
End-to-End Memory Behavior Profiling with DINAMITE

Svetozar Miucin
Electrical and Computer

Engineering
University of British Columbia

Vancouver, Canada
smiucin@ece.ubc.ca

Conor Brady
School of Computing Science

Simon Fraser University
Burnaby, Canada
cbrady@sfu.ca

Alexandra Fedorova
Electrical and Computer

Engineering
University of British Columbia

Vancouver, Canada
sasha@ece.ubc.ca

ABSTRACT
Performance bottlenecks related to a program’s memory be-
havior are common, yet very hard to debug. Tools that
attempt to aid software engineers in diagnosing these bugs
are typically designed to handle specific use cases; they do
not provide information to comprehensively explore memory
problems and to find solutions. Detailed traces of memory
accesses would enable developers to ask various questions
about the program’s memory behaviour, but these traces
quickly become very large even for short executions. We
present DINAMITE: a toolkit for Dynamic INstrumenta-
tion and Analysis for MassIve Trace Exploration. DINA-
MITE instruments every memory access with highly debug
information and provides a suite of extensible analysis tools
to aid programmers in pinpointing memory bottlenecks.

CCS Concepts
•Software and its engineering → Software perfor-
mance; Frameworks;

Keywords
instrumentation, memory optimization, LLVM, Spark Stream-
ing

1. INTRODUCTION
Software engineers that tune performance of their pro-

grams face many challenges, one of the most difficult is op-
timizing the use of the processor memory hierarchy. It is
well known that tuning data structure layout and data ac-
cess patterns can significantly improve performance often by
orders of magnitude [9] [8] [13].

Understanding memory behavior is a notoriously difficult
task. Previously available tools either target a single mem-
ory problem, lack the source level information attributed to
the accesses, or are tied to a specific platform or program-
ming language. DINAMITE is designed to address these

shortcomings and give performance-minded software engi-
neers a flexible end-to-end toolkit for understanding mem-
ory behaviour of their programs. Our system provides users
with information about every memory access, every mem-
ory allocation event and every executed function, enriched
with debug information that connects data obtained at run-
time with its corresponding source level constructs. We cre-
ated an LLVM compiler pass that instruments the relevant
events, augmented with debug information, to produce event
traces during the execution. Analyzing a program with DI-
NAMITE is not tied to a specific platform or a program-
ming language. DINAMITE can instrument any language
for which there is an LLVM front-end compiler. To date,
these include C, C++, Java, D, Haskell, Objective-C, Swift,
Ruby, and others.

Full access traces of a program can easily reach hundreds
of gigabytes even for short executions. Storing these logs and
building software to analyze them efficiently is a challenge.
DINAMITE provides an analysis framework implemented
with Spark Streaming [14] that lets users write their anal-
ysis tools in a few lines of Scala, relying on the streaming
computation model widely used for processing data. The
loosely coupled design of our system is intended for easy
extensibility in case the user prefers storing their logs in a
filesystem, database, or even integrating it with other log-
ging or analysis frameworks, such as Google Dataflow [5] or
Kafka [7].

2. SYSTEM DESIGN
DINAMITE consists of three main components:

• The LLVM compiler pass

• A set of shared libraries that produce execution logs

• The framework for processing and analysis of execution
logs

A high-level view of the system architecture is shown in
Figure 1. A typical workflow for DINAMITE begins with
compiling a program using the DINAMITE LLVM compiler.
The desired events in the code are instrumented with calls
to externally linked functions that reside in the logging li-
brary. The next step is to choose the logging library to link
with the instrumented binary. This choice depends on how
the programmer wishes to analyze the execution logs. For
example, if they wish to persist the logs to disk, they will
chose the library implementation that writes log entries into
a file. If the programmer wishes to analyse traces in real

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...$15.00

http://dx.doi.org/10.1145/2950290.2983941

1042

LLVM
instrumentation pass

Cache simulator

Source
code

Filesystem

Spark Streaming
analysis framework

Instrumented
binary

logging library

Native C++
analysis framework

TCP

dynamic
linkage TCP

Figure 1: DINAMITE system diagram

time using Spark Streaming, they will choose the TCP out-
put library, which streams the log records over a TCP socket
to the Spark consumer.

