
FACT: a Framework for Adaptive Contention-aware
Thread Migrations

Kishore Kumar Pusukuri
University of California,

Riverside, USA.
kishore@cs.ucr.edu

David Vengerov
Oracle Corporation
Menlo Park, USA.

david.vengerov@oracle.com

Alexandra Fedorova
Simon Fraser University

Vancouver, Canada.
fedorova@cs.sfu.ca

Vana Kalogeraki
∗

Athens University of
Economics and Business

Greece.
vana@aueb.gr

ABSTRACT
Thread scheduling in multi-core systems is a challenging problem

because cores on a single chip usually share parts of the memory
hierarchy, such as last-level caches, prefetchers and memory con-
trollers, making threads running on different cores interfere with
each other while competing for these resources. Data center service
providers are interested in compressing the workload onto as few
computing units as possible so as to utilize its resources most effi-
ciently and conserve power. However, because memory hierarchy
interference between threads is not managed by commercial operat-
ing systems, the data center operators still prefer running threads on
different chips so as to avoid possible performance degradation due
to interference.

In this work, we improved the system’s throughput by minimiz-
ing inter-workload contention for memory hierarchy resources. We
achieved this by implementing FACT, a Framework for Adaptive
Contention-aware Thread migrations, which measures the relevant
performance monitoring events online, learns to predict the effects
of interference on performance of workloads, and then makes opti-
mal thread scheduling decisions. We found that when instantiated
with a fuzzy rule-based (FRB) predictive model, FACT achieves on
average a 74% prediction accuracy on the new data. In experiments
conducted on a quad-core machine running OpenSolarisT M , SPEC-
cpu2006 workloads under FACT-FRB ran up to 11.6% faster than
under the default OpenSolaris scheduler. FACT-FRB was also able
to find the best combination of workloads more consistently than
the state-of-the-art algorithms that aim to minimize contention for
memory resources on each chip. Unlike these algorithms that based
on fixed heuristics, FACT can be easily adapted to consider other
performance factors so as to accommodate changes in architectural
features and performance bottlenecks in future systems.
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1 Introduction
In recent years, there has been an increase of computational power

demand to satisfy modern user needs and solve complex scientific
problems such as genome analysis, molecular analysis, weather
prediction, video encoding, etc. In the quest for huge computational
power, hardware engineers are building multi-core systems because
multi-core processors offer significantly greater parallelism, and
performance relative to uniprocessor systems. However, multi-core
architectures bring new challenges to the system software (com-
pilers, OS). For example, applications running on different cores
may require efficient inter-process communication mechanisms, a
shared-memory data infrastructure, and synchronization primitives
to protect shared resources. Efficient code migration is also a chal-
lenging problem in such systems[7].

Modern operating systems (OS) do not effectively make use of
the fact that cores often share resources within the memory hierar-
chy such as cache, prefetcher, memory bus, memory controller, etc.
Therefore, the OS may fail to fully exploit the capabilities of the
system. The operating systems must therefore evolve in order to
fully support the new multi-core systems with appropriate process
scheduling and memory management techniques. There are two
important challenges [3] that need to be addressed: 1) the OS needs
to understand how different workloads utilize resources within the
memory hierarchy and the effect of resource sharing on performance
of all workloads; 2) the OS needs an efficient way to migrate work-
loads between the cores so that workloads don’t hurt each other’s
performance when sharing such resources.

As a step toward addressing these challenges, we developed
a Framework for Adaptive Contention-aware Thread migrations
(FACT), which is based on machine learning (more specifically,
supervised learning) techniques. FACT trains a statistical model
to predict contention for memory resources between threads based
on performance monitoring events recorded by the OS (see [28,
2] for a list of possible events). The trained model is then used
to dynamically schedule together threads that interfere with each



other’s performance as little as possible. This paper explains the
development and evaluation of FACT.

Instruction per Cycle (IPC) is a standard way of measuring per-
formance of a workload. The following is the basic idea behind
FACT: it considers some number of possible thread migrations, and
for each migration it predicts the change in the IPC of all threads
affected by the migration. Predictions are made using a performance
model that is learned online based on hardware performance counter
measurements taken in real-time. If some migrations are predicted
to increase the average IPC of all affected threads, then the migra-
tion resulting in the largest IPC increase is performed; otherwise, no
migration takes place at this cycle and the next cycle of observing
the relevant performance monitoring events begins.

We implemented FACT on a quad-core Intel x86 based server ma-
chine running OpenSolaris (2009.06). OpenSolaris libcpc (3LIB) [29]
and libpctx (3LIB) [30] interfaces were used to read and program
performance monitoring counters. We developed a variety of statisti-
cal models for predicting the IPC of co-scheduled workloads: linear
regression models(LR)) [33], fuzzy rule-based models (FRB) [21],
decision tree (Rpart) models [40], and K-nearest neighbor models
(k-nn) [27]. The FRB model had the highest prediction accuracy of
74% in our experiments and was chosen as the preferred statistical
model to be used inside the FACT framework. Our experimental
results demonstrate that the FACT-FRB combination resulted in
a speedup of up to 11.6% on the considered SPECcpu2006 [38]
benchmarks.

