
A Comprehensive Scheduler for Asymmetric Multicore Systems

Juan Carlos Saez
Manuel Prieto

Complutense University, Madrid, Spain
{jcsaezal,mpmatias}@pdi.ucm.es

Alexandra Fedorova
Sergey Blagodurov

Simon Fraser University, Vancouver BC, Canada
{fedorova,sba70}@cs.sfu.ca

Abstract
Symmetric-ISA (instruction set architecture) asymmetric-
performance multicore processors were shown to deliver
higher performance per watt and area for codes with diverse
architectural requirements, and so it is likely that future mul-
ticore processors will combine a few fast cores characterized
by complex pipelines, high clock frequency, high area re-
quirements and power consumption, and many slow ones,
characterized by simple pipelines, low clock frequency, low
area requirements and power consumption. Asymmetric
multicore processors (AMP) derive their efficiency from
core specialization. Efficiency specialization ensures that
fast cores are used for “CPU-intensive” applications, which
efficiently utilize these cores’ “expensive” features, while
slow cores would be used for “memory-intensive” applica-
tions, which utilize fast cores inefficiently. TLP (thread-level
parallelism) specialization ensures that fast cores are used to
accelerate sequential phases of parallel applications, while
leaving slow cores for energy-efficient execution of parallel
phases. Specialization is effected by an asymmetry-aware
thread scheduler, which map threads to cores in consider-
ation of the properties of both. Previous asymmetry-aware
schedulers employed one type of specialization (either effi-
ciency or TLP), but not both. As a result, they were ef-
fective only for limited workload scenarios. We propose,
implement, and evaluate CAMP, a Comprehensive AMP
scheduler, which delivers both efficiency and TLP special-
ization. Furthermore, we propose a new light-weight tech-
nique for discovering which threads utilize fast cores most
efficiently. Our evaluation in the OpenSolaris operating sys-
tem demonstrates that CAMP accomplishes an efficient use
of an AMP system for a variety of workloads, while existing
asymmetry-aware schedulers were effective only in limited
scenarios.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’10, April 13–16, 2010, Paris, France.
Copyright c© 2010 ACM 978-1-60558-577-2/10/04. . . $10.00

Categories and Subject Descriptors D.4.1 [Process Man-
agement]: Scheduling

General Terms Asymmetric multicore, Scheduling, Oper-
ating Systems

Keywords Asymmetric multicore, Scheduling, Operating
Systems

1. Introduction
Asymmetric multicore processors (AMP) [7, 8] were pro-
posed as a more power efficient alternative to symmetric
multicore processors (SMP), which use identical cores. An
AMP would contain cores that expose the same instruction-
set architecture, but differ in features, size, power consump-
tion and performance. A typical AMP would contain cores
of two types: “fast” and “slow” [8]. Fast cores are character-
ized by complex super-scalar out-of-order pipelines, aggres-
sive branch-prediction and pre-fetching hardware, and high
clock frequency. Slow cores, on the other hand, have a sim-
ple in-order pipeline, less complex hardware, and a lower
clock speed. Fast cores occupy a larger area and consume
more power than slow cores, so a typical system would con-
tain a small number of fast cores and a large number of slow
cores.

An AMP can potentially deliver a higher performance per
watt than an SMP [5, 8]. Having cores of different types en-
ables specializing each core type for applications that will
use it most efficiently. The two most common types of spe-
cialization are efficiency specialization and TLP specializa-
tion.

Efficiency specialization Consider a workload con-
sisting of CPU-intensive and memory-intensive applica-
tions. The former are characterized by efficient use of CPU
pipelines and other “expensive” microarchitectural features.
The latter frequently stall the processor as a result of issu-
ing many memory requests, and thus use the CPU ineffi-
ciently. Symmetric multicore processors (SMP) will deliver
optimal performance/energy trade-off only for one type of
applications: an SMP implemented with fast and complex
cores would be ideally suited for CPU-intensive applica-
tions, while an SMP with slow simple cores will provide bet-
ter performance/watt for memory-intensive applications [8].

An AMP where both types of cores are present will address
applications of both types. It was shown that as a result of
core specialization an AMP system can deliver up to 60%
more performance per watt than a symmetric one [8].

TLP specialization Consider a workload consisting of
parallel and sequential applications, or alternatively of par-
allel applications with sequential phases. Previous work has
shown that it is roughly twice as efficient to run parallel code
on a large number of small, slow and low-power cores than
on a smaller number of fast and powerful cores, compara-
ble in area and power [5]. The fast cores provide fewer par-
allel engines per unit of area and power than smaller and
simpler slow cores, and so the parallel code will experience
worse performance/watt. On the other hand, sequential code
will perform poorly on simple slow cores, because it can use
only one core at a time. AMP systems offer the best of both
worlds. Fast cores can be used for sequential code, while
slow cores for parallel code, optimizing performance/watt
for code of both types [5].

Specialization must be aided by a thread scheduler that
will decide which threads to run on fast cores and which
on slow cores. Two kinds of operating system schedulers
emerged to address this challenge. The first type targeted
efficiency specialization, by assigning the most CPU-intensive
threads to fast cores [3, 7, 12]. The second type targeted
TLP specialization, by assigning sequential applications
and sequential phases of parallel applications to run on fast
cores [4]. Both types of schedulers have proved beneficial for
their respective target workloads: efficiency specialization
delivered benefits for single-threaded workloads, and TLP
specialization proved effective for workloads where parallel
applications were present. It was not made clear, however,
whether it is worth combining these two approaches in a
single algorithm and what would be the impact of this com-
prehensive scheduling solution. In other words, should op-
erating systems for asymmetric processors use an algorithm
focusing on efficiency specialization, an algorithm focusing
on TLP specialization, or an algorithm that performs both
types of specialization? The goal of our study is to address
this question.

To that end, we propose CAMP, a new Comprehensive
AMP scheduling algorithm that delivers both types of spe-
cialization. To the best of our knowledge, this is the first
asymmetry-aware algorithm addressing this goal. The cha-
llenge in implementing this algorithm is equipping it with
an effective mechanism for deciding which threads are more
“profitable” candidates for running on fast cores. To that end,
we introduce the new metric Utility Factor (UF), which ac-
counts for both efficiency and TLP of the application and
produces a single value that approximates how much the
application as a whole will improve its performance if its
threads are allowed to occupy all the fast cores available on
that system. The utility factor is designed to help the sched-
uler pick the best threads to run on fast cores in non-trivial

cases, such as the following. Consider a workload of a CPU-
intensive application with two runnable threads and a less
CPU-intensive with a single thread. In this case, it is not im-
mediately clear which thread is the best candidate for run-
ning on the fast core (assuming there is only one fast core on
the system). On the one hand, dedicating the fast core to a
thread of a two-threaded application may bring smaller per-
formance improvements to the application as a whole than
dedicating the fast core to the single-threaded application,
because a smaller part of the application will be running on
fast cores in the former case. On the other hand, the two-
threaded application is more CPU-intensive, so running it on
the fast core may be more profitable than dedicating the fast
core to another, less CPU-intensive, application. By compar-
ing utility factors across threads the scheduler should be able
to identify the most profitable candidates for running on fast
cores.

In this work, we use the utility factor to optimize system-
wide performance. However, in cases where some applica-
tions have a higher priority than others or in scenarios where
the system needs to deliver QoS guarantees to certain appli-
cations, the utility factor could be used as a complementary
metric to find a balance between providing better service
for prioritized applications and maintaining overall perfor-
mance. For example, if the system determines that a high-
priority application has a low utility factor, meaning that lit-
tle or no speedup would be gained for that application if it
or some of its threads were to run on fast cores, then there
is no point in “wasting” a fast core on this application, de-
spite its high priority. As a result, the utility factor would
be used to enable QoS guarantees with a minimal effect on
performance.

