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Abstract
In this paper we argue that the scheduler, as the interme-
diary between hardware and software, needs to be fully
data-aware. The old paradigm of envisioning tasks as
amorphous blobs of ‘work’ to be assigned to processors
is incomplete and needs be expanded. Some techniques
and projects have emerged that implicitly use this idea,
but either focus on a small aspect of data or are targeted
to optimizing specific problems. We argue for more gen-
eral solutions.

1. Introduction
Anyone who has written a parallel program only to find
that increasing the number of threads makes the pro-
gram run slower understands the problem: there is more
to parallel programming than assigning ‘work’ to ‘pro-
cessors’. Shared resources, bus traffic, cache effects and
many other factors contribute to the program’s runtime.
In addition, many opportunities are often missed. SIMD
units are left under-utilized by fragile auto-vectorizers,
and cache-coherency protocols can cause an unavoid-
able eviction of soon to be needed data. There are now
many great tools and techniques for decomposing code,
protecting critical sections and other traditional con-
cerns. However, the memory hierarchy of the mod-
ern computer has grown – not only in depth, but in
width. Consider the increase in NUMA1 architectures.

1 Non-Uniform Memory Access. NUMA processors have local mem-
ories and the time access a particular memory item varies greatly de-
pending on its location relative to the requesting processor.
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The movement of data becomes a dance around vari-
ous levels of cache and processing units, and the ag-
gregate costs can overwhelm the savings of paralleliza-
tion. Manually orchestrating this dance is difficult, time
consuming, generally requires an expert and is rarely
portable. Accounting for all the aspects of complex soft-
ware running on a variety of complex systems is quickly
becoming untenable. Conversely, simply accounting for
some subset of software-system pairs yields a solution
that can only prove fruitful in extremely presumptive
scenarios. What can be done to aid programers, both
expert and novice, to achieve faster parallel programs?
Our position is that the scheduler should not only map
code, but also data, to the machine’s physical resources,
thus reducing the costs of data movement. We call this
methodology Data-Informed Scheduling (DIS).

Consider a program that is written to execute as a se-
ries of tasks. As with many programs, certain tasks can
be interleaved whereas others may exhibit pairwise tem-
poral dependencies, requiring that one task completes
before another is invoked. A traditional scheduler will
just assign tasks to processors, honouring said depen-
dencies and perhaps attempting some load-balancing.
Suppose we have a task that traverses a linked list. A
DIS scheduler is provided with the knowledge that it
is operating on a linked list and can thus begin pre-
fetching the nodes of the list as soon as the task is
launched. Furthermore, a DIS scheduler has the ability
to place this task on processors that have the nodes that
it operates on available in cache.

We will describe DIS and give evidence to back up
our argument (Section 2). Many researchers have en-
countered the problems of data costs and have derived
techniques with that in mind (Section 3). We will dis-
cuss (Section 4) how our suite, Cascade, goes beyond
those projects and how DIS is informing its continued
development. To add weight to our discussion we will
give a video game based example of how DIS yields a
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performance improvement (Section 5). Finally, we con-
clude with a discussion of our future work (Section 6).

2. Overview of Data-Informed Scheduling
We begin this section with some concrete motivation for
needing a Data-Informed Scheduler and proceed to give
a high-level description of the DIS method. DIS is in-
tended to be a set of principles to influence those work-
ing on parallel systems. We present these principles to
influence design decisions and levels of abstraction in
their work.

We focus heavily on application level scheduling, as
this is our domain. However, this argument applies to all
levels of scheduling.

2.1 Importance of Scheduling Data
So far, programmers have been fortunate that rela-
tively flat memory hierarchies, prefetching, and cache-
coherence protocols have largely obscured the cost and
complexity of data migration. However this will not
be the case in the future. Future multi-core hardware
will have deep memory hierarchies, with high costs for
inefficiently accessing memory. Hardware prefetchers
are limited in their ability to make smart decisions, and
some manufacturers are experimenting with removing
cache-coherency protocols.

The cost of sharing data on modern systems is in-
creasing. These costs include not only synchronization,
but the movement of data across processors. The authors
of Corey [4] report that on a 16-core AMD Barcelona
system with four NUMA domains, the cost of accessing
the L1 cache is only 3 cycles, while the cost of accessing
a remote L1 cache goes up to 121 cycles, and finally the
cost of accessing a remote memory node can reach as
many as 327 cycles! Clearly we can save a lot of cycles
if the data needed by the computation is placed physi-
cally close to the processor where the computation will
run.

