
being a hierarchical, tree-like structure whose area is
the aggregate area of its children and whose leafs are
actual objects. We focus on one of these tree-like struc-
tures where one walks the tree to find objects that are
descendants of the node representing a given space.

A programmer using one of these structures thinks
I want to deal with all objects in this specific area, but
writes statements like if(curnode.child[i].x <

target.x) { curnode = curnode.child[i] }.
Even if the tree walk is part of a library, all static analy-
sis can determine is that a number of pointers/references
are read and eventually that a reference of a differ-
ent type is modified. Even while the program is being
written, semantic information is lost. Obviously, bar-
ring the invention of purely natural language program-
ming, some loss of this type is going to occur, but when
patterns are common and important they should be re-
flected in the language.

Consider instead the following pseudo-code:
targetObjs = octree.subcollection(bBox). If
the collection octree was a first class language en-
tity, the compiler/runtime would be able to perform a
number of optimizations and implement a number of

safety measures, including separating the derivation of
targetObjs from modification to its members, ensur-
ing the derivation of targetObjs was atomic without
the programmer having to worry about complicated lock
discipline, using static analysis to optimize the filtering
and protection of octree, easily associating changes to
targetObjs with changes to octree, and scheduling
based around sub-collections such that no overlapping
sub-collections are co-scheduled.

Technically, subset parallelism support could be im-
plemented as a library for a lower level language for
some benefit. However, this library must be part of the
parallel scheduling system to be effective and the ma-
jority of opportunities for static analysis are lost. Addi-
tionally, its use would almost certainly require the pro-
grammer to follow a set of conventions and protocols.
Low level languages, such as C++, are notorious for al-
lowing a programmers to ‘cheat around’ such systems
without realizing it and creating numerous headaches in
the process.

The existing work that most closely embodies the
principles we’ve discussed is Concurrent Collections[13]
which, as the name suggests, bases their parallelism
model on collections and requires the programmer to
add semantic information in the form of tags on data
items. However, the focus of this work is on the single
items in a collection, as opposed to sub-collections, and
its dataflow based model makes parallelizing a complex
system impractical.

In the next section, we illustrate some uses of sub-
collections in a real-world complex system and specify
the particular subset of this pattern we are implement-
ing. In Section 5 we will detail how we intend to per-
form some of the above optimizations. ,l.

4. Isolate-Modify-Release
Clockwork Empires is an in-development video game
title in the pre-alpha state of development. Similar to
Dwarf Fortress[1] and the SimCityfranchise [2], Clock-
work Empires is a sandbox simulation featuring hun-
dreds of non-player character agents (NPCs) with com-
plex behaviors and interactions. Other complex entities
such as monsters, buildings and animals may exist in
the world, each with their own internal logic. While
standard parallelization primitives, such as a task-graph
model, may be suitable for other in-engine processes
such as rendering, parallelizing the highly heteroge-
neous and interconnected simulation is a task that ex-
ceeds the bounds of most models. There is a plethora of
data describing the world from the attributes of agents to
numerical representations of geography. Any data item
can be modified by the logic associated with any agent
at anytime. In order to be responsive, one game simu-
lation frame must be computed in tens of milliseconds.

3 2013/5/14

Figure 1. Clockwork Empires screenshot with each NPC’s area of concern indicated

Given that very few members of the development team
are parallelism experts, the core parallelism constructs
in the engine must be easy, automatic, fine grained and
very, very efficient.

The set of data comprising the working set for the
game is organized into collections, all of which are
shared. We will highlight two collections to illustrate
the specific type of collection-focused parallelism we
are implementing.

The first example is that of the ‘Spatial Dictionary’,
which is responsible for tracking the locations of all
physical objects. Since the game simulation occurs on
a grid, the dictionary is organized as two-dimensional
set of cells. Each of these cells is associated with a list
of physical items. Additionally, each cell has a number
of mutable attributes indicating whether a cell is pass-
able, dangerous or contains useful resources. Agents are
responsible for moving themselves between grid cells,
and the spatial dictionary is the primary conduit for an
agent to discover and interact with other entities in the
world.