Another contribution of our work is the new method for
determining the efficiency of a specific thread in using a fast
core. Efficiency is measured as the speedup factor that the
thread experiences from running on a fast core relative to a
slow core. Previous approaches for determining the speedup
factor had limitations [3, 7, 12]. They either required to run
each thread on each core type [3, 7], which caused load
imbalance and hurt performance [12], or relied on static
offline data [12]. Our new method uses online measurements
of last-level cache (LLC) miss rate to inexpensively estimate
the speedup factor. The advantage of this method is that it is
very efficient and easy to use in a scheduler, and it does not
require to run each thread on cores of both types. While our
new method does not approximate the speedup factor with a
high accuracy, since the model was made deliberately simple
for portability across hardware platforms and for efficiency
when used in a scheduler, it rather successfully categorizes
applications into three classes – low, medium and high –
according to their efficiency. As a result, the scheduler using
dynamically estimated speedup factors performs within 1%
of the oracular scheduler that uses a priori known, and thus
highly accurate, overall speedup factors.

We implemented CAMP in the OpenSolaris operating
system and evaluated it on real multicore hardware where
asymmetry is emulated by setting the cores to run at differ-
ent frequencies via DVFS (dynamic voltage and frequency
scaling). We use CPU-bound scientific applications, and
construct workloads containing various applications: CPU-
intensive and memory-intensive, sequential and parallel, as
well as parallel with sequential phases.

We compare CAMP with several other asymmetry-aware
schedulers including Parallelism-Aware (PA), which per-
forms only TLP specialization, our new implementation of
a Speedup-Factor Driven (SFD) scheduler, which takes into
account only efficiency, and a baseline round-robin (RR)
scheduler that simply shares fast cores equally among all
threads. We find that for workloads consisting exclusively
of single-threaded applications, the algorithm focusing only
on efficiency specialization is sufficient, but this algorithm
is ineffective for workloads containing parallel applications.
Conversely, an algorithm focusing only on TLP specializa-
tion is effective for workloads containing parallel applica-
tions, but not for those where only single-threaded appli-
cations are present. CAMP, on the other hand, effectively
addresses both types of workloads. We also find that there is
some extra benefit in using efficiency specialization in addi-
tion to TLP specialization for realistic workloads containing
parallel applications. The greatest benefit of CAMP, there-
fore, is that it optimizes scheduling on AMPs for a variety
of workloads, smoothly adjusting its strategy depending on
the type of applications running on the system.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 describes how we compute
the utility factor. Section 4 presents the design of the CAMP
algorithm and briefly describes other algorithms that we use
for comparison. Section 5 describes the experimental results,
and Section 6 summarizes our findings.

2. Background and Related Work
Several asymmetry-aware schedulers were proposed in pre-
vious work. They delivered either efficiency or TLP special-
ization, but not both.

Kumar et al. [7] and Becchi et al. [3] independently pro-
posed similar schedulers that employed efficiency special-
ization. For deciding which applications would use fast cores
most efficiently, these schedulers relied on a speedup factor,
which is the improvement of an application’s performance
on a fast core relative to a slow core. The speedup factor was
directly measured online by running each thread on cores of
both types and computing the desired performance improve-
ment1. Algorithms proposed by Becchi and Kumar were
evaluated in a simulated environment. When real implemen-
tations of these algorithms were done as part of our earlier
work, we found that the proposed methods for computing
the speedup factor were inaccurate since applications may

1 Only single-threaded applications were evaluated in that work.

exhibit a non uniform behavior during and between program
phases. Only if applications have a stable behavior, observa-
tions over time provide satisfactory speedup factor estima-
tions. Furthermore, observation on both core types requires
additional thread migrations that can cause significant per-
formance degradation and load imbalance [12]. To address
these problems, we proposed an alternative method for ob-
taining the speedup factor, which involved estimating it us-
ing static information, an architectural signature embedded
in the application binary. An architectural signature contains
information enabling the scheduler to estimate the applica-
tion’s last-level cache miss rate and with reasonable accu-
racy predict its speedup factor on cores of different types.
Although this method, used in our Heterogeneity-Aware Sig-
nature Supported (HASS) scheduler, overcame the difficul-
ties associated with the direct measurement of the speedup
factor [12], it had limitations of its own. In particular, it re-
lied on static information about the application obtained off-
line, which did not always allow to capture dynamic prop-
erties of the application and required co-operation from the
developer to perform the steps needed for the generation of
the architectural signature. To overcome this shortcoming,
we designed a new method for estimating the speedup fac-
tor: one that could be easily used online and would introduce
negligible performance overhead. This method is described
in Section 4.1.2.

TLP specialization was employed in our earlier algorithm
called Parallelism-Aware (PA) [4] – this is the only such op-
erating system algorithm of which we are aware. PA used
the number of runnable threads as the approximation for
the amount of parallelism in the application [4]. We found
that this was indeed a good heuristic for the approximation,
because applications typically let the unused threads block,
perhaps after a short period of spinning. Blocking is coordi-
nated with the operating system, so a scheduler can detect
the change in the TLP and adjust its scheduling strategy ap-
propriately. An exception is idle threads that busy-wait on a
CPU, remaining runnable even though they do not make use-
ful progress. However, most synchronization libraries im-
plement adaptive synchronization algorithms where threads
only busy-wait for short periods of time and then block. In
addition, a spin-then-notify synchronization mode was also
proposed in our study to make spinning visible to the oper-
ating system. Since using runnable thread count proved to
be a good heuristic for approximating the amount of paral-
lelism in the application, we use it along with other metrics
for computing the utility factor in the CAMP scheduler.

Prior to our work on the PA algorithm, Annavaram et
al. proposed a application-level AMP algorithm that caters
to the application’s TLP [1], but this algorithm required
modifying an application whereas our approach is able to
improve performance in a transparent way. Furthermore, an
application-level scheduler only addresses scenarios when

there is only one application running in the system, while an
OS scheduler addresses multi-application workloads as well.

A scheduler proposed by Mogul et al. employed another
type of core specialization (not previously discussed in this
paper) where one slow core was reserved for executing sys-
tem calls [11]. In a similar vein, Kumar et al. proposed spe-
cializing a slow core for running the controlling domain of
a virtual machine monitor Xen [9]. Unfortunately perfor-
mance improvements from Mogul’s scheduler were not very
large due to overhead associated with migrating a system
call to a slow core. Nevertheless, our implementation is also
aware of this kind of core specialization since all Solaris’
kernel threads are scheduled on slow cores.

Other asymmetry-aware schedulers of which we are
aware did not target core specialization, but pursued other
goals, such as ensuring that a fast core does not go idle be-
fore slow cores [2], or keeping the load on fast cores higher
than the load on slow cores [10].

While existing AMP schedulers addressed parts of the
problem they did not provide a comprehensive solution: one
that would address a wide range of workloads as opposed
to targeting a selected workload type. Our goal in CAMP
scheduler is to close this gap.

Finally, we should highlight that in this work we emu-
lated an asymmetric system by scaling the frequency of in-
dividual cores. Although this is not the most accurate way
to approximate future AMP platforms, in which the cores of
different types are also likely to have different pipeline archi-
tectures (e.g., simple in-order vs. complex out-of-order), this
methodology permitted us to run our experiments on a real
system, as opposed to a simulator. As a result, we were able
to do a much more extensive analysis than what would have
been possible on a simulator. Nevertheless, work by other re-
searchers (carried out concurrently with ours) suggests that
conclusions made in our work would apply to asymmet-
ric systems with more profound differences between core
micro-architectures. We are referring to the work by Ko-
ufaty, Reddy and Hahn from Intel [6], where the authors used
proprietary tools to emulate an asymmetric system where the
cores differed in the number of micro-ops that could be re-
tired per cycle. The authors assumed cores of two types: a
big core capable of retiring up to four micro-ops per cycle,
and a small core capable of retiring at most one micro-op
per cycle. For single threaded applications from the SPEC
CPU 2006 suite, they found that the relative speedup on
the big core relative to a small core highly correlates with
the amount of external stalls generated by the application,
which are in turn approximated by memory reads and re-
quests for cache line ownership. In our work, this relative
speedup is approximated using last-level cache miss rates,
which include the metrics used in the Intel work and would
have a high correlation with them. In conclusion, this sug-
gests that the findings of our work could have direct appli-

cation to systems with more significant differences between
the cores than in our experimental system.