When comparing FACT to another state-of-the-art contention
management scheduling algorithm [4], we found that FACT out-
performs it by finding the best combination of workloads more
consistently. Moreover, that algorithm is based on a fixed heuris-
tic that works well only when the whole complexity of contention
for shared resources can be captured with a single value, while
FACT can dynamically learn relationships between any number of
performance-affecting factors on any target architecture. Therefore,
we believe FACT will be able to better evolve despite changes in
processor architecture and in resulting performance bottlenecks.
Moreover the overhead of FACT is negligible.

This paper focuses on single-threaded workloads, and therefore
the term workload will always mean a single-threaded workload
unless explicitly stated otherwise.

The following are the main contributions of this work:

• Identified the best predictors (based on the cache usage data)
for predicting the IPC of co-scheduled workloads by fully
exploiting performance monitoring events

• Developed several statistical models that use performance
monitoring events as inputs and identified the best model for
predicting the IPC

• Developed adaptive migration techniques to reduce total running-
times of workloads

• Showed the usage of supervised learning techniques to capture
the complexity of modern multi-core systems.

• Provided the possibility of extending FACT for predicting any
thread resource usage characteristics (performance, power
etc.) by adding the relevant performance monitoring events
(such as those reflecting the usage of CPU, Main Memory,
Disk, IO, etc.)

This remainder of this paper is organized as follows: Section 2
gives the motivation and Section 3 gives a high-level description
of the FACT framework. The process of developing a statistical

model for predicting IPC of co-scheduled workloads is described in
Section 4. Section 5 describes the implementation of FACT using
the OpenSolaris libraries libpctx and libcpc. Section 6 presents
evaluation results for the FACT framework and its comparison with
a state-of-the-art thread allocation algorithm. Finally, the related
work is described in Section 7 and conclusions and the future work
are discussed in Section 8.

2 Motivation and Background
Multi-core processors allow running multiple threads simultane-

ously, but contention for caches and other shared resources, such
as memory controllers and prefetchers, becomes an obstacle in
achieving a proportional improvement in the system’s throughput.

Previous work observed that on modern Intel and AMD systems
the degree of contention for shared resources can be explained by the
relative memory-intensity of threads that share resources [4]. In that
work, threads were classified as memory-intensive or CPU-intensive.
Memory-intensity was approximated by a thread’s relative misses
per instruction (MPI): memory-intensive threads have a higher MPI
than the CPU-intensive threads. That work found that in order to
significantly reduce contention for shared resources the scheduler
must run memory-intensive threads (those with high MPI) on sepa-
rate core groups1, thus preventing them from competing for shared
resources.

Even though the MPI heuristic, used to determine memory-intensity,
does not directly capture how much a thread would suffer from cache
contention alone (for instance, a streaming application would have
a high MPI but no cache reuse and so it will not suffer from cache
interference), it still turned out to be a rather good heuristic for pre-
dicting overall memory hierarchy resource contention, because on
modern systems the contention is dominated by memory controller
or memory bus contention, and MPI is a good approximation of how
intensely an application uses these resources [4].

As will be shown in Section 6, the degree of thread interference
cannot be predicted accurately by using just MPI alone, and our
proposed FACT framework addresses the shortcomings of single-
heuristic algorithms that use only MPI by considering other factors
as well. However, for the sake of providing a sufficient background
on the state-of-the-art, we first show why simple MPI-based al-
gorithms do significantly better than naïve schedulers that ignore
contention for memory hierarchy resources.

Core 0 Core 2 Core 1 Core 3

L2 L2

T1 T3 T4T2

Figure 1: A typical quad-core system.

Consider the following experiment. Figure 1 shows a typical
quad-core system, core-0 and core-2 are sharing one last-level cache
and other associated memory resources (a prefetcher and a memory
controller on our experimental system), and core-1 and core-3 are
sharing another last-level cache and the associated set of memory re-
sources. Let’s assume that threads T1 and T3 are memory-intensive
and threads T2 and T4 are CPU-intensive. We will next show that
keeping the two memory-intensive threads (T1 and T3) on the same
core group results in a performance degradation for both T1 and T3,
and as a result degrades the overall system throughput.

1A core group is a group of cores sharing various resources, such
as caches, prefetchers, memory controllers, system request queue
controllers, etc.
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Figure 2: Normalized performance (MPI, API, IPC, and running-time) of
mcf with different co-runners

In our example we will use four SPECcpu2006 workloads (mcf,
lbm, deal II, and sjeng). Table 1 shows MPI, API (last-level cache
Access per Instruction), and IPC values in their solo-runs, where
each workload was executed ten times without any other co-running
workloads using the default OS scheduler (OpenSolaris 2009.06
scheduler). The workloads mcf and lbm have relatively high MPI –
so they are deemed memory intensive workloads in this group; they
stand for threads T1 and T3 in Figure 1. The workloads deal II and
sjeng are CPU-intensive; they stand for threads T2 and T4.

Table 1: Workloads’ MPI, API, IPC and running-time (secs) when running
solo under the default OS scheduler.

Workload MPI API IPC running-time
mcf 0.0221 0.14 0.24 589
lbm 0.0177 0.48 0.51 586
sjeng 0.0005 0.01 1.06 808
deal II 0.0007 0.02 1.02 926

Figure 2 shows the impact of various co-running worklads on the
performance of mcf. (The workloads were bound to cores using the
“pbind” command for the duration of the experiment.) The MPI, API,
IPC, and running-time of mcf in the presence of other workloads
are normalized by its corresponding solo metrics. We observe that
mcf suffers more (higher MPI, lower IPC and higher running-times)
when it is running together with lbm than with the other workloads.
This is because both mcf and lbm are memory-intensive, so they
hurt each other when competing for shared resources. While this is
only a single example showing that memory-intensity can be used to
predict the degree of contention, previous work presented extensive
data for a wide range of workloads [4].