DINAMITE provides a simple C++ framework for writ-
ing and executing analysis kernels. If the log records are
streamed into the Spark Streaming engine, the final step in-
volves using one of the existing analysis kernels, or a new
custom kernel, to analyze the data. DINAMITE was de-
signed to be modular, so it allows users to enrich the streamed
log events, for example by piping them through the cache
simulator (based on Dinero [6]), which will augment the
memory access events with cache statistics (indicating whether
this access missed in any level of the cache hierarchy), before
handling it to the analysis tool.

The rest of this section describes the three parts of DI-
NAMITE in more detail. For an even more detailed insight,
we refer the reader to an extended report [11].

DINAMITE source code with its associated tools is avail-
able at https://goo.gl/7fFcVS [1].

2.1 LLVM Instrumentation Pass
DINAMITE instrumentation pass is implemented as a

Module Pass in the LLVM compiler framework. Its pur-
pose is to add logging library calls for certain events encoun-
tered in the code. The compiler recognizes and instruments
the following events: memory accesses, function entry/exit
events and memory allocation function calls. Each event
is instrumented with a call to an externally linked library,
which logs this event. The instrumentation pass works with
the code represented in the LLVM internal representation
(IR); as a result DINAMITE is able to obtain full informa-
tion about the source-level constructs corresponding to the
events.

Memory access events are generated each time the pro-
gram accesses a memory location and are characterized by
the accessed address, data type, value, the source code lo-
cation of the access, variable name and thread ID. Memory
allocation events represent each call to a function that allo-
cates space on the heap. By default, DINAMITE assumes
that the memory is allocated using malloc, but the program-
mer can also inform DINAMITE of any custom memory-
allocation functions used in the program. The allocation
events are described with the base address returned by the
allocator, the size of a single allocated element, the num-
ber of allocated elements (a general case similar to calloc),
the data type of the allocated space, the thread ID, and the
source location where the allocation happened. Function

events log the entry and exit for each function, and are de-
scribed by the function name, the event type (entry or exit),
the thread ID, and (optionally) the values of the arguments.
Each string value emitted is encoded as a numeric identifier
to conserve space and reduce logging overhead; these map-
pings are written to JSON files and are decoded at the time
of the analysis.

To support different memory allocation libraries, DINA-
MITE loads the allocator function descriptors from an allo-
cator definition file, supplied by the programmer.

2.2 Logging Libraries
The logging libraries contain different implementations

of the functions called from the instrumented code during
the execution. Currently, DINAMITE supports writing log
records directly to the file system in text or binary format,
or sending binary log records over a TCP socket.

Extending the logging library is straightforward. The pro-
grammer can customize the library using any of the twelve
function prototypes. Two functions are used to setup and
tear down of the logs (opening/closing a file, establishing/break-
ing a connection). Additional three functions are used for
logging function entry and exit events, and for tracking mem-
ory allocations. The rest of the functions are used for out-
putting access logs for different primitive data types.

This architecture enable performance engineers to eas-
ily extend DINAMITE to produce access logs for different
storage and analysis systems such as databases or different
stream processing engines.

2.3 Analysis Framework
DINAMITE logs can be analyzed using native C++ or

Spark Streaming tools provided in the toolkit, or the pro-
grammer can write any analysis scripts using Unix command
line tools, Python or any other language of choice. Here, we
focus on the Spark Streaming tools, because of its ease of
use and the ability to process logs in real time.

Our analysis framework consists of two classes that ex-
tend Spark Streaming components LogReceiver and Log-
EntryReader. The former is an implementation of a Spark
Streaming receiver that listens on a TCP socket and receives
binary log data. Each log entry in the stream is stored for
use within the SparkStreamingContext. The stored log en-
tries are in the binary format representing a C struct. To
convert them into Scala classes, they are piped through a
map operation that invokes the extraction method of Log-
EntryReader on each entry.