3. Utility Factor
Given a system with NFC fast cores, the Utility Factor (UF)
is a metric approximating the application speedup if NFC of
its threads are placed on fast cores and any remaining threads
are placed on slow cores, relative to placing all its threads on
slow cores. Speedup is measured using the following for-
mula: Speedup = Tbase/Talt, where Tbase is the completion
time for the application in the “base” configuration, where
only slow cores are used, in our case, and Talt is the comple-
tion time in the “alternative” configuration, where both fast
and slow cores are used.

The formula for the UF is shown in Equation 1:

UF =
SFapp

MAX(1, NTHREADS − (NFC − 1))2
(1)

NTHREADS is the number of threads in the application,
which is visible to the operating system, since most mod-
ern runtime environments map user threads one-to-one onto
kernel threads. SFapp is the average speedup factor of the ap-
plication’s threads when running on a fast core relative to a
slow core; we describe how we obtain it at runtime in Sec-
tion 4.1.2.

In constructing the model for the utility factor we make
two simplifying assumptions:

• Only the threads of the target application, i.e., the ap-
plication for which the UF is estimated, are allowed
to use fast cores. This would not be the case under a
fair scheduling policy, which would attempt to share fast
cores among all “eligible” threads from different applica-
tions. Taking into account all possible ways in which fast
cores can be shared, however, would introduce too much
complexity for an efficient online algorithm.

• The number of threads in the application does not exceed
the number of slow cores. Given that the number of slow
cores is likely to be large relative to fast cores, this as-
sumption is, first of all, reasonable, because CPU-bound
applications are not likely to be run with more threads
than cores [13], and, second, will not introduce a signif-
icant error into our model, at least for the applications
that we considered (parallel scientific applications from
SPEC OMP2001 suite, plus a few others). As the number
of threads begins to exceed the number of fast cores, the
UF rapidly approaches zero. So even if the application
has more threads than assumed by our formula, the UF
estimation should remain accurate.

The scheduler will use this model to estimate the utility
factor for each application. Threads of the application with
the highest utility factor will then be assigned to run on fast
cores: the higher the utility factor the more the application

benefits from using fast cores. Note that if an application
dynamically changes the number of active threads, as it
enters a sequential phase, for example, the scheduler would
recompute the utility factor to reflect this change.

Let us describe the intuition behind the formula for the
utility factor. The easiest way to understand it is to first con-
sider the case where the application has only a single thread.
In this case, UF=SF; in other words the utility factor is equal
to the speedup that this application will experience from run-
ning on a fast core relative to a slow core. Next, let us address
the case when the application is multithreaded. If all threads
were running on fast cores, then the entire application would
achieve the speedup of SF. In that case, the denominator is
equal to one and UF=SF. However, if the number of threads
is greater than the number of fast cores, then only some of
the threads will run on fast cores and the overall utility factor
will be less than SF. To account for that, we must divide SF
by one greater than the number of threads that would not be
running on fast cores: NTHREADS − (NFC − 1). Finally, we
introduce a quadratic factor in the denominator, because we
determined experimentally that if some of the threads ex-
perience the speedup because of running on fast cores and
others do not, the overall application speedup is smaller than
the portion of speedup achieved by threads running on fast
cores. That is because threads running on fast cores must
synchronize with the threads running on slow cores, so they
do not fully contribute to the application-wide speedup. In-
troducing the quadratic factor in the formula enables to ac-
count for that effect rather accurately as we will show with
experimental results.

Next we demonstrate that the utility factor model closely
approximates the speedup on asymmetric systems for highly
parallel applications. Figure 1 shows the estimated and
actual UF for several parallel applications with different
synchronization patterns and memory-intensity using an
asymmetric-aware scheduler that keeps all fast-cores busy2.
We performed validation for other highly parallel applica-
tions from the OpenMP2001 and Minebench suites as well,
but the data is omitted due to space limitations, especially
since they behave similarly. The UF was measured and es-
timated for a machine with two fast cores and eight slow
cores (2FC-8SC). A fast core was twice as fast as the slow
core (we provide more details on our experimental setup in
Section 5). The SF for the threads was estimated offline by
running the application with a single thread first on slow
cores, then on fast cores and computing the speedup. The
figure shows that the estimated utility factor closely tracks
the quantity it attempts to approximate.

2 This scheduler (described in [10]) resembles the actual behavior of our
CAMP scheduler when a highly parallel application runs solo in the system.

4. Design and Implementation
In this section we describe the design and implementation of
the CAMP scheduler as well as the other schedulers used for
comparison.

4.1 The CAMP Scheduler
4.1.1 The algorithm
CAMP decides which threads to place on cores of different
types based on their individual utility factors. According
to their utility factors, threads are categorized into three
classes: LOW, MEDIUM, and HIGH. Using classes allows
to mitigate any inaccuracies in estimation of SF used in
the UF formula as well as provide comparable treatment
for threads whose utility factors aver very close. Threads
falling in the HIGH utility class will run on fast cores. If
there are more such threads than fast cores, the cores will
be shared among these threads equally, using a round-robin
mechanism.

If after all high-utility threads were placed on fast cores
there are idle fast cores remaining, they will be used for
running medium-utility threads or, if no such threads are
available, low-utility threads (we do not optimize for power
consumption in this work, so our scheduler tries to keep fast
cores as busy as possible). In contrast with threads in the
HIGH utility class, fast cores will not be shared equally for
threads in the MEDIUM and LOW utility classes. Sharing
the cores equally implies cross-core migrations as threads
are moved between fast and slow cores. These migrations
hurt performance, especially for memory-intensive threads,
because threads may lose their last-level cache state as a
result of migrations. The effect of migrations in asymmetry-
aware schedulers on performance was extensively explored
in our previous work [4], and so we do not provide the
related performance analysis in this paper.

Threads of parallel applications executing a sequen-
tial phase will be designated to a special class SEQUEN-
TIAL BOOSTED. These threads will get the highest priority
for running on fast cores: this provides more opportunities
to accelerate sequential phases. Only high-utility threads,
however, will be assigned to the SEQUENTIAL BOOSTED
class. Medium- and low-utility threads will belong to their
regular class despite running sequential phases. Since these
threads do not use fast cores efficiently, it is not worthwhile
to give them an elevated status. Threads placed in the SE-
QUENTIAL BOOSTED class will remain there for the du-
ration of amp boost ticks, a configurable parameter.
After that, they will be downgraded to their regular class,
as determined by the utility factor, to prevent them from
monopolizing the fast core.

The class-based scheme followed by CAMP relies on
two utility thresholds, lower and upper, which determine the
boundaries between the LOW, MEDIUM and HIGH utility
classes. The lower threshold is used to separate the LOW and

wupwise_m

-10%
0%

10%
20%
30%
40%
50%
60%
70%
80%

1 2 3 4 5 6 7 8
number of threads

sp
ee

du
p

(%
)

 Observed speedup
using all FCs

Utility Factor

swim_m

-5%
0%

5%
10%
15%

20%
25%

30%
35%

1 2 3 4 5 6 7 8
number of threads

sp
ee

du
p

(%
)

 Observed speedup
using all FCs

Utility Factor

kmeans

-20%

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8
number of threads

sp
ee

du
p

(%
)

 Observed speedup
using all FCs

Utility Factor

Figure 1. Comparison between the observed speedup using all fast cores in a 2FC-8SCs configuration over using slow cores
only to the speedup approximated using the UF model.