Based on this observation, researchers proposed schedulers that
separate memory-intensive threads on different core groups [4, 5,
6, 25]. In other words, these schedulers combine threads in a way
that minimizes total contention. We illustrate how this is done by
continuing our example with the (mcf, lbm, sjeng, deal II) workloads.

Table 2: Different combinations of workloads (mcf, lbm, sjeng, and deal II).
In every combination (except Default OS), half of the workloads are bound
to cores (0,2) and other half are bound to cores (1,3).

Combination cores (0,2) cores (1,3)
Mix1 (mcf, deal II) (lbm, sjeng)
Mix2 (mcf, sjeng) (lbm, deal II)
Mix3 (mcf, lbm) (sjeng, deal II)
Default OS Run the workloads with

Default OS scheduler.

Table 2 shows different combinations of these applications, and
Figure 3 shows the impact of the workload-mix on the total running-
time of those workloads. In Mix1 and Mix2 the memory-intensive
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Figure 3: Average total running times of four workloads (mcf, lbm, sjeng,
deal II) under different bindings and also under the default OS scheduler.

workloads mcf and lbm were run (using the “pbind” command) on
different core groups. As shown in Figure 3, separating memory-
intensive workloads (mcf and lbm) on different core groups is better
for the overall performance of the workloads. Therefore, we can say
that (mcf, sjeng) and (lbm, deal II) are the best pairs, (mcf, deal II)
and (lbm, sjeng) are the good pairs, and (mcf, lbm) and (sjeng, deal
II) are the worst pairs.

While this example, as well as experimental data presented in
other studies [4, 6], show that MPI-based contention management
algorithms can reduce resource contention, we found that they do
not always find the optimal thread combinations for maximizing
IPC of all workloads. To address this shortcoming, additional perfor-
mance factors must be considered, but the earlier contention-aware
scheduling algorithms are not designed to do so, because they are
fundamentally built for a single heuristic. We address this problem
by designing the FACT framework. FACT can take into account any
number of performance factors and then it dynamically learns how
these factors interact and affect workload performance.

To demonstrate the effectiveness of FACT we show how it can
find better combinations of threads by considering an additional
heuristic: last-level cache Accesses Per Instruction (API). API was
chosen because it approximately captures an application’s cache-
sensitivity – how much an application suffers if a competing ap-
plication evicts its cached data – something that the MPI heuristic
does not reflect. Intuitively, if an application frequently accesses
the cache, it reuses cached data and so it would suffer if this data
is prematurely evicted. While we do not claim that API is the only
additional factor needed to improve contention management, we
use it to demonstrate that FACT can be effectively used for model-
ing effects of multiple interacting factors. For example, when we
used the (milc, lbm, mcf, sjeng) workload, FACT outperformed the
state-of-the-art MPI based algorithm by finding best combination of
workloads more consistently (detailed results are presented in the
Section 6).

Thus, FACT is able to improve on performance of state-of-the-art
algorithms. Moreover, FACT shows the usage of supervised learning
techniques to capture the complexity of modern multi-core systems.

3 The FACT Framework
In order to capture a variety of factors that may determine the

degree of contention on multicore processors, we based the FACT
framework on the idea of machine learning, more specifically su-
pervised learning, where a set of sample input-output values is first
observed and then a statistical model is trained to predict similar
output values when similar input values are observed.



The FACT framework includes two phases:

1. Training a statistical model to predict the IPC of co-scheduled
workloads based on the relevant input variables.

2. Performing thread migrations based on the IPC of possible
workload combinations as predicted by the statistical model.

The first phase can be performed offline using a training set of
workloads. Alternatively, it can also be performed continuously
online as real thread migration data is observed. We will focus
on the offline version in this paper since it allows us to judge the
quality of the IPC forecasts after a given amount of training data.
The prediction accuracy of the offline model can then be treated as a
lower bound on the accuracy that can be achieved after the amount
of observed data during an online deployment exceeds the amount
of the training data used for the offline evaluation. While the offline
model can be employed during system installation by training, for
instance, on workloads in a standard benchmark suite, an online
model could be used directly on the workload of interest and would
apply to any workload that takes more than a few seconds to run (a
few seconds are necessary to train the model).

A graphical depiction of FACT for a quad-core machine (the one
we used for our experiments) is shown in Figure 4 and Algorithm 1
describes the Phase-2 of FACT.

FACT

T1, T3  T2, T4

  T1, T2, T3, T4
Data &
Model

Step-1: 
Get Trained Model

Workloads

For every 
new migration

 Add this 
migration data

Step 3:
Continuously finding 

best pairs of workloads.

    Step-2:
    Submit workloads

Storage

  Step 4: Run them

Step 5: Collect 
performance data

Repeat steps 3 to 5

End

Completion of 
workloads

Figure 4: A graphical depiction of FACT for a quad-core machine.

4 Statistical Model for IPC Prediction
This section starts by introducing the workloads that were used

for developing the statistical models that can predict IPC of co-
scheduled workloads inside the FACT framework. Then the process
of deriving the most important predictors for these statistical is
described. Finally, the considered statistical models are presented
and compared in terms of IPC prediction accuracy.