At a high level, the process of an agent interacting
with the Spatial Dictionary is as follows:

1. The agent asks What objects are in this area?

2. The dictionary returns a reference to the objects in
the given area.

3. The agent selects an entity within this reference and
interacts with it, either modifying it directly or mark-
ing it as the target or destination for a longer process.

Figure 1 shows a screenshot of a number of agents.
The circles represent the aproximate area that they will
query looking for the particular type of object they are
interested in interacting with. Notice that while many of
these areas overlap, several are also completely disjoint.

For correctness and program stability, this process
must be atomic; while the NPC is making its selection

the objects in the given area must remain unchanged.
However, any object outside of the specified area can be
modified without violating the process. This fact, and
the vast number of requests made to the Spatial Dic-
tionary, make an efficient coscheduling strategy that re-
spects the need for atomicity of paramount importance.

The second key collection in Clockwork Empires is
the Job Blackboard. The behavior of agents is not di-
rectly controlled by the player; instead the player di-
rects modifications to the world by designating the floor
plans for buildings and other high level construction ac-
tivities. The NPCs will then react to these instructions
and, based on their individual characteristics and logic,
attempt to carry them out. Additionally, the game itself
will create situations for the NPCs to react to. Every
opportunity for an agent to modify the world, itself, or
another NPC, is a ‘job’ - not to be confused with the
parallel decomposition of computational work with the
same name. Each job is posted to the Job Blackboard
which every NPC has access to.

At a high level, an agent’s interaction with the Job
Blackboard is as follows:

1. The agent asks the Job Blackboard for all jobs that
could apply to it.

2. The Job Blackboard returns all the jobs applicable to
the agent.

3. Using its individual characteristic to rank the items
in this reduced list, the agent selects a Job.

4. The agent modifies the job to indicate its participa-
tion in the job, or removes the job from the list.

As with the Spatial Dictionary, this process must be
atomic. Any parallelization strategy must make good
use of the fact that the list of applicable jobs may be
different for different NPCs.

The process involved in accessing the Spatial Dic-
tionary and the Job Blackboard have a common under-

4 2013/5/14

lying structure. In both cases, the the collection is first
filtered for a particular set of results based on criteria
specific to the collection and its contents. In effect, the
sub-collection is isolated. In the second step, the initi-
ating entity then modifies the resulting sub-collection,
independent of the original collection. There is a third,
implicit, step which satisfies the need for atomicity. The
data in the sub-collection is ‘held’ unchanged for the
length of the process and so finally it must be released.

Analyzing these processes leads us to believe a paral-
lelization strategy to satisfy the needs of this simulation
should directly support this isolate-modify-release pat-
tern. An analysis of other collection-based accesses in
the game supports this assertion. In very few cases does
a process need to view an entire collection or retain ref-
erences for use outside of the process.

Upon further analysis, we see that many common al-
gorithms that operate on collections of data also employ
this template. In fact, both of the examples at the be-
ginning of Section 3 employ this pattern. A stencil is
an isolation of the grid, where only the cells in the sten-
cil are modified. Once these modifications are complete,
that step in the algorithm is complete and the cells can
be released for use by other stencil instances. In mesh
refinement, the neighborhood containing a bad triangle
is isolated and its contents are modified. Once that is
complete, the algorithm has no further use for that par-
ticular neighborhood.

In the next section we will discuss how we are im-
plementing the isolate-modify-release pattern for use in
Clockwork Empires.

5. Implementation
Clockwork Empires is written, as with most games, in
C++. The majority of NPC/entity logic is written in
Lua[18], a language specifically designed for embed-
ding and popular with video game developers. The par-
allelism component is a modified and extended version
of the Cascade[6] runtime engine.