MEDIUM classes, the upper threshold is used to separate the
MEDIUM and HIGH classes.

CAMP has a built-in mechanism to dynamically, and in a
transparent way, select which utility thresholds to use based
on the system workload. There are two pairs of utility thresh-
olds, one for when only single-threaded applications run
on the system, and the other for when at least one multi-
threaded application is running on the system. When multi-
threaded applications are present, we see a higher range
of utility factors than when only single-threaded applica-
tions are present, and so different thresholds than in single-
threaded mode are used to reflect this higher range. These
thresholds are also machine dependent: on systems with a
large difference between the speed of fast and slow cores
the utility factors will be larger than on systems where this
difference is small.

For example, utility factors for single-threaded applica-
tions used in our study were 23 and above on our experi-
mental system (because the speedup factor relative to a slow
core is at least 23%). At the same time, multi-threaded appli-
cations will often have a utility factor as low as 0 (Figure 1).
So a single-threaded application whose utility factor is low
relative to other single-threaded applications will neverthe-
less have a high UF relative to most multi-threaded applica-
tions. To properly reflect the relationship between threads’
UFs when placing them into classes we use different sets of
thresholds for single-threaded and multi-threaded scenarios.

4.1.2 Computing the speedup factor

A speedup factor for a thread is formally defined as IPSfast

IPSslow
,

where IPSfast and IPSslow are the thread’s instructions per
second (IPS) ratios achieved on fast and slow cores respec-
tively. As explained earlier, the traditional method for com-
puting the SF involved running each thread on each core
type, but that disrupted load balance and hurt performance.

Our new method for computing the speedup factor SF
relies on threads’ LLC (last-level cache) miss rates measured
online using hardware performance counters. The miss rate
can be measured on any type of core; there is not need to run
the thread on both core types. To estimate the SF from the
LLC miss rate we used the following approach developed

in our previous work [12]. We compute the hypothetical
completion time for some constant number of instructions
on both core types. We compose the completion time of two
components: execution time and stall time. To compute the
execution time we assume a cost of 1.5 cycles per instruction
and factor in the clock speed. To compute the stall time,
we estimate the number of cycles used to service the LLC
misses occurring during that instruction window: for that
we require the per-instruction LLC miss rate, which the
scheduler measures, and the memory latency, which can be
discovered by the operating system.

This method for estimating the stall time abstracts many
details of the microarchitecture: the fact that not all cache
misses stall the processor because of out-of-order execution,
the fact that some cache misses are actually pre-fetch re-
quests that also do not stall the processor, the fact that some
cache misses can be serviced in parallel, and the fact that the
memory latency may be different depending on memory bus
and controller contention as well as non-uniform memory
access (NUMA) latencies on some architectures. Account-
ing for all these factors is difficult, because their complex
inter-relationship is not well understood. Using instead a
simple model that relies solely on the LLC and assumes a
stable latency did not prevent our scheduler from perform-
ing successfully (see validation results in Section 5.1). Nev-
ertheless, there is no limitation in CAMP that prevents the
use of more accurate SF models. For instance, in [6], the
authors use a similar approach for estimating external stalls
(i.e. any stall due to resources external to the core), but their
SF model also uses additional performance counters to ac-
count for internal stalls caused by branch mispredictions and
the contention of other internal resources. We could extend
CAMP with this additional metric but we found it does not
provide higher accuracy on our emulated AMP system since
internal stalls are the same on both core types (they have the
same micro-architecture).

In CAMP, LLC miss rates are measured for each thread
continuously, and the values are sampled every 20 timer ticks
(roughly 200ms on our experimental system). We keep a
moving average of the values observed at different periods
and we discard the first values collected immediately after

the thread starts or after it is migrated to another core in or-
der to correct for cold-start effects causing the miss rate to
spike intermittently after migration. We also use a carefully
crafted mechanism to filter out transitions between differ-
ent program phases. Updating SF estimations during abrupt
phase changes may trigger premature changes in the UF and,
as a result, unnecessary migrations, which may cause sub-
stantial performance overhead. Instead, SF estimations are
updated exclusively once a thread enters a phase of stable be-
havior. To detect those stable phases, we use a light-weight
mechanism based on a phase transition threshold parame-
ter (12% in our experimental platform). When the moving
average is recorded, it is compared with the previous aver-
age measured over the previous interval. If the two differ
by more than the transition threshold, a phase transition is
indicated. Two or more sampling intervals containing no in-
dicated phase transition signal a stable phase.

On processors with shared caches the thread’s miss rate
may vary due to the sharing of the cache with other threads,
in addition to reasons related to internal program structure.
For example, the miss rate may decrease because of co-
operative data sharing or increase because of cache con-
tention. However, we observed that the quality of the miss
rate does not change significantly regardless if the thread
shares a cache or runs solo: i.e., if the thread’s miss rate is
low relative to other threads when it runs solo, its value rel-
ative to other threads will stay low when it shares the cache
even though it may increase by tens or hundreds of percent
relative to its solo value. Similarly, if the thread’s miss rate
is high it will stay high relative to other threads, regardless
if there is sharing.

We define three categories for the speedup factors and
each category is labeled by a “representative” SF of that cat-
egory. The representative SF is machine-specific and was set
empirically. The thresholds delimiting the categories were
also chosen experimentally. After estimating a thread’s SF
we determine what category it fits in and assign it the SF
equal to the label value corresponding to that category. In
Section 5 we compare observed and estimated ratio and
show that our model have enough accuracy to effectively
guide scheduling decisions.

When computing the utility factor for a thread, we do
not average the SFs of all threads in this application, but
we use the SF of the thread in question. Averaging the SF
values would require cross-thread communication, which
could damage the scalability of the scheduler. Using the
current thread’s SF is a good approximation of averaging
for the following reason. First of all, in most applications
we examined (see more about our selected benchmarks in
Section 5) all threads do the same type of work, so their SF
values would be the same. In applications where threads do
different work, the most frequently occurring SF values will
dominate and ultimately determine where most application
is scheduled.

Finally, we describe an optimization related to the com-
putation of the utility factor. The overhead of measuring the
LLC miss rates is negligible at the sampling rate we use.
However, we found during early development stages that
computing the UF and updating the associated data struc-
tures at every sampling period may introduce some over-
heads. Fortunately, these can be substantially removed by
applying certain optimizations. For instance, if we determine
that a thread of a highly threaded application could never
achieve a MEDIUM or HIGH utility factor even if it had the
highest SF possible (i.e. the speed ratio between the fast and
the slow cores), we do not recalculate the SF for the threads
in this application unless the number of threads decreases,
effectively removing the associated overheads.

4.2 The other schedulers
There are three other schedulers with which we compare the
CAMP algorithm: Parallelism-Aware (PA), which delivers
TLP specialization only, SF-Driven (SFD), which delivers
efficiency specialization only, and round-robin (RR), which
equally shares fast and slow cores among all threads. We
implemented all these algorithms in OpenSolaris. We do not
compare with the default scheduler present in our experi-
mental operating system, because the performance with this
scheduler exhibited a high variance making the comparison
difficult. Nevertheless, RR’s performance is comparable to
or better than the default scheduler, so this is a good base-
line.

The PA scheduler has the same code base as the CAMP
scheduler, but since it accounts only for TLP, it uses the
default SF value in the UF formula (Equation 1). The de-
fault SF is the upper bound on the achievable SF on the
given system: the theoretical maximum for the IPS ratios
between fast and slow cores. PA, like CAMP, boosts the
fast-core priority of threads executing sequential phases
of parallel applications by assigning them into SEQUEN-
TIAL BOOSTED class. However, since PA does not com-
pute applications-specific speedup factor, it cannot distin-
guish between HIGH, MEDIUM and LOW utility threads.
So unlike CAMP, which will place only high-utility threads
in the SEQUENTIAL BOOSTED class, PA will place all
threads executing sequential phases in that class.