4.1 Experimental Workloads
SPECcpu2006 and SPECcpu2000 benchmark suites were used

for developing the IPC prediction models. These benchmark suites
are designed for stressing the system’s processor, memory subsys-
tem and compiler. We chose 12 workloads from SPECcpu2006
and 5 from SPECcpu2000 that we could easily compile on our ma-
chine, which included both memory-intensive and CPU-intensive
workloads. Table 3 lists these benchmarks.

4.2 Performance Events and Predictors
We derived the predictors shown in Table 4 from L2 cache misses,

L2 cache accesses and instruction counts on each core. L2 cache is

Algorithm 1: For the Phase-2 of FACT

for each time step do
for each possible pair of core groups where each group of
cores shares the last-level cache do

MaxIPC=0;
t* = null;
for each thread t in the considered pair of core groups
do

Predict IPC_t the new average IPC of all threads if
thread t were migrated from one core group to the
other;
if IPC_t > MaxIPC then

MaxIPC = IPC_t;
t* = t;

end
end
if MaxIPC > IPC of the current allocation then

Migrate thread t* to the other core group;
end

end
end

Table 3: Benchmarks
Suite Workloads
SPEC CPU 2006 mcf, lbm, sjeng, bzip2, soplex, namd, hmmer,

deal II, povray, gcc, xalancbmk, omnetpp
SPEC CPU 2000 wupwise, vpr, art, twolf, gap

the last-level cache on our system. These predictors were chosen as
a compilation of events used by other researchers in the field and
from our own experience [24]. Let us say our goal is to predict
the new IPC of thread T1 if it were swapped with the thread T4 in
Figure 4. The possible inputs (predictors) for the prediction model
are described in the Table 4. The predictors are the performance
events of the co-threads (the current co-thread T3 and the future
co-thread T2) of the thread T1. Therefore, each data point is a 9-
tuple containing eight predictors shown in Table 4 and the observed
T1_T2_ipc (IPC of thread T1 when co-scheduled with T2) as the
target parameter. Even though in the examples in this paper we
assume two cores per group (and thus two co-scheduled threads)
since this is the configuration of our experimental system, there
is nothing in the framework that prevents it from being used on
systems with more than two cores per group.

4.3 Data Collection
We used a total of 16 workloads and divided them into 4 groups,

each of which contained 4 different workloads (some memory-
intensive and some CPU-intensive), as shown in Table 5. Since our
test machine had 2 core groups (with each group having 2 cores)
and we naturally ran one thread per core so as to isolate effects of
cache interference from processor sharing issues, we could run a
total of 3 different arrangements of 4 threads: T1 running with T2,
with T3 and with T4 in the same core pair (core group). For each
arrangement of 4 threads, the values of MPI, API and IPC were
measured for each thread over a 5-second interval. Then, for each
group of 4 workloads, 12 different data points were formed from
the raw data: 3 data points with the independent variables being
T1_T2_ipc, T1_T3_ipc, T1_T4_ipc, 3 more data points with the
independent variables being T2_T1_ipc, T2_T3_ipc, T2_T4_ipc,
etc. For each independent variable, the possible predictor variables
(listed in Table 4) were computed from the IPC, MPI, API values
of each thread. A total of 48 data points were collected from the 4
groups of 4 workloads, which were divided into 4 sets (or folds) of



Table 4: Possible predictors (or inputs) to statistical models. Threads T1, T3
are running initially on core 0 and 2 (one core group) and threads T2, T4 are
running in another core group. The goal is to predict the IPC of the thread
T1 if it were swapped with the thread T4 and start running with T2, with
which it has never ran before.

Predictor Description
T3_mpi average (avg) misses per instruction of first co-

thread T3 not including the runs with thread T2.
T3_api avg accesses per instruction of first co-thread T3

not including the runs with thread T2.
T2_mpi avg misses per instruction of second co-thread T2

not including the runs with thread T1.
T2_api avg accesses per instruction of second co-thread

T2 not including the runs with thread T1.
T1_mpi avg misses per instruction of the thread T1 not

including the runs with thread T2.
T1_api avg accesses per instruction of the thread T1 not

including the runs with thread T2.
dmpi T2_mpi - (average mpi of the previous co-runners

of T1 not including T2).
T1_ipc avg IPC of thread T1 not including the runs with

thread T2.

data, each set containing data that came from one unique group of 4
workloads.

Table 5: Four sets of different workloads
1. sjeng, omnetpp, soplex, wupwise
2. namd, hmmer, xalancbmk, vpr
3. mcf, twolf, bzip2, gap
4. lbm, deal II, gcc, art

4.4 Finding Important Predictors
The most important predictors from Table 4 were selected in order

to balance the prediction accuracy and the overhead of monitoring
extra performance counters. We used the methodology [24] and
the R language described in Figure 5 for selecting the important
predictors.     

 
 
 Step 1: Develop a multiple linear regression model with all reasonable
              predictors for the target parameter 
              (i.e. IPC of co-scheduled threads)

 Step 2: Assess the model with ``leave-one-out cross-validation`` 
            (CV) test and also against an independent test-data set,
            and measure prediction accuracy with any reasonable
            metric.

 Step 3: Rank the accuracy of predictors using ''Step-wise Regression''  
              and ``Relative Importance Measures" 
              (or any other statistical technique designed for this purpose).
 
 Step 4: Perform model selection by choosing the most effective 

      predictors, develop a  model, and assess  it as described 
              in Step 2. 