Cascade was originally a task-graph based paral-
lelism framework using dataflow primitives. Static anal-
ysis is used to determine the dependencies of the task
graph, and to supply information to the runtime sched-
uler in order to determine if these dependencies were
necessary. The runtime component would examine tasks
which, according to the static analysis, may have ac-
cessed the same data. If the execution-determined pa-
rameters to these tasks indicated that their access were
actually disjoint, it would allow them to be run in
parallel. This is a process called Synchronization via
Scheduling, and we extend it for our uses in implement-
ing isolate-modify-release.

In addition to adding support for collections we have
made two major changes to the way Cascade works. We

have changed it from being task-graph based, to being
data-centric. Additionally, we have replaced dataflow
with message passing using constructs similar to the Ac-
tor Model[19]. However, our goal is not to advocate for
Cascade as there are many excellent parallel program-
ming frameworks. We provide these details to illustrate
the context in which we are implementing the concepts
we have presented.

name "chicken"

state

<<

string name

GridPosition gridPosition

int renderHandle

>>

receive Create()

<<

name = "Eggers McFowlbeak"

ready()

>>

Figure 2. An example entity defintion

As argued in Section 2, the focus of parallelism
should be on the data items themselves. Instead of defin-
ing tasks, we define data items and attach a set of behav-
iors to them in a manner reminiscent of object-oriented
programming. Collections are represented as objects to
be parallelized with their own set of behaviors which
provide facilities for data-parallelism. In the same sec-
tion, we discussed some of the pitfalls in using dataflow
in complex systems such as video games.

Message passing[25] can be seen as a generalization
of dataflow that has higher semantic value and can di-
rectly support the manner of indirection that program-
mers tend use when applying dataflow to these kind of
complex systems. In this system, an entity has access
to other data only through the message passing mech-
anism and this provides an abundance of opportunities
for static analysis and parallel optimizations. A simpli-
fied definition of an entity can be seen in Figure 2 which
shows the values associated with entity and a simple
message-receipt body.

The majority of these changes tended to be more
‘programmer facing’, in terms of changes to language,
while the runtime engine has remained largely intact.
The task mechanism in Cascade has been repurposed
for the new data-focus by constructing an executable
unit consisting of a data item and a received message. A
description of the conceptual replacement for the task-
graph is beyond the scope of this work and is a key
component of our future research.

5 2013/5/14

A great deal of similar work on maintaining col-
lections in parallel can be found in the exploration of
in-memory databases[20]. However, at least for video
game this work is not immediately usable. Many fea-
tures of these databases, such as rollback support are
not required and the responsiveness requirements for
games, and other systems with constant user interac-
tion , are much higher. Games have an approximate time
budget of 16ms in order to construct and draw a frame.

Consider the following example call to the Spatial
Dictionary, which employs the isolate-modify-release
pattern:

result = query(gameSpatialDictionary,

allObjectsInRadiusRequest,

state.gridPosition, 5);

The following description details the aspects of the
implementation that we are building to support paral-
lelizing this call.

The first major aspect to discuss is the variable
result. This variable, a collection, cannot be stored
and has a lifespan only consisting of the local scope.
When the local scope is complete, the release step is
performed automatically. This was a major request of
the programmers, and is in keeping with our desire to
make parallelism as automatic and transparent as possi-
ble. The variable itself represents not a list, but access
to the collection itself to avoid unnecessarily copying.
The interface to the sub-collection prevents access to
data items that do not fall under the given query.

In terms of scheduling, the call to query causes the
currently running code to yield to the scheduler. The
scheduler makes a record and forwards the message to
the Spatial Dictionary collection.

At this point, a modified version of Synchronization
via Scheduling is used to resolve the queries and restart
the yielded behavior. The Spatial Dictionary, like all col-
lections in the system, maintains a signature represent-
ing the items in the collection that are currently in use.
This signature, essentially a Bloom filter[10] with a sin-
gle hash function, is a fixed-sized bit string where each
bit represents a certain subset of the grid. A hashing
function is used to determine which subset a particular
cell is a part of.