SFD, similarly to PA uses the UF formula where the
number of threads is always equal to one, since it does not
account for TLP of the application. The SFD estimates the
SF using our new method based on LLC miss rates.

The RR algorithm shares fast and slow cores among
threads using the same mechanism that CAMP uses to share
fast cores among applications of the HIGH utility class.

4.3 Topology-aware design
An important challenge in implementing any asymmetry-
aware scheduler is to avoid the overhead associated with mi-
grating threads across cores. Any asymmetry-aware sched-
uler relies on cross-core migrations to deliver the benefits

of its policy. For example, CAMP must migrate a high util-
ity thread from a slow core to a fast core if it detects that the
thread is executing a sequential phase. Unfortunately, migra-
tions can be quite expensive, especially if the source and tar-
get cores are in different memory domains of the memory hi-
erarchy3. On NUMA architectures remote memory accesses
further aggravate this issue and migration cost can be even
higher.

However, any attempt to reduce the number of migrations
may backfire by decreasing the overall benefits of asym-
metric policies. A more feasible solution, in our opinion,
is to consider ways of making migrations less expensive.
In particular, if AMP systems are designed such that there
is a fast core in each memory hierarchy domain (i.e., per
each group of slow cores sharing a cache), migration over-
head might be mitigated. Indeed, in a previous paper we
have shown [4] that the overhead of migrations becomes
negligible with such migration-friendly designs as long as
the schedulers minimize cross-domain migrations. Based
on these insights, our implementations of all the investi-
gated schedulers have been carefully crafted to avoid cross-
domain migrations when possible (i.e. all the schedulers are
topology-aware).

5. Experiments
The evaluation of the CAMP algorithm was performed on
an AMD Opteron system with four quad-core (Barcelona)
CPUs. The total number of cores was 16. The system has a
NUMA architecture. Access to a local memory bank incurs
a shorter latency than access to a remote memory bank. Each
core has private 64KB instruction and data caches, and a
private L2 cache of 512KB. A 2MB L3 cache is shared by
the four cores on a chip. Each core is capable of running at a
range of frequencies from 1.15 GHz to 2.3 GHz. Since each
core is within its own voltage/frequency domain, we are able
to vary frequency for each core independently. To create an
AMP configuration we configure some cores to run at 2.3
GHz (fast cores) and others to run at 1.15 GHz (slow cores).
We also varied the number of cores in the experimental
configurations by disabling some of the cores. For validating
accuracy of our method for estimating the speedup factor we
also used an Intel Xeon system with two quad-core CPUs,
running in the frequency ranges of 2 and 3 GHz.

In our experiments we used four AMP configurations: (1)
1FC-12SC – one fast core and 12 slow cores, the fast core is
on its own chip and the other cores on that chip are disabled;
(2) 4FC-12SC – four fast cores and 12 slow cores, and (3)
2FC-2SC – two fast cores, two slow cores, each on its own
chip .

We experimented with applications from the SPEC OMP
2001, the SPEC CPU 2006, and the Minebench suites, as
well as BLAST – a bioinformatics benchmark – and FFT-W

3 A memory hierarchy domain in this context is defined as a group of cores
sharing a last-level cache.

– a scientific benchmark performing the fast Fourier trans-
form. In all workloads (multi-application), we ensure that all
applications are started simultaneously and when an applica-
tion terminates it is restarted repeatedly until the longest ap-
plication in the set completes three times. The observed stan-
dard deviation was negligible in most cases (so it is not re-
ported) and where it was large we restarted the experiments
for as many times as needed to guarantee that the deviation
reached a low threshold. Average completion time for all the
executions of a benchmark under a particular asymmetry-
aware scheduler is compared to that under RR, and percent
speedup is reported.

In all experiments, the total number of threads (sum of
the number of threads of all applications) was set to match
the number of cores in the experimental system, since this
is how runtime systems typically configure the number of
threads for CPU-bound workloads that we considered [13].

Our evaluation Section is divided into three parts. In Sec-
tion 5.1 we evaluate the accuracy of our method for estimat-
ing the speedup factor. In Section 5.2 we describe the work-
loads that we tested and briefly discuss results for single-
threaded applications. In Section 5.3 we present aggregate
results for all workloads with all schedulers, and analyze the
multi-threaded workloads in more detail.

5.1 Accuracy of SF estimation
In this subsection we compare the estimated SF to the ac-
tual SF for all applications in SPEC CPU2006. Actual SF is
measured by running the application on the slow core, then
on the fast core, and computing the speedup. Estimated SF is
obtained from the average LLC measured throughout the en-
tire run of the application. Figure 2 shows the measured and
the estimated ratios on our AMD and Intel systems respec-
tively. Measured speedup ratios obtained in the environment
where threads are periodically migrated between different
cores are also measured – these data better reflect the realis-
tic conditions under which the SF must be obtained

As Figure 2 shows, the estimates are accurate for CPU-
intensive applications on both platforms (on the right side
of the chart), but less accurate for medium applications (on
the center of the chart). As we explained earlier, inaccuracies
occur as a result of the simplifying assumptions made in our
model.

We observed that model inaccuracies are mitigated when
it is used in the scheduler, because the scheduler categorizes
applications into coarse Speedup Factor classes rather than
relying solely on SF estimates. On both platform, the thresh-
olds that define these classes are set empirically to 1

2 and 4
5

of the maximum SF attainable, as shown in Figure 2.

5.2 Workloads
We experimented with two sets of workloads: those consist-
ing of single-threaded applications, typically targeted by al-
gorithms like SFD, and those including multi-threaded ap-
plications, typically targeted by algorithms like PA.

1

1.2

1.4

1.6

1.8

2

2.2

lib
qu

an
tu

m

m
cf

m
ilc

so
pl

ex

om
ne

tp
p

gc
c

as
ta

r

sp
hi

nx
3

G
em

sF
D

TD

xa
la

nc
bm

k

bw
av

es

lb
m

de
al

II

ze
us

m
p

w
rf

le
sl

ie
3d

pe
rl

be
nc

h

po
vr

ay

ca
ct

us
A

D
M

bz
ip

2

to
nt

o

hm
m

er

h2
64

re
f

ca
lc

ul
ix

na
m

d

go
bm

k

ga
m

es
s

sj
en

g

gr
om

ac
s

Sp
ee

du
p

Fa
ct

or

observed SF

estimated SF

observed SF with migrations

LOW (SF< 1.55) MEDIUM (1.55<=SF< 1.8) HIGH (SF>= 1.8)

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

lb
m

lib
qu

an
tu

m

m
ilc

m
cf

so
pl

ex

om
ne

tp
p

as
ta

r

bw
av

es gc
c

G
em

sF
D

TD

xa
la

nc
bm

k

w
rf

le
sl

ie
3d

sp
hi

nx
3

de
al

II

ca
ct

us
A

D
M

ze
us

m
p

pe
rl

be
nc

h

sj
en

g

bz
ip

2

to
nt

o

go
bm

k

ca
lc

ul
ix

h2
64

re
f

ga
m

es
s

hm
m

er

na
m

d

gr
om

ac
s

po
vr

ay

Sp
ee

du
p

Fa
ct

or

observed SF

estimated SF

observed SF with migrations

LOW (SF< 1.23) MEDIUM (1.23<=SF< 1.4) HIGH (SF>= 1.4)

Figure 2. Observed and predicted speedup factors for all benchmarks of SPEC CPU2006 benchmarks on an AMD Opteron
(top) and an Intel Xeon (bottom) platforms.