Trends in hardware suggest that the large discrepan-
cies between the costs of local and remote memory ac-
cesses will continue to be present in future hardware.
New processors increasingly use the NUMA architec-
ture. Some specialized hardware, such as the Cell pro-
cessor used in the Playstation 3, requires the program-
mer to explicitly place program data into the memory
buffer of the SPE where the data will be processed [8].
Looking in the mobile space, we also see multicore de-
signs and memory hierarchies with non-uniform access
latencies and lack of coherence, requiring the program-
mer to explicitly place data into processor memories, so
as to optimize access efficiency [1]

The onus to navigate this complexity should be on
software. Specifically: languages, compilers, and run-
time schedulers must be able to provide programmers

with a productive toolkit to create programs that can
execute on a wide variety of multicore hardware.

2.2 Data-Informed Scheduling Methodology
Contemporary application-level schedulers are limited
in their capacity to understand data/code relationships.
These schedulers are often FIFO task-based systems
that are limited to assigning tasks to threads. The data
use of each task is never available to the scheduler.

A scheduler that has such a limited representation of
the program it executes can only assign blocks of ma-
chine code instructions to processors. The movement of
data is implicit in these instructions and many opportu-
nities for optimization are lost. Processors cannot con-
secutively schedule tasks that use the same data, copy
a list into an array for SIMD processing just before it
is needed or change a method of iteration to suit the
current number of available processors. Even worse, the
scheduler is unable to prevent potential pitfalls such as
the storm of bus traffic that can be created by schedul-
ing certain data-parallel tasks on too many processors.
A conventional scheduler has no facility to make this
kind of choice.

We have identified a number of program aspects that
the compiler, language, and runtime stack should com-
municate to the scheduler in order for the scheduler to
have a robust representation of the program. These as-
pects fall into four categories:

What data is used? Does the task modify global val-
ues? Does it affect a linked structure? Does it need
only to read from a counter? Without this informa-
tion the scheduler cannot perform such optimiza-
tions as maximizing cache usage, and the scheduler
must either trust that code makes safe concurrent ac-
cess to data or must make conservative scheduling
decisions.

Where does the data comes from? Is the data in main
memory? Does it need to be retrieved from disk or
other storage? Is this data the product of another
task stored in a communication buffer? Without this
information the scheduler can schedule tasks with
high latency costs in front of those with small latency
costs.

When is the data used? What dependencies need to
satisfied for this task to run? What state does the
system need to be in before execution? Without this
information the scheduler cannot reflect the ordering
of task. Understanding the prerequisites for tasks al-
lows the scheduler to support such optimizations as
critical path execution.

How is the data processed? Does the task perform a
tree walk? Does it employ a formal parallel pat-
tern [11]? Are its operations reorderable? Many
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common parallel patterns have multiple implementa-
tions that each work best in specific circumstances.
A scheduler must be free to choose between these
implementations.

These aspects (which we refer to later as what,
where, when and how) are not directly implementable,
but are more requirements that any parallel program-
ming stack must provide in order to effectively schedule
data. In order to practically leverage DIS principles, lan-
guages and compilers must be designed to provide and
preserve the above semantic information and deliver it
to the scheduler.

Finally, to make decisions based on these code/data
relationships, a scheduler also needs a representation of
the hardware on which its running. Scheduling two tasks
that share the same data on two cores which share an
L1 cache is quite different than scheduling these tasks
on different chips. In order to make these choices, a
scheduler need to be able to calculate these costs.

Determining the exact requirements that this hard-
ware representation must provide is a challenge. The
right balance must be struck between abstraction and us-
ability. A scheduler that interpreted the original source
code, maintained an exact map of the state of each cache
and contained code to execute numerous parallel pat-
terns and algorithms would be orders of magnitude too
cumbersome to be effective. However, simpler represen-
tations might similarly be unusable. Adapting this rep-
resentation to changing hardware will also be a concern.

In order to strike an effective balance between accu-
racy and overhead the scheduler will necessarily need to
rely heavily on abstractions of both program and hard-
ware. As we have shown in our previous work on Syn-
chronization via Scheduling[3] and will show further in
Section 5 even a very simple coarse representation can
make a considerable difference.

3. Steps Towards Data-Informed
Scheduling

Many projects and techniques have implicitly incorpo-
rated elements of DIS with positive results. Their suc-
cess adds weight to our arguments and motivates further
exploration and generalization of these techniques. A
discussion of the entire body of work is unfeasible due
to space constraints, but we will feature a small number
of specific examples.

3.1 Map/Reduce
Map/reduce has great deal of potential for DIS. The
specification of a map/reduce job carries with it crucial
information about data access. For map tasks the data
comes from a file and for reduce tasks it comes from the
output of the map tasks (where). Processing is done by
linear iteration with certain variations (how). First the

data is mapped then its transformed version is reduced
(when). Furthermore, map/reduce implicitly notifies the
system how the data will be partitioned among process-
ing nodes or cores and, consequently, their memories.
The semantics of map/reduce imply that the data is par-
titioned linearly for map tasks and the size of the parti-
tion is determined by the number of map tasks.