The collection first assembles a signature for the
query. For each cell applicable under the query the bit
of its subset is set to 1 and is left as 0 otherwise. The
collection now has a compact representation of the sub-
collection represented by the query. This query signa-
ture is then compared, via logical and to the signature
of the collection. If the test is negative, in that all the re-
sulting bits are zero, then the sub-query does not overlap
with any queries not yet released. In this case the query
signature is added to the collection signature with logi-
cal or and the sub-collection representation is prepared

for returning to caller. Additionally, a counter for the
number of unreleased sub-collections is incremented.

If the test for signature collision was positive, the
query is queued. Modifications to a Bloom filter are
one-way operations, in that once a signature has been
added this operation cannot be reversed. When a query
is released, the internal counter is decremented. When
this counter reaches zero, the collection stops accepting
queries temporarily and resets each bit in its signature
to zero. At this point the queued queries are evaluated.
Queries whose signatures test negatively are satisfied
and returned to the sender, and queries that test posi-
tively are requeued for future evaluation.

Note that with use of atomic operations on the signa-
tures this taking of sub-collections can be done in paral-
lel. The only point at which serial execution is required
is the clearing of signatures when the internal counter
drops to zero.

In this way, we are building support for safely ex-
ecuting the isolate-modify-release pattern in a manner
that is both friendly to programmers and efficient to ex-
ecute.

6. Conclusion and Future Work
In this work, we have outlined our argument for collec-
tion focused parallelism, given a high level overview of
what this entails, and documented our efforts to build
support for these patterns into current real-world soft-
ware.

Full support for collections beyond isolate-modify-
release will involve a number of different algorithms
and techniques. The algorithm detailed in Section 5 still
does not meet all the requirements for production use.
It currently has no facility for determinism, which is
of paramount importance for networked gameplay, and
yielding during the call to query breaks the guarantee
of atomicity for the entire local scope that was one of
main virtues of Cascade. We are also expanding on the
syntax for taking sub-collections to include the ability
to specify queries using collection specific atoms such
as max and nearest in a fashion reminiscent of SQL.
At the time of this writing we have a prototype using
C++11 lambda expressions, but there are many details
left in order to ensure the safety of these primitives and
their applicability for static analysis.

6 2013/5/14

References
[1] Bay 12 Games: Dwarf Fortress www.bay12games.com/

dwarves.

[2] SimCity www.simcity.com.

[3] The OpenMP specification for parallel programming
http://www.openmp.org.

[4] Saman P. Amarasinghe and Monica S. Lam. Commu-
nication optimization and code generation for distributed
memory machines. In Proceedings of the ACM SIGPLAN
1993 conference on Programming language design and
implementation, PLDI ’93, pages 126–138, New York,
NY, USA, 1993. ACM.

[5] Johan Andersson. Parallel futures of a game en-
gine http://repi.blogspot.com/2009/11/

parallel-futures-of-game-engine.html.

[6] Micah Best, Alexandra Fedorova, Ryan Dickie, Andrea
Tagliasacchi, Alex Couture-Beil, Craig Mustard, Shane
Mottishaw, Aron Brown, Zhi Huang, Xiaoyuan Xu,
Nasser Ghazali, and Andrew Brownsword. Searching
for concurrent design patterns in video games. In Henk
Sips, Dick Epema, and Hai-Xiang Lin, editors, Euro-Par
2009 Parallel Processing, volume 5704 of Lecture Notes
in Computer Science, pages 912–923. Springer Berlin /
Heidelberg, 2009.

[7] Micah J Best, Shane Mottishaw, Craig Mustard, Mark
Roth, Parsiad Azimzadeh, Alexandra Fedorova, and An-
drew Brownsword. Schedule data not code. In Proceed-
ings of the 3rd USENIX conference on Hot topics in par-
allelism, HotPar’11, Berkeley, CA, USA, 2011. USENIX
Association.