5.2.1 Single-threaded applications
To evaluate our scheduling algorithms for different types of
applications and workloads, we selected eleven applications
from the SPEC CPU 2006 suite and constructed ten work-
loads containing representative pairs. In selecting applica-
tions, we tried to cover a wide variety of behaviors. Some
benchmarks are either memory-intensive (such as mcf and
milc) or CPU-intensive (such as gromacs and sjeng),
whereas others exhibit different phases across their execu-
tion (astar is a memory-intensive application that also ex-
hibits some cpu-intensive phases).

The ten workloads shown in Table 1 cover a rich set
of scenarios. 4CI and 4MI are homogeneous workloads
that combine applications of the same class (either CPU-
intensive or memory-intensive applications) and xCI-yMI
are heterogeneous workloads that mix memory-intensive
and CPU-intensive applications. The categories in the left
column are listed in the same order as the correspond-
ing benchmarks, so for example in the 1CI-3MI category
gromacs is the CPU-intensive (CI) application and milc,
soplex and mcf are the memory-intensive (MI) applica-
tions. The last three workloads labeled as Phased include
applications that do not fall into a clean class since they
exhibit different phases.

Results for these workloads running under PA, CAMP
and SF are shown in Figure 3. To complement our assess-

Categories Benchmarks
4CI gamess, perlbench, povray, gromacs
3CI-1MI sjeng, gamess, gromacs, soplex,
2CI-2MI A perlbench, povray, soplex, mcf
2CI-2MI B gromacs, sjeng, milc, soplex
1CI-3MI A gamess, milc, soplex, mcf
1CI-3MI B gromacs, milc, soplex, GemsFDTD
4MI GemsFDTD, milc, soplex, mcf
Phased1 astar, astar, milc, leslie3d
Phased2 sjeng, astar, milc, leslie3d
Phased3 astar, astar, GemsFDTD, GEMSFDTD

Table 1. Multi-application workloads consisted of single-
threaded applications

ment on the effectiveness of SF predictions, we also pro-
vide a comparison with a “Best Static” assignment, which
ensures applications with the highest overall ratios to run on
fast cores. As expected, PA behaves like RR since it is un-
aware of the efficiency of individual threads and, as a result,
assigns all applications to the HIGH utility class and fair-
shares fast cores among them. CAMP and SFD perform sim-
ilarly, since UF=SF for single-threaded applications. Over-
all, we observed that these algorithms effectively distinguish
between CPU-intensive and memory-intensive code and per-
form thread-to-core mappings closer to the “Best Static”, in
the absence of phase changes (on the Intel platform, SFD and
CAMP behave better due to the higher accuracy of the SF

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

12%

14%
4C

I

3C
I-1

M
I

2C
I-2

M
I_

A

2C
I-2

M
I_

B

1C
I-3

M
I_

A

1C
I-3

M
I_

B

4M
I

Ph
as

ed
1

Ph
as

ed
2

Ph
as

ed
3

gm
ea

n
sp

ee
du

p
ov

er
 R

R
(%

)

PA CAMP SFD Best static

-2%

0%

2%

4%

6%

8%

10%

4C
I

3C
I-1

M
I

2C
I-2

M
I_

A

2C
I-2

M
I_

B

1C
I-3

M
I_

A

1C
I-3

M
I_

B

4M
I

Ph
as

ed
1

Ph
as

ed
2

Ph
as

ed
3

gm
ea

n
sp

ee
du

p
ov

er
 R

R
(%

)

PA CAMP SFD Best static

Figure 3. Speedup of PA, SFD, CAMP and Best Static
schedulers when running single-threaded workloads on the
2FC-2SC AMD (top) and Intel (bottom) platforms.

estimations). For applications that exhibit different phases
across their execution, “Best Static” does not guaranty opti-
mal mappings.

5.2.2 Single-threaded and multi-threaded applications
We categorized applications into three groups with respect
to their parallelism: highly parallel applications (HP), par-
tially sequential (PS) applications (parallel applications with
a sequential phase of over 25% of execution time), and
single-threaded applications (ST). In order to cater to appli-
cation memory-intensity we divided, in turn, the three afore-
mentioned groups into memory-intensive (MI) and CPU-
intensive classes (CI), resulting in six application classes:
HPCI and HPMI classes for highly parallel applications,
CPU-intensive and memory-intensive, respectively; PSCI
and PSMI classes for partially sequential applications, and
STCI and STMI classes for single-threaded applications.

We constructed nine workloads consisting of represen-
tative pairs of benchmarks across the previous categories
mentioned above as shown in Table 2. The categories in the
left column are listed in the same order as the correspond-
ing benchmarks, so for example in the STCI-PSMI cate-
gory gamess is the single-threaded CPU-intensive (STCI)
application and FFTW is the partially sequential memory-
intensive (PSMI) application. The numbers in parentheses
next to the application class indicate the number of threads
chosen for that application: the first number for the 1FC-
12SC configuration and the second number for the 4FC-
12SC configuration.

At a first glance, it can be observed from the workloads
that not all possible pairs of classes are actually covered. For
the sake of analyzing benchmark pairings that expose diver-
sity in instruction-level and thread-level parallelism we did

Categories Benchmarks
STCI-PSMI gamess, FFTW (12,15)
STCI-PSCI gamess, BLAST (12,15)
STCI-HP gamess, wupwise m (12,15)
STMI-PSMI mcf, FFTW (12,15)
STMI-PSCI mcf, BLAST (12,15)
STMI-HP mcf, wupwise m (12,15)
PSMI-PSCI FFTW (6,8), BLAST (7,8)
PSMI-HP FFTW (6,8), wupwise m (7,8)
PSCI-HP BLAST (6,8), wupwise m (7,8)

Table 2. Multi-application workloads with both single-
threaded and multi-threaded applications

not pick pairs consisting of co-runners of the same class.
Note also that highly parallel memory-intensive benchmarks
have been deliberately discarded from these workloads. In
preliminary experiments we observed that for benchmark
pairings with a highly parallel application (either HPCI or
HPMI), schedulers that rely on the number of threads when
making scheduling decisions (CAMP and PA) mapped all
threads of the HP application on slow cores. The actual
reason behind this behavior is that a high number of ac-
tive threads (this happens most of the time for HP appli-
cations) dominates the value of the utility factor and, as a
result CAMP and PA schedulers always assign a LOW util-
ity class for all threads, regardless of their memory-intensity
(SF). For that reason, we only included wupwise m as a rep-
resentative HP application (a CPU-intensive parallel bench-
mark from SPEC OpenMP 2001), discarding other memory-
intensive applications of the same suite (such as equake m or
swim m).

For the sake of completeness, we have also studied ad-
ditional multi-application workloads that combine parallel-
and single- threaded applications, but exhibit a wider vari-
ety of memory-intensity than those in Table 2, which focus
on exploring the impact of thread level parallelism. Table 3
shows this additional set.

Both OpenMP and POSIX threaded applications use
adaptive synchronization modes, as such, sequential phases
are exposed to the operating system in both cases. Nev-
ertheless, applications implemented using POSIX threads
(BLAST, FFT-W) spin for shorter periods of time before
blocking (these are the default parameters used in OpenSo-
laris).

5.3 Aggregate results and detailed analysis of
multi-threaded workloads

Figure 4 shows the geometric mean of the speedups
achieved by the three asymmetry-aware schedulers (SFD,
PA and CAMP) normalized to RR, when running on the
AMD platform. Only CAMP is able to deliver performance
gains across the wide variety of workloads analyzed in our
study, which is the major contribution of this research.