 Step 5: Based on the trade-off between prediction accuracy
             and the number of predictors, either choose the model
             obtained in Step 4 or choose different predictors based on
             their ranking in Step 3.

 

              

Figure 5: A methodology for finding most important predictors.

R is a programming language for statistical computing [33] and
we used R step-wise regression (stepAIC() method) [39] and all
subsets regression [34] to find the best predictors. Referring to the
example of Section 4.2, these techniques selected the following 6
predictors for T1_T2_ipc: T1_ipc, T1_mpi, T1_api, T2_mpi, T2_api, and
dmpi. To balance prediction accuracy and number of predictors,
we further applied R relative importance measures (RIM) [31, 32]
method to find the most important predictors among the six selected

in the previous step. RIM ranks the predictors in terms of their
effectiveness by computing the R-square value for each predictor.
As shown in Figure 6, RIM suggested the following 4 predictors as
the best predictors of T1_T2_ipc: (T1_ipc, T1_mpi, T1_api, dmpi).

T1_ipc T1_mpi T1_api dmpi T2_mpi T2_api

Relative important for T1_T2_ipc

R^2 = 79.73%, metrics are normalized to sum 100%

%
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Figure 6: Most Important Predictors of T1_T2_ipc.

4.5 Developing Statistical Models
Using the most important predictors (inputs to the models) shown

in Figure 6, we developed a linear regression model (LR), a fuzzy
rule-based model (FRB), a decision tree model (Rpart), and a K-
nearest neighbor (Knn) model.

4.5.1 Linear regression (LR) model
A linear regression model [27] assumes that the regression function
E(Y |X) is linear in its inputs X1,...,Xp. In our case, the inputs are
the chosen predictors and the target parameter is T1_T2_ipc. Linear
models are simple and often provide interpretable description of
how the inputs affect the output. They can sometimes outperform
fancier nonlinear models (which are prone to over-fitting the training
data) on extrapolation tasks, especially in situations with a small
number of training cases, low signal-to-noise ratio or sparse data.

We used the R lm() method [33] to develop the linear regression
models for predicting T1_T2_ipc. The general form of a linear
regression model is shown in Equation 1.

T 1_T 2_ipc = a0 +a1 ·T 1_ipc+a2 ·T 1_mpi+a3 ·T 1_api+a4 ·dmpi (1)

4.5.2 Fuzzy-rule based (FRB) model
An FRB is a function f that maps an input vector x ∈ ℜK into a
scalar output y. We used the following common form [21] of the
fuzzy rules:

Rule i: IF (x1 is Ai
1) and (x2 is Ai

2) and ... (xK is Ai
K)

THEN (y = pi),
where x j is the jth component of x, Ai

j are fuzzy categories used in
rule i and pi are the tunable output parameters. The output of the
FRB f (x) is a weighted average of pi:

y = f (x) =
∑

M
i=1 piwi(x)

∑
M
i=1 wi(x)

, (2)

where M is the number of fuzzy rules and wi(x) is the weight of rule i
computed as wi(x) = ∏

K
j=1 µAi

j
(x j), where µAi

j
(x j) is a membership

function taking values in the interval [0,1] that determines the degree
to which an input variable x j belongs to the fuzzy category Ai

j. A
separate rule is used for each combination of fuzzy categories Ai

j,
which should jointly cover the space of all possible values that
the input vector x can take. Therefore, each parameter pi gives
the output value of the FRB when the input vector x completely
belongs to the region of the state space described by the fuzzy



categories Ai
j of rule i. Since some or all of the fuzzy categories can

overlap, several pi usually contribute to the rulebase output, with
their contributions being weighted by the extent to which x belongs
to the corresponding regions of space. An example of a fuzzy rule
in our domain is:

IF (T1_ipc is high) AND (T1_api is high) AND (T1_mpi
is low) AND (dmpi is low) THEN T1_T2_ipc is high.

4.5.3 Rpart (Decision Tree)
Recursive partitioning creates a decision tree for predicting a categor-
ical (classification tree) or continuous (regression tree) outcome [40].
The goal in decision tree learning [41] is to create a model that pre-
dicts the value of a target variable based on several input variables.
Each interior node corresponds to one of the input variables; there
are edges to children for each of the possible values of that input
variable. Each leaf represents a value of the target variable given the
values of the input variables represented by the path from the root to
the leaf. A tree can be learned by splitting the source set into subsets
based on an attribute value test. This process is repeated on each
derived subset in a recursive manner called recursive partitioning.
The recursion is completed when the subset at a node all has the
same value of the target variable, or when splitting no longer adds
value to the predictions. We used a regression tree based recursive
partitioning tool in R called rpart() [27, 40] to develop this model.

4.5.4 K-nn
The K-nearest neighbours algorithm (K-NN) [35] is a technique for
classifying objects based on closest training examples in the feature
space. K-NN is a type of instance-based learning, or lazy learning
where the function is only approximated locally and all computation
is deferred until classification: an object is classified by a majority
vote of its neighbors, with the object being assigned to the class
most common amongst its K nearest neighbors.

We used a nearest-neighbor method [27] that forms the output
Y (x) as a weighted average of outputs in the training set for which
the inputs are closest (based on Euclidean distance) to x:

Y (x) =
1
k ∑

xi∈Nk(x)
yi, (3)

We developed the K-NN learning model using the R kknn()
method [36].