Computation is expressed using a programming pat-
tern with well-understood semantics. A map/reduce sys-
tem is structured such that all data handling among
units of computation is performed by the framework
and not by the programmer. It is relatively straightfor-
ward to apply extremely powerful locality optimiza-
tions. Chen, Chen and Zhang observed that they could
increase CPU cache efficiency if the output of the map
task were immediately processed by the correspond-
ing reduce task [6]. To implement this idea, called tiled
map/reduce, they chopped the data into blocks that fit
in the processor cache. Map/reduce was performed on
these blocks in stages and merged at the end. As a result,
they reduced memory requirements by as much as 85%
and improved performance by up to a factor of 3 times.
These optimizations would not have been possible if se-
mantics of data access were buried inside conventional
imperative code.

3.2 Chapel
Although map/reduce is a great example of how the as-
pects of DIS can benefit performance, it applies only
to very specific types of computation. The designers of
Chapel took this further and implemented a program-
ming language with first-class support for data-centric
constructs [9] (what, how). Chapel targets arrays and
similar linear memory structures, such as hash tables.
In Chapel, arrays are specified as domains and each do-
main has a corresponding map that specifies how the
array is implemented. For instance, domain maps spec-
ify how domain indices and array elements are mapped
to memory locales (e.g., nodes or cores), how they are
stored in memory, and how operations, such as accesses
and iterations, are implemented. Furthermore, Chapel
provides native support for data partitioning. Providing
a high-level specification of how the data is laid out and
accessed enables the runtime system to place the data
right where it is needed and right when it is needed,
which can dramatically reduce memory latency.

3.3 OS Examples
To minimize the cost of moving data across chips
(where), Tam et al. proposed thread clustering, where
the OS clusters threads that actively communicate on
the same chip by monitoring cross-chip communica-
tion [12]. Like in many OS examples, the optimization
is performed without assuming any knowledge about
the application. However, the authors also showed that
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a minimal knowledge about application data access pat-
terns (how) can enable a much simpler implementation
which bypasses the monitoring phase. This added sim-
plicity is a further reason why Data-Informed Scheduler
should be explored.

The Tornado operating system approached the vi-
sion of DIS to a much closer extent [7]. In Tornado,
key kernel data structures are implemented as clustered
objects. Each instance of an object is associated with
a hardware domain (i.e., a processor and a correspond-
ing memory), and whenever an object is accessed, the
request is directed to the right hardware domain in an
efficient manner (where). Tornado demonstrated how a
technique akin to the proposed Data-Informed Schedul-
ing with the use of knowledge about data accesses can
increase efficiency of memory accesses.

More recently, Corey [4] and Barrelfish [2] reaf-
firmed the need to address data scheduling on modern
multicore NUMA systems, proposing solutions similar
in spirit to Tornado. In a yet another example, Boyd-
Wickizer et al. proposed a memory-aware design of a
file system cache [5]. In the proposed system, cached
file data is partitioned across chips, and a thread access-
ing a file object is migrated to the chip “owning” the
object (where). The authors discovered that thread mi-
gration was justified only in cases where the file object
was sufficiently large, so the saved cost of data move-
ment outweighed the cost of thread migration.

While all these examples demonstrate concepts in the
spirit of DIS, they each address a specific problem. Our
goal is to develop a general solution that can be used to
solve a large number of problems encountered in real
applications.

3.4 Synchronization via Scheduling
While the previous examples of work related to DIS
concentrate primarily on the movement and placement
of data in the memory hierarchy, DIS is not limited
to reducing data costs. One example of this is a tech-
nique called Synchronization via Scheduling [3]. SvS
utilizes static and dynamic analysis to determine what
data is accessed by a task, before it is executed. SvS
uses this information not to reason about data move-
ment, but rather to determine which tasks can be safely
executed in parallel: if it is determined that task A and B
both modify the same data, then it simply schedules A
and B such that A completes before B is run. Compare
this to a scheduler without SvS. In this case, the pro-
grammer would be forced to manually serialize tasks
that access the same data, or use potentially expensive
synchronization primitives. In contrast, SvS is able to
automatically extract parallelism in the case of serial-
ized tasks, while avoiding the costs of synchronization
primitives (e.g. aborts in transactional memory).