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

4C
I

3C
I-1

M
I

2C
I -2

M
I_

A

2C
I -2

M
I_

B

1C
I -3

M
I_

A

1C
I -3

M
I_

B

4M
I

Ph
a s

e d
1

Ph
a s

e d
2

Ph
a s

e d
3

ST
CI

-P
SM

I

ST
CI

-P
SC

I

ST
CI

-H
P

ST
M

I -P
SM

I

ST
M

I -P
SC

I

ST
M

I -H
P

PS
M

I -P
SC

I

PS
M

I -H
P

PS
C I

-H
P

gm
ea

n
sp

ee
du

p
ov

er
 R

R
(%

)

SFD CAMP PA

SINGLE-THREADED WORKLOADS
(2FC-2SC)

MULTI-THREADED WORKLOADS
(1FC-12SC)

Figure 4. Gmean speedup of SFD, PA and CAMP schedulers when running single threaded and multi-threaded workloads on
the AMD platform.

-40%

-20%

0%

20%

40%

60%

80%

100%

ga
m

es
s

FF
TW

ST
CI

-P
SM

I

ga
m

es
s

BL
A

ST

ST
CI

-P
SC

I

ga
m

es
s

w
up

w
is

e_
m

ST
CI

-H
P

m
cf

FF
TW

ST
M

I-P
SM

I

m
cf

BL
A

ST

ST
M

I-P
SC

I

m
cf

w
up

w
is

e_
m

ST
M

I-H
P

FF
TW

BL
A

ST

PS
M

I-P
SC

I

FF
TW

w
up

w
is

e_
m

PS
M

I-H
P

BL
A

ST

w
up

w
is

e_
m

PS
CI

-H
P

sp
ee

du
p

ov
er

 R
R

(%
)

SFD PA CAMP

Figure 5. Speedup of asymmetry-aware schedulers on the 1FC-12SC AMD platform.

‐20%

‐10%

0%

10%

20%

30%

40%

50%

60%

70%

ga
m
es
s

FF
TW

ST
CI
‐P
SM

I

ga
m
es
s

BL
A
ST

ST
CI
‐P
SC
I

ga
m
es
s

w
up

w
is
e_
m

ST
CI
‐H
P

m
cf

FF
TW

ST
M
I‐P

SM
I

m
cf

BL
A
ST

ST
M
I‐P

SC
I

m
cf

w
up

w
is
e_
m

ST
M
I‐H

P

FF
TW

BL
A
ST

PS
M
I‐P

SC
I

FF
TW

w
up

w
is
e_
m

PS
M
I‐H

P

BL
A
ST

w
up

w
is
e_
m

PS
CI
‐H
Psp

ee
du

p
ov
er
 R
R
(%

)

SFD PA CAMP

Figure 6. Speedup of asymmetry-aware schedulers on the 4FC-12SC AMD platform.

Categories Benchmarks
4CI-1PSMI-1HP gobmk, h264ref, gamess,

povray,FFTW(6),wupwise m(6)
4CI-4MI-1HP games, gobmk, h264ref,

gromacs, milc, mcf, soplex,
libquantum, equake m(8)

4CI-4MI-1PSMI calculix, hmmer, gamess,
sjeng, milc, mcf, soplex,
libquantum, FFTW(8)

3CI-1MI-1PSCI gamess, gobmk, hmmer,
soplex, semphy(12)

Table 3. Additional multi-application workloads with both
single-threaded and multi-threaded applications

Before discussing in detail per-application results, it’s
worth to analyze the behavior of the partially sequential ap-
plications included in the workloads: BLAST (PSCI) and
FFTW (PSMI). As opposed to other parallel applications
that create all threads at the beginning of the execution, both
BLAST and FFTW exhibit several distinct parallel phases
where threads are destroyed at the end of a phase and new
threads are created at the beginning of the subsequent one.
When scheduled by algorithms relying on on-line SF moni-
toring (CAMP and SFD), new spawned threads will have to
go through the initial warm_up period until they’re eligi-
ble to be scheduled on fast cores. This means that frequent

-10%
0%

10%
20%
30%
40%
50%
60%

go
bm

k

h2
64

re
f

ga
m

es
s

po
vr

ay

FF
TW

w
up

w
is

e_
m

4C
I-1

PS
M

I-1
H

P

ga
m

es
s

go
bm

k

h2
64

re
f

gr
om

ac
s

m
ilc

m
cf

so
pl

ex

lib
qu

an
tu

m

eq
ua

ke
_m

4C
I-4

M
I-1

H
P

c a
lc

ul
ix

hm
m

er

ga
m

es
s

sj
en

g

m
ilc

m
cf

so
pl

ex

lib
qu

an
tu

m

FF
TW

4C
I-4

M
I-1

PS
M

I

ga
m

es
s

go
bm

k

hm
m

er

so
pl

ex

se
m

ph
y

3C
I-1

M
I-1

PS
CIsp

ee
du

p
ov

er
 R

R
(%

)

PA CAMP

Figure 7. Speedup of PA and CAMP schedulers for additional workloads on the 4FC-12SC AMD platform.

thread creation and destruction might imply that threads will
be running on slow cores more often. Common characteris-
tics of both FFTW and BLAST are having significant serial
bottlenecks (over 40% of total execution time) as well as
CPU-intensive parallel phases.

Serial phases in FFTW (memory-intensive) comprise
roughly 80% of the total execution time so we can globally
categorize this application as memory-intensive. By analyz-
ing per-thread behavior over time using performance moni-
toring counters, we found that FFTW’s serial phases are, in
turn, divided into a very short CPU-intensive phase (at the
beginning) and a long memory-intensive phase. According
to the boosting feature incorporated into CAMP, the thread
executing a sequential phase is initially assigned to the SE-
QUENTIAL PART class, since the thread starts exhibiting
a CPU-intensive behavior. Later on, when the serial thread
enters the memory-intensive phase, CAMP downgrades it
into the MEDIUM class.

PA, as well as CAMP supports explicit boosting of
the priority for running on a fast core for a thread ex-
ecuting a sequential phase of the application. After ex-
ploring the effect of varying the customizable parameter
amp_boost_ticks, we set it to one hundred timeslices (1
second), which ensures the acceleration of sequential phases
without monopolizing the fast core.

Figures 5 and 6 show the results for the 1FC-12SC and
4FC-12SC configurations respectively. There is a speedup
bar for each application in the workload as well as the mean
speedup for the workload as a whole labeled with the name
of the workload from Table 2. The first thing to highlight is
that RR behaves well when there just a few threads running
in the system since all of them will get a significant “slice”
of fast cores. Workloads with few threads include those with
two PS applications (recall that our PS applications have
large phases where only a single thread is active) as well as
with one ST and one PS application. Now, we analyze each
workload separately for the 1FC-12SC configuration:

• (STCI-PSMB) PA boosts the large sequential phase of
FFTW (memory-intensive) at the expense of schedul-
ing the CPU-intensive sequential application (gamess) on
slow cores. RR, in contrast, shares the fast cores between

the sequential phase of FFTW and gamess, behaving bet-
ter than PA as a result. CAMP only schedules FFTW on
the fast core during the initial CPU-intensive portion of
its sequential phase, leaving the fast core available for
gamess most of the time. Since gamess is CPU-intensive
this is the right way to schedule, and so CAMP beats both
RR and PA. SFD primarily runs gamess on the fast core,
failing to accelerate the sequential phase of FFT-W.

• (STCI-PSCI) PA and CAMP behave similarly here, be-
cause BLAST’s sequential phase is also CPU-intensive,
so both PA and CAMP schedule it on a fast core. In
contrast, RR still schedules BLAST threads on the fast
core when it is executing a parallel phase (many active
threads), reducing gamess’ time on the fast core. Surpris-
ingly, SFD schedules gamess on the fast cores more often
than RR does. The reason behind that is that, as stated
previously, BLAST creates and destroys threads several
times and as a result new spawned threads are not eligi-
ble to be scheduled on fast cores until they spend enough
time in the warm up period. During this period, gamess
is the only CPU-intensive application eligible to run on
fast cores.