4.6 Model Assessment
This section shows evaluation results for the models developed

in Section 4.5. The performance of each model is assessed by its
prediction accuracy on independent test data. In order to make the
best use of the available data, we conducted 4-fold cross-validation
tests [27], where each model was trained on 36 data points derived
from 3 groups of workloads in Table 5 and predictions were made
on the 12 data points derived from the fourth group of workloads in
Table 5, where each group of workloads was sequentially chosen as
the testing group. The prediction accuracy (PA) of each model was
computed as follows:

PA = (1−MAPE)∗100. (4)

where MAPE (Mean Absolute Percentage Error) [37] is defined as
follows:

MAPE =
1
N

N

∑
i=1

|Mi−mi|
|mi|

(5)

where N is the number of test data points, M is the modeled (pre-
dicted) value and m is the measured value.

We have also tested the models by training them on a large data
set (obtained by forming 12 different subsets of the 12 training
workloads and then obtaining 12 data points from each subset) and
computed their prediction accuracy using Equation 4. We found
that an increase in the size of the training data set improved the
prediction accuracy of all considered models. Figure 7 shows the
average prediction accuracy of the models. The FRB model achieves
the best prediction accuracy 70% on the small training data set and
74% on the large training data set. In all experiments below, FACT
was combined with the FRB model for predicting the IPC of co-
scheduled threads.
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Figure 7: Average prediction accuracy of the models with small and large
training data sets. LR: Linear Regression, FRB: Fuzzy Rule-Base, Rpart:
Decision Tree, and K-nn: K-nearest neighbor (k = 1).

5 Implementation of FACT
The first step in implementing FACT is to collect the performance

statistics (MPI, API, IPC data) of the threads running on a multi-core
system. There is an efficient way for doing this in OpenSolaris by
using its libpctx library [30] and libcpc(3LIB) library [29]. Func-
tions in the libpctx library provide a simple means to access the
underlying facilities of proc(4) to allow the controlling process to
manipulate the state of the controlled process. This library is pri-
marily for use in conjunction with the libcpc(3LIB) library. Used
together, these libraries allow developers to construct tools that
can manipulate CPU performance counters in other processes. The
cputrack(1) utility is an example of such a tool.

    Events

Callback
handlers

  libpctx  interfacelibcpc  interface

Monitoring  Process

Workload 

Program 
and read 
events

Figure 8: Collecting the performance counters using libpctx and libcpc
library interfaces.

However, since we need to read and program performance coun-
ters for four different workloads at a time, we developed a utility
(multiplexing the access to the library interfaces) as a part of FACT
to access performance monitoring events of four processes at a time.



As shown in Fig 8, the library libpctx interface is used to hold the
running workloads and then the library libcpc is used to access the
performance monitoring counters (cache usage events and CPU
events). If four workloads are running on a quad-core system, then
there are four child processes to hold the four workloads. These
child processes access their performance monitoring counters, col-
lect the MPI, API and IPC data of the workloads and write this data
into a pipe together with a sequence number for the workload. The
parent process uses this sequence number and maps the workloads
with their corresponding data.

6 Evaluation of FACT
Recent work on contention-aware scheduling showed that simple

heuristic-based algorithms [25, 6, 4] can find very good contention-
aware schedules. In this section, we compare FACT to one such
algorithm, Distributed Intensity (DI) [4]. DI measures threads’ MPI
online, sorts them by the MPI and then pairs threads on cores sharing
the last-level cache by taking one thread from the top of the list (a
thread with a low MPI) and one thread from the bottom of the list (a
thread with a high MPI). This ensures that the miss rate is spread
evenly across caches.

6.1 Single-step predictions
Performance comparisons between FACT, the DI algorithm and

the default OpenSolaris scheduler were conducted using the fol-
lowing thirteen SPECcpu2006 workloads: mcf, lbm, sjeng, deal II,
bzip2, omnetpp, namd, soplex, hmmer, gcc, xalancbmk, povray, milc.
Out of these workloads, 10 different test sets were formed, which are
listed in Table 6. While choosing the workloads for the test sets, we
made sure that every test set is a combination of memory-intensive
and CPU-intensive workloads. Experiments reported in this section
were conducted on Xeon server, whose configuration is described in
Table 7.

Table 6: Testing workload sets.
1. (mcf, lbm, sjeng, deal II)
2. (namd, soplex, lbm, sjeng)
3. (omnetpp, deal II, lbm, sjeng)
4. (lbm, milc, mcf, sjeng)
5. (lbm, milc, mcf, deal II)
6. (soplex, milc, xalancbmk, omnetpp)
7. (xalancbmk, lbm, soplex, omnetpp)
8. (lbm, milc, deal II, soplex)
9. (soplex, milc, lbm, sjeng)
10. (mcf, lbm, milc, namd)

As was described in Section 4.6, the quality of the IPC prediction
for the considered statistical models was shown to improve if a large
training data set was used. Therefore, in this section we trained
FACT using a large data set of 240 points, which was obtained for
each test set by taking 20 different combinations of 4 threads and
then running them using 3 possible thread pairings to get 12 data
points for each such combination as described in Section 4.3.