4. Cascade
Cascade is our parallelization suite for video games that
is being designed to embody the principles of DIS.

Cascade represents programs using a task-graph
based model. In a task-graph model, nodes represent
code that has been divided into discrete units called
tasks and edges represent an ordering between two
tasks. If there is an edge (A,B) then task A must com-
plete before B can be executed. Therefore a task-graph
provides information about when data will be accessed
by a task. Cascade further augments this by providing
explicit data-flow between tasks in that one task sends
data to another task. Since data is sent by placing it in a
communication queue, the scheduler knows where this
data resides.

In order to facilitate writing programs based on the
above program model, Cascade provides a new pro-
gramming language, the Cascade Data Management
Language (CDML). CDML and the static analysis it
enables, is also required to implement SvS, described in
section 3.4, which Cascade uses to determine what data
tasks access. Beyond this, CDML provides expressions
for parallel patterns, providing a rich set of information
as to how data is accessed.

Finally, Cascade incorporates a simple representa-
tion of hardware where a map describes which proces-
sors share a common cache. If processors share a cache,
we say they are neighbours. During work stealing, a
thread executing tasks on processor A will attempt to
steal tasks from a thread executing on A’s neighbour,
thus leveraging cache locality.

5. Experiments
To illustrate the Data-Informed Scheduling methodol-
ogy we will describe how we added a locality optimiza-
tion to Cascade, and show how it benefits a realistic ap-
plication. We modified the CDML compiler to automat-
ically add metadata, an integer called an affinity id, to
each object used in a data-parallel operation. Each affin-
ity id corresponds to a core. When the operation is ex-
ecuted, the id of an object is exposed to the scheduler
which uses it to determine which core to assign that ob-
ject to. A task is then executed on the assigned core with
the object as its input. During execution of that task,
any other object read or written will be assigned the in-
put object’s affinity id. Affinity ids are changed at most
once per frame.

Our test application, QuakeSquad is designed to re-
flect the critical aspects of a game while being simple
enough to modify easily and show experimental results
clearly, akin to SynQuake [10]. In QuakeSquad a num-
ber of AI agents, citizen and techs, navigate around a
2D world. Two more entities, bombs and loot, influence
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Figure 1. QuakeSquad Entity update performance: Relative (Intel left, AMD center) and Absolute (right)

the behaviour of the agents. Bombs cause citizens to flee
and attract techs who will attempt to disarm them.

For each frame rendered, an update function for each
entity performs multiple line of sight tests to each other
entity nearby. These nearby entities are read, and the
current entity is updated. This behaviour causes data
of the entities that surround a particular entity to be
brought into the same cache. This presents an oppor-
tunity to make locality optimizations to increase per-
formance. In our experiments, we refer to this non-
optimized behaviour as Default.

A popular optimization to 2D worlds is to spatially
partition the world into cells where each cell is repre-
sented by a list of the entities within that cell. We im-
plemented this partitioning, called Spatial Distribution,
where we dispatched entire lists instead of single en-
tities. This optimization achieves efficient locality op-
timizations and work-distribution, but required a great
deal of hand-coding.

By enabling the affinity id tracking for the process-
ing of entities we effectively produced an effect similar
to the cell partitioning without modifying the program
code. We call this technique Automatic Affinity Group-
ing. Determining appropriate times to automatically en-
able this optimization is part of ongoing research.

Our experiments were performed on an dual socket 8
core Intel Xeon E5405, and a 4 socket, 24 core, Opteron
8435. The results are shown in Figure 1. The left and
centre graphs show the average frame time normalized
to the unoptimized default. The right graph shows the
average absolute performance in ms using the maximum
cores for each machine.

At a small number of cores the overhead of Affin-
ity Grouping outweighs its benefit. As the core count
increases, performance of Affinity Grouping becomes
faster than the Default by approximately 18% and
38% on the Intel and AMD respectively. While affin-
ity grouping is slower than the hand coded spatial dis-
tribution, both similarly increase in their effectiveness
as cores are added, and refactoring the code for spa-
tial grouping was a major effort while affinity grouping
simply involved enabling a feature in the scheduler.

6. Conclusion and Next Steps
We have described a methodology for building sched-
ulers that can address the reality of the increasingly high
cost of accessing data. This methodology included a de-
scription of several aspects that we believe are critical
for the scheduler to understand about the program that
it is running. The next step is to refine this methodology.
Primarily we intend that the principles listed should be
formalized into an actual model for DIS that is both ac-
tionable and can be reasoned about.

In future work, we intend to expand Cascade to fur-
ther embody the principles of DIS. The affinity id tech-
nique is one of many that we are currently considering.

We hope to refine the work done by ourselves and
others into a full, concrete specification for how parallel
programs should interact with the underlying scheduler
in order to realize practical benefits on tomorrow’s in-
creasingly complex hardware.
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