From this point, the produced stream of Scala classes can
be analyzed using arbitrary operations within Spark Stream-
ing. Listing 1 shows a simple analysis kernel that counts
accesses per variable in the incoming stream and outputs
them in the console. Lines 1-11 show the standard setup
operations that need to be present in all DINAMITE anal-
ysis tools. Lines 13-19 are the main body of the analysis
tool.

2.3.1 Cache Simulator
To support detailed analysis of cache behavior, DINA-

MITE can utilize a cache simulator program, as an interme-
diate step between log output and analysis frameworks. We
provide our implementation of a simple single level cache
simulator that annotates DINAMITE logs it receives, and
passes them on to the next component in the pipeline. With

1043

this setup, it is possible to attribute cache hit or miss infor-
mation to each access in the stream, and use them to better
understand the implications of source level constructs on
cache performance.

Listing 1: Example Spark Streaming kernel
1 def main(args: Array[String]) {
2 val sparkConf = new SparkConf ()
3 .setAppName("AccessCounter");
4 val ssc = new StreamingContext(

sparkConf ,
5 new Duration (1000));
6 ssc.checkpoint("/checkpoints/");
7
8 val logs = ssc
9 .receiverStream(new

LogReceiver (9999))
10 .map(rawlog =>
11 LogEntryReader.extractEntry(

rawlog));
12
13 val counts = logs
14 .filter(log =>
15 log.isInstanceOf[AccessLog])
16 .map(access =>
17 (access.as(...)[AccessLog].

varId , 1L))
18 .reduceByKey(_+_)
19 .updateStateByKey(sumUpdater);
20
21 counts.print();
22
23 ssc.start();
24 ssc.awaitTermination ();
25 }

2.4 Performance
To give a better idea of where DINAMITE stands when

compared to previously available instrumentation frameworks,
we provide slowdown numbers (compared to uninstrumented
execution) in Table 1. Intel’s Pin comes with a comparable
access tracing tool Pinatrace. Pinatrace only outputs infor-
mation about the address, size of access, and type of access,
which is a significantly reduced subset of DINAMITE’s log
information. Valgrind’s MemCheck slowdown is obtained
from Nethercote et al.[12]. The comparison is not fair be-
cause MemCheck only verifies validity of memory locations
at runtime, and only outputs data at the execution’s end.
To the best of our knowledge there are no available Valgrind
tools comparable to DINAMITE and Pinatrace.

DINAMITE’s instrumentation and logging performance
is around 10x faster than the comparable Pinatrace tool.
Even when compared to MemCheck, which doesn’t perform
any output at runtime, DINAMITE’s full instrumentation is
only 60% slower. Finally, even with the full analysis pipeline
running, DINAMITE’s performance is comparable to per-
forming only access trace output with Pinatrace.

Table 1: Instrumentation overhead comparison
Framework Slowdown
Pin (pinatrace output to RAM disk) 354x
Valgrind (MemCheck) 22x
DINAMITE (output to RAM disk) 36x
DINAMITE (Spark analysis) 537x

3. CASE STUDY - SHARED VARIABLES
In multi-threaded software, it is very important to orga-

nize memory accesses in a way that avoids heavy sharing of
variables between threads. Even without explicit synchro-
nization, sharing a variable between threads can severely
impact performance because of the cache coherency proto-
col overhead.

Previous tools that address variable sharing issues (In-
tel’s VTune [10], DProf [13], MemProf [8]) are hardware-
specific which makes them non-trivial to set up (in the case
of DProf and MemProf, kernel modifications are required).
DINAMITE, with its analysis framework, provides an easy
to use platform for writing tools that pinpoint shared vari-
able problem causes with precision.