Table 7: Configuration of the Testing Machine
Component Details
Hardware Quad-core system: two dual-core Intel

(r) Xeon (r) CPUs 5150 (2.66GHz), (2
* 4) MB L2-cache, 6GB RAM

Operating System OpenSolaris 2009.06

The following methodology was used to compare FACT with
the DI algorithm. Each algorithm was evaluated on each of the 10
test sets shown in Table 6. For each test set, the FACT framework
(instantiated with the FRB predictive model) was first trained on
the corresponding training set. The training process consisted of
making 10000 passes through the training data set, and for each data
point x, the tunable parameters pi of the FRB were adjusted using
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Figure 9: Normalized speedup of DI and FACT relative to OS, computed as
the average running time of the test set threads under OS divided by their
average running time under DI or FACT.

the following procedure: pi← pi + r(ŷ− f (x)) ∂ f (x)
∂ pi , where r is the

learning rate that was fixed at 0.01, ŷ is the actually observed IPC
of the thread in question, f (x) is the predicted IPC using the latest

set of parameters p, and ∂ f (x)
∂ pi =

wi(x)
∑

M
i=1 wi(x)

is the partial derivative

of f (x) with respect to the parameter pi.
We would like to point out once again that the performance of

the FACT-FRB algorithm in the above setup is a lower bound on
the performance that can be achieved during an online deployment,
where the IPC prediction model will keep improving as more data is
observed and the model parameters keep getting adjusted. A newly
observed data point during an online deployment can only be pre-
sented once to the model, and the model parameters can be adjusted
a little to account for this data point. This one-time adjustment
of the 16 parameters for the FRB with 4 input variables described
in Section 4.4 requires around 100 floating point operations, and
hence the overhead of using FACT during an online deployment is
negligible.

In order to make sure that the test results were not biased by the
initial thread allocations chosen by the OS, we explicitly bound
threads to cores to create all three possible allocations of the four
workloads in the test set, and for each allocation, the relevant perfor-
mance counters were sampled over a five-second interval, and then
the algorithm (FACT or DI, whichever one was being evaluated)
was allowed to suggest a thread migration. After that, the suggested
thread migration (if any) was implemented, threads were re-bound
to their new cores and then ran to completion. This procedure was
repeated 10 times for each initial thread allocation.

For each test set, our experiments showed that the average running
time of the test set threads under the default OS was larger than
under either DI of FACT. Figure 9 shows the normalized speedup of
FACT and DI relative to the default OS, computed as the average
running time of the test set threads under OS divided by their average
running time under DI or FACT. As one can see, the SPECcpu2006
workloads in our test sets ran up to 11.6% faster under FACT than
under the default OpenSolaris scheduler. Our results also show that
the speedup under FACT can be on average 2% larger than under
DI. Actually, 2% is significant if we consider raw performance, i.e.,
FACT on average saves around 100 seconds of running-time over DI.
We would get even further improvement on the system throughput
if the applications were repetitive.

In order to understand why the DI algorithm can sometimes
slightly outperform FACT, we looked at each assignment of threads
suggested by these algorithms on our 10 test sets and organized them
in Table 8, which shows the quality of thread pairs suggested by
each algorithm. There are 3 possible assignments of 4 test threads
to 4 cores, which were categorized as Best/Good/Worst according to



the average running time of threads under each assignment. As was
described above, each algorithm made a total of 30 suggestions for
each test set (10 repetitions for each of the 3 possible initial thread
assignments) and hence the total number of Best, Good, and Worst
pairs adds up to 30 for each test set for each algorithm. As one can
see, the DI algorithm suggests the Best thread assignment in 3 test
sets and suggests only the Good assignment in 7 tests sets, while the
FACT-FRB algorithm suggest the Best assignment almost all the
time. The small variability in assignments suggested from a given
initial thread allocation is due to fluctuations of API and MPI during
the measurement process, which leads to the average measured API
and MPI values for each thread over a 5-second interval to differ
between successive repetitions of the experiment.

As the authors of DI explained, DI does best in workloads where
the number of memory-intensive threads equals to the number of
core groups (data presented in [4]) – in this case DI trivially isolates
each memory-intensive thread on its own core group (e. g. first
three testing sets). However, when there are more memory-intensive
threads than core groups, the DI algorithm cannot find the best
thread assignment, as was the case for test sets 4 through 10 in
Table 8. As an example of what happens in such cases, consider
test set 4: (lbm, milc, mcf, sjeng), which has the corresponding
MPI values (0.0177, 0.0086, 0.0221, 0.0005) and API values (0.48,
0.42, 0.14, 0.01). As expected, the DI algorithms pairs up the
highest-MPI workload mcf with the lowest-MPI workload sjeng
(and correspondingly pairs up lbm with milc), which happens to give
a longer running time than when mcf is paired up with milc (and
lbm with sjeng). A possible reason for this happening might be that
both lbm and milc have a high cache-sensitivity, which is correlated
with the API value as shown in [4]. As a result, the negative impact
that lbm experiences when paired up with milc is larger than the one
experienced by mcf when paired up with milc, and so it is better to
pair up the less cache-sensitive mcf with milc and then pair up the
more cache-sensitive lbm with a very low-MPI sjeng, which does
not produce any noticeably negative impact on any co-scheduled
workload. Since FACT uses both MPI and API as predictors, it can
learn the cases when it is important to trade off high MPI vs. high
API for co-scheduled workloads.