[8] Micah J. Best, Shane Mottishaw, Craig Mustard, Mark
Roth, Alexandra Fedorova, and Andrew Brownsword.
Synchronization via scheduling: techniques for effi-
ciently managing shared state. In Proceedings of the
32nd ACM SIGPLAN conference on Programming lan-
guage design and implementation, PLDI ’11, pages 640–
652, New York, NY, USA, 2011. ACM.

[9] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,
and Kai Li. The parsec benchmark suite: Characteriza-
tion and architectural implications. In Proceedings of the
17th International Conference on Parallel Architectures
and Compilation Techniques, October 2008.

[10] Burton H Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13:422–426, 1970.

[11] Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez,
and Br uno Levy. Polygon Mesh Processing. AK Peters,
2010.

[12] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong
Mao, Frans Kaashoek, Robert Morris, Aleksey Pesterev,
Lex Stein, Ming Wu, Yuehua Dai, Yang Zhang, and
Zheng Zhang. Corey: An operating system for many
cores. In Proceedings of the USENIX Symposium on Op-
erating System Design and Implementation (OSDI ’08),
pages 43–57, 2008.

[13] Zoran Budimlić, Michael Burke, Vincent Cavé, Kath-
leen Knobe, Geoff Lowney, Ryan Newton, Jens Pals-
berg, David Peixotto, Vivek Sarkar, Frank Schlimbach,
and Sagnak Tasirlar. Concurrent collections. Sci. Pro-
gram., 18(3-4):203–217, August 2010.

[14] Rong Chen, Haibo Chen, and Binyu Zang. Tiled-
mapreduce: optimizing resource usages of data-parallel
applications on multicore with tiling. In Proceedings of
the 19th international conference on Parallel architec-
tures and compilation techniques, PACT ’10, pages 523–
534, New York, NY, USA, 2010. ACM.

[15] Blumofe et al. Cilk: An efficient multithreaded runtime
system. Journal of Parallel and Distributed Computing,
37(1):55–69, 1996.

[16] J. Gregory. Game Engine Architecture. Ak Peters Series.
A K Peters, Limited, 2009.

[17] J. Herath, Y. Yamaguchi, N. Saito, and T. Yuba. Dataflow
computing models, languages, and machines for in-
telligence computations. IEEE Trans. Softw. Eng.,
14(12):1805–1828, December 1988.

[18] Roberto Ierusalimschy, Luiz Henrique de Figueiredo,
and Waldemar Celes Filho. Luaan extensible exten-
sion language. Softw. Pract. Exper., 26(6):635–652, June
1996.

[19] Shams M. Imam and Vivek Sarkar. Integrating task par-
allelism with actors. In Proceedings of the ACM interna-
tional conference on Object oriented programming sys-
tems languages and applications, OOPSLA ’12, pages
753–772, New York, NY, USA, 2012. ACM.

[20] Per-Ake Larson, Spyros Blanas, Cristian Diaconu, Craig
Freedman, Jignesh M. Patel, and Mike Zwilling. High-
performance concurrency control mechanisms for main-
memory databases. Proc. VLDB Endow., 5(4):298–309,
December 2011.

[21] Michael D. McCool. Structured parallel programming
with deterministic patterns. In Proceedings of the 2nd
USENIX conference on Hot topics in parallelism, Hot-
Par’10, pages 5–5, Berkeley, CA, USA, 2010. USENIX
Association.

[22] Guilherme Ottoni and David I. August. Communica-
tion optimizations for global multi-threaded instruction
scheduling. In Proceedings of the 13th international
conference on Architectural support for programming
languages and operating systems, ASPLOS XIII, pages
222–232, New York, NY, USA, 2008. ACM.

[23] J. Reinders. Intel Threading Building Blocks: Outfitting
C++ for Multi-Core Processor Parallelism. O’Reilly,
2007.

[24] Martin. Rinard and Lam. The design, implementation,
and evaluation of jade. ACM Trans. Program. Lang.
Syst., 20(3):483–545, 1998.

[25] Nicholas Vining. The threads that bind us. Game Devel-
oper Magazine, April 2012.

7 2013/5/14