We demonstrate the utility of DINAMITE on a case study
involving debugging a known scalability bottleneck in Wired-
Tiger [2] [4], a MongoDB [3] storage engine. In order to
test both the precision and the ease of creating tools in DI-
NAMITE, the student tasked with writing a shared variable
detection tool was not told about the root cause of the prob-
lem. They were only told that a shared variable bottleneck
exists, and instructed on how to replicate the problematic
workload.

The engineer who originally solved the scalability issue did
so in about a week, using MemProf, which required kernel
modifications and communication with the authors. Ap-
plying modifications to the kernel is likely to be considered
”beyond the call of duty” for many engineers. The creation
of a DINAMITE analysis tool for this purpose and finding
the root cause of the scalability bug took a couple of hours,
done by a person familiar with the overall workings of the
framework.

The analysis of WiredTiger’s shared variable bottleneck
was done in an exploratory fashion, with two different Spark
Streaming kernels. The first kernel was used to find the
most shared variables, and the second was used to refine
the search and produce source locations where the majority
of sharing occurred. The output of the tools was processed
with simple Python scripts to produce human readable sum-
maries.

In the first pass of the analysis, logs are mapped into tu-
ples containing the accessed address, variable identifier and
a thread identifier. These tuples are used as a key in a
sum reduce operation. The result of the reduce operation
represents how many times each address was accessed by
each thread, which is stored persistently in the filesystem.
A Python script is used to transform this data into a sum-
mary of the number of threads sharing each address, as well
as the access counts and variable identifier. The data is
filtered to eliminate entries based on the following criteria:

• Remove all entries accessed by a single thread

• Remove all entries don’t exhibit uniform sharing, de-
fined as:

Let Asorted be a list of all the per-thread access counts
for the address, in descending order, zero indexed.

We define all addresses for which Asorted[0] < 2 ∗
Asorted[1] as uniformly shared.

Table 2 shows the top 5 entries from the first pass of the
analysis, output by our Python script. From this informa-
tion, we can conclude that the v member of __wt_stats data

1044

Table 2: Most accessed shared variables in Wired-
Tiger
Address # Accesses # Threads Variable
0x64D900 42495568 32 wt stats.v
0x64D1A4 26183326 74 wt connection impl
0x64E0EC 7233836 72 wt connection impl.N/A
0x64D100 4786616 36 wt txn global.states
0x64D540 4786370 34 wt stats.v

structure is the most accessed shared variable, shared among
32 threads.

The second DINAMITE analysis tool is similar to the first
one. It performs counting in the same fashion, except logs
are now filtered to include only accesses to __wt_stats.v

and the grouping key is enhanced with the source location
information. An additional Python script is used to group
the output from Spark Streaming in a human-readable for-
mat.

Listing 2 shows the final output of our analysis, identifying
the shared variable bottleneck to be __wt_stats.v accessed
on line 446 of bt_curnext.c. The output of the tool is a
JSON document, containing the number of threads accessing
the variable, the total and per-thread access counts, and the
source level information about the variable. Upon consulting
WiredTiger engineers, we verified that this is the correct
root cause of the scalability bottleneck. Figure 2 shows the
impact of this bug on the scalability of WiredTiger. The
performance improvement after removing the bug reaches
the factor of 20 for 32-thread executions.

Listing 2: WiredTiger shared variable analysis result
(JSON)
1 {
2 "threadcount ": 18,
3 "totalcount ": 311881 ,
4 "threads ": [
5 [
6 156,
7 19492
8],
9 [

10 163,
11 19520
12],
13 ...
14],
15 "file": "wiredtiger/build_posix

/../ src/btree/bt_curnext.c",
16 "line": 446,
17 "variable ": "__wt_stats.v"
18 }

Finally, to illustrate the amount of effort required for writ-
ing the second shared variable analysis kernel, we show the
main part of its code in Listing 3. The rest of the kernel is
identical to the kernel shown in Listing 1, and is omitted for
brevity.