• (STCI-HP) In this scenario, many CPU-intensive threads
are active throughout the execution. RR and SFD perform
similarly as a result of fair-sharing the fast core among all
threads. On the other hand, PA and CAMP will schedule
the single-threaded application in the HIGH utility class
(gamess) on the fast core all the time, leaving slow cores
for wupwise m’s LOW utility threads. For this reason,
CAMP and PA perform significantly better than RR.

• (STMI-PSMI) CAMP does not have many opportunities
to improve performance relative to RR. Both mcf and
FFTW are primarily memory-intensive, and RR shares
the fast core among them. CAMP beats RR by a small
amount, only because it schedules FFTW on the fast
core during the CPU-intensive portion of its sequential
phase. PA primarily schedules FFTW on the fast core
due to its large sequential phase, which PA is configured
to maximally accelerate. As a result, mcf, an application

with a slightly greater SF than the memory-intensive part
of FFTW, runs mostly on the slow core.

• (STMI-PSCI) CAMP and PA, which perform similarly
here, will schedule the single-threaded mcf on the fast
core as long as BLAST is running a parallel phase. When
BLAST enters a sequential (CPU-intensive) phase, its
active thread will be executed on the fast core, pushing
mcf to the slow core. SFD, however, runs the memory-
intensive mcf on a slow core while running BLAST’s
threads on both fast and slow cores, since those threads
have a CPU-intensive nature and thus a high speedup
factor.

• (STMI-HP) This workload is similar to STCI-HP, since
most threads are active for the duration of the experiment.
PA schedules the single-threaded application on the fast
core and so does CAMP; therefore, they perform simi-
larly. In contrast, SFD will actually schedule mcf on the
slow core, since this is the only memory-intensive thread
in the workload.

• (PSMI-PSCI) The performance between PA and CAMP
in this scenario is dominated by the fact that FFTW’s
sequential phases are on average much longer than
BLAST’s. Under the PA scheduler, the first thread ex-
ecuting an application’s sequential phase will be placed
on the fast core and will not be migrated from it until
amp boost ticks expire or the thread blocks. Long
sequential phases of FFTW thus monopolize the fast
core and BLAST’s sequential phases have little chance to
run there, since PA does not share the fast cores equally
among threads in the SEQUENTIAL BOOSTED class.
As a result, PA is not exploiting the greater efficiency
of BLAST in using fast cores, instead scheduling on
fast cores FFTW’s memory-intensive sequential phases.
CAMP, however, is able to detect memory-intensity in
FFTW’s sequential phases, downgrading the thread exe-
cuting it into the MEDIUM class.

• (PSMI-HP) Sequential phases of the PS applications are
effectively accelerated by PA and CAMP on the fast core.
SFD, on the other hand, is not able to deliver any perfor-
mance gains, because it schedules the memory-intensive
sequential phases of FFTW on slow cores, running on the
fast core CPU-intensive threads of parallel (wupwise m),
which gains little speedup when only one of its threads is
accelerated.

• (PSCI-HP) As in the PSMB-HP workload, the thread ex-
ecuting sequential phases of the PS application is mi-
grated to the fast core by PA and CAMP. SFD, in contrast
will share the fast cores among all threads, since they are
CPU-intensive, and as a result it behaves as RR.

In Figure 5 CAMP and PA performed comparably in most
cases, because they both considered TLP. CAMP only out-
performs PA on the 1FC-12SC when a single-threaded ap-

plication and a memory-intensive serial thread compete for
a fast core. However, on the 4FC-12SC, for the workloads
in Table 2 (same benchmarks, different number of threads),
PA and CAMP always perform similarly since both sched-
ulers have enough fast cores to effectively accelerate single-
threaded applications as well as serial threads (Figure 6).
Therefore, there still remains a question, if considering the
speedup factor in addition to TLP is important for multi-
threaded workloads, and in what cases it can bring signifi-
cant performance improvement over an algorithm that relies
on TLP only. Results in Figure 7 answer this final ques-
tion showing additional workloads with a wider diversity
in memory-intensity. In these cases, CAMP does deliver
greater performance gains over PA (up to 13%) and demon-
strate that considering the speedup factor in addition to TLP
brings higher performance improvements.

6. Conclusions
We have presented a comprehensive scheduling algorithm
for asymmetric multicore processors. Although the advan-
tages of exploiting efficiency and TLP parallelism on AMPs
were well understood before, no one had addressed the de-
sign of the corresponding unified support in the operating
system and evaluated its benefits and drawbacks. Previous
asymmetry-aware schedulers employed only one type of
specialization (either efficiency of TLP), but not both. As
a result, they were effective only for limited workload sce-
narios. Through our evaluation of a real OS implementa-
tion on real hardware we determined that the CAMP sched-
uler can be effective for a wide variety of applications with-
out requiring their modification. SFD is unable to deliver
performance comparable to CAMP for workloads that in-
clude multi-threaded applications, while PA is unable to
compete with CAMP when applications exhibit a wide vari-
ety of memory-intensity. Our overarching conclusion is that
in terms of potential for improving performance of software,
AMP systems are a viable future alternative to symmetric
systems. An essential element for the success of CAMP is
a new light-weight technique for discovering which threads
utilize fast cores most efficiently.

Acknowledgements
This research was funded by the Spanish government’s re-
search contracts TIN2008-005089 and the Ingenio 2010
Consolider ESP00C-07-20811, by the HIPEAC2 European
Network of Excellence, by the National Science and Engi-
neering Research Council of Canada (NSERC) under the
Strategic Project Grant program and by Sun Microsystems.
Juan Carlos Saez is supported by a MEC FPU fellowship
grant.

References
[1] M. Annavaram, E. Grochowski, and J. Shen. Mitigating Am-

dahl’s Law through EPI Throttling. In Proc. of ISCA ’05,

pages 298–309, 2005.

[2] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The
Impact of Performance Asymmetry in Emerging Multicore
Architectures. SIGARCH CAN, 33(2):506–517, 2005.

[3] M. Becchi and P. Crowley. Dynamic Thread Assignment
on Heterogeneous Multiprocessor Architectures. In Proc. of
Computing Frontiers ’06, 2006.

[4] A. Fedorova, J. C. Saez, D. Shelepov, and M. Prieto. Max-
imizing Power Efficiency with Asymmetric Multicore Sys-
tems. Commun. ACM, 52(12):48–57, 2009.

[5] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore
Era. Computer, 41(7):33–38, 2008.

[6] D. Koufaty, D. Reddy, and S. Hahn. Bias Scheduling in
Heterogeneous Multi-core Architectures. In Proc. of Eurosys
’10, 2010.

[7] R. Kumar, D. M. Tullsen, and P. Ranganathan et al. Single-
ISA Heterogeneous Multi-Core Architectures for Multi-
threaded Workload Performance. In Proc. of ISCA ’04.

[8] R. Kumar, K. I. Farkas, and N. Jouppi et al. Single-ISA Het-
erogeneous Multi-Core Architectures: the Potential for Pro-
cessor Power Reduction. In Proc. of MICRO 36, 2003.

[9] V. Kumar and A. Fedorova. Towards Better Performance
Per Watt in Virtual Environments on Asymmetric Single-ISA
Multi-core Systems. ACM OSR, 43(3), 2009.

[10] T. Li, D. Baumberger, and D. A. Koufaty et al. Efficient
Operating System Scheduling for Performance-Asymmetric
Multi-Core Architectures. In Proc. of SC ’07.

[11] J. C. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan, and
V. Talwar. Using Asymmetric Single-ISA CMPs to Save
Energy on Operating Systems. IEEE Micro, 28(3):26–41,
2008.

[12] D. Shelepov, J. C. Saez, and S. Jeffery et al. HASS: a Sched-
uler for Heterogeneous Multicore Systems. ACM SIGOPS
Operating Systems Review, 43(2), 2009.

[13] R. van der Pas. The OMPlab on Sun Systems. In Proc. of
IWOMP’05, 2005.