Table 8: Quality of thread pairs suggested by DI and by FACT
Test Set DI FACT

Best Good Worst Best Good Worst
1 28 2 0 26 3 1
2 30 0 0 28 2 0
3 30 0 0 28 1 1
4 0 30 0 27 3 0
5 0 30 0 30 0 0
6 0 30 0 30 0 0
7 0 30 0 30 0 0
8 0 30 0 30 0 0
9 0 30 0 26 4 0
10 0 30 0 28 2 0

Thus, we believe that the approach used in FACT could be more
portable to future systems, especially as systems evolve and factors
affecting contention change. For instance, if factors such as pre-
fetching or burstiness of memory accesses also become important
contention factors, then these new metrics could be easily incor-
porated into the IPC prediction model used by FACT, while the
existing heuristic-based algorithms may stop working. Furthermore,
FACT can be adapted to take into account other factors, such as the
positive effects of co-operative data sharing, while heuristic-based
approaches may be too rigid to incorporate additional factors. That
is why, we believe, the FACT approach is an important contribution
to the area of contention-aware scheduling.
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Figure 10: Standard deviation of the workload running times under FACT
and default OS.

FACT Improves Performance Predictability: It is also worth
mentioning that FACT significantly reduces the variance of the
running times of each workload in a test set across multiple repeti-
tions of the experiment. Figure 10 shows the standard deviation (in
seconds) of the average total running time of the workloads (which
was around 1000 seconds) in each of the 10 test sets under the
default OpenSolaris scheduler and under FACT. Since the default
scheduler is not aware of contention for resources in the memory hi-
erarchy, it sometimes keeps worst combinations of threads together
for a long time, resulting in total running times that are much greater
than those when the best combinations of threads are kept together.
The default OS scheduler is not the worst algorithm, however, in
this respect. At the extreme, we observed the largest variance of
the running times when we used 3 different assignments of 4 test
threads to 4 cores and then bound threads to their cores. This gave
us 3 running times: for the Best, for the Good, and for the Worst
combination of threads, and the standard deviation of the running
times in this case was 3-4 times larger than under the default OS.
The default OS does not give such a large variance of the running
times because it performs periodic thread migrations so as to balance
the load across the cores when one or more threads gets occasion-
ally blocked. Such migrations, however, are expensive events for
memory-intensive threads as they cause a thread to pull its working
set into cold caches, often at the expense of other threads [1]. Thus,
FACT not only reduces the running times of threads but also reduces
the migration costs, which can be very significant for threads with
very large working sets.

6.2 Multi-step migrations
During a real deployment, it is expected that the MPI and API

characteristics of threads will keep changing over time, and so a
thread migration daemon should be running continuously, perform-
ing the cycle of evaluating thread characteristics, making a migration
if it is predicted to improve the overall IPC, evaluating thread char-
acteristics once again, making another migration, etc. This cycle
was described in Algorithm 1.

Initially, when the system has just booted up and the IPC predic-
tion model inside FACT has not collected any training data, thread
migrations can be performed using the DI algorithm. Then, when
enough training data is collected, the system can switch to using
FACT for performing thread migrations. Experiments in Section
6.1 show that after observing just 3 thread migrations of 4 threads
and then 3 more migrations of another 4 threads, FACT can already
outperform the DI algorithm.

Even if thread characteristics do not change over time, a multi-
step migration can still improve the quality of the final thread assign-
ment. In order to verify this claim, we checked for each test set in



Table 8 which initial thread allocations led to FACT predicting Good
or Worst thread assignments rather than the Best ones. For example,
we found that for test set 1, out of 10 initial Good allocations, FACT
suggested 8 Best assignments, 1 Good assignment and 1 Worst as-
signment. Also, out of 10 initial Worst allocations, FACT suggested
8 Best assignments and 2 Good assignments. Similarly, we found
that for test set 1, the DI algorithm suggested 9 Best assignments and
1 Good assignment starting from 10 initial Good allocations and also
suggested 9 Best assignments and 1 Good assignment starting from
10 initial Worst allocations (thus suggesting the Best assignment
with probability 28/30 from a randomly chosen initial allocation and
suggesting the Good assignment with probability 2/30). Therefore,
the probability that DI+FACT (using the DI algorithm to perform
the first migration and then using FACT to perform the second mi-
gration) would suggest the Best assignment in test set 1 can be
computed as 28/30 + (2/30)(8/10) = 0.99. When averaged across the
10 test sets, this probability came out to be 0.979, as compared to
the probability of 0.29 for a single-step prediction using DI and 0.94
for a single-step prediction using FACT. Similarly, when averaged
across the 10 test sets, the probability of FACT(2) (making two
successive migrations using the FACT-FRB algorithm) suggesting
the Best thread assignment comes out to be 0.994.

The above preliminary evaluation of the multi-step migration
architectures used the IPC prediction model inside FACT that was
trained only on the initial training set without using the new data
point obtained after performing the first thread migration. When
this data point is used to adjust the IPC prediction model during
a real deployment, then we would expect a multi-step migration
architecture to suggest the Best thread assignment with an even
higher probability.

7 Related Work
Contention-aware scheduling is a well studied area, but to the best

of our knowledge our work is the first to apply a supervised learning
approach to this problem domain. We believe that an approach that
learns the importance of various performance predictors as opposed
to relying on fixed heuristics and thresholds will be able to better
evolve over time and across architectural changes.

Most contention-aware schedulers used the last-level cache miss
rate as a heuristic [4, 6, 25]. The FACT framework was compared in
Section 6 to the Distributed Intensity algorithm proposed in [4]. As
was discussed in Section 6, while DI works well on workloads where
half the threads are memory