Our case study shows the utility of DINAMITE as a mem-
ory performance debugging tool. The programming inter-
face of Spark Streaming makes it easy to write powerful
analysis tools, and its engine enables easy scaling both in
terms of storage and computation. Our previous work shows
two more case studies which are omitted here for brevity, as
well as a more detailed account of the shared variable case
study presented here [11].

1 2 4 8 16 32

Number of threads

0

2000

4000

6000

8000

10000

12000

14000

B
a
n
d
w

id
th

 [
M

B
/s

]

With sharing bug

Without sharing bug

Figure 2: Scaling improvements in WiredTiger after
removing the shared variable bug

Listing 3: Excerpt from the Shared Variable Analy-
sis kernel
43 val accesses = logs
44 .filter(l =>
45 l.isInstanceOf[AccessLogEntry])
46 .map(l =>
47 l.asInstanceOf[AccessLogEntry]);
48
49 val filt = accesses
50 .filter(l =>
51 l.varId == 217);
52 // 217 is the id of __wt_stats.v
53
54 val counts = filt.map(a =>
55 ((a.ptr ,
56 a.thread_id ,
57 a.varId ,
58 a.file ,
59 a.line), 1L))
60 .reduceByKey(_+_);
61
62 val runningCounts = counts
63 .updateStateByKey(sumUpdater);

4. CONCLUSION
We presented DINAMITE, a set of tools for instrumen-

tation and analysis of memory accesses in software. DINA-
MITE expands on the previously available instrumentation
frameworks by complementing the access traces with rich
source level information which is often paramount for fully
understanding memory behavior. The full pipeline of tools
available in DINAMITE allows for analysis of allocation, ac-
cess and cache event patterns, both offline and online using
modern stream processing engines.

Our case study emphasizes the importance of good mem-
ory behavior analysis tools in modern industry workloads.
DINAMITE allowed for faster debugging of an important
scalability problem, without the need for understanding the
target program’s code base in detail.

In the future, we plan to expand on the library of read-
ily available analysis tools in DINAMITE, in order to make
memory performance debugging more accessible to develop-
ers. We also intend to further improve DINAMITE’s per-
formance, as described in our previous work.

5. REFERENCES
[1] Dinamite bitbucket project, 2016.

[2] Wired tiger: making big data roar, 2016.

1045

[3] Wiredtiger storage engine, 2016.

[4] Wt-2029 improve scalability of statistics, 2016.

[5] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak,
R. J. Fernández-Moctezuma, R. Lax, S. McVeety,
D. Mills, F. Perry, E. Schmidt, et al. The dataflow
model: a practical approach to balancing correctness,
latency, and cost in massive-scale, unbounded,
out-of-order data processing. Proceedings of the VLDB
Endowment, 8(12):1792–1803, 2015.

[6] J. Edler and M. D. Hill. Dinero iv trace-driven
uniprocessor cache simulator, 1998.

[7] J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A
distributed messaging system for log processing.
NetDB, 2011.

[8] R. Lachaize, B. Lepers, and V. Quéma. Memprof: A
memory profiler for numa multicore systems. In
Presented as part of the 2012 USENIX Annual
Technical Conference (USENIX ATC 12).

[9] C. Lattner and V. Adve. Automatic pool allocation:
improving performance by controlling data structure

layout in the heap. In ACM SIGPLAN Notices,
volume 40.

[10] R. K. Malladi. Using intel R© vtuneTM performance
analyzer events/ratios & optimizing applications.
http:/software. intel. com, 2009.

[11] S. Miucin, C. Brady, and A. Fedorova. DINAMITE: A
modern approach to memory performance profiling.
Technical report, 2016.

[12] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
ACM Sigplan notices, volume 42.

[13] A. Pesterev, N. Zeldovich, and R. T. Morris. Locating
cache performance bottlenecks using data profiling. In
Proceedings of the 5th European conference on
Computer systems.

[14] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica.
Discretized streams: an efficient and fault-tolerant
model for stream processing on large clusters. In

Presented as part of the, 2012.

1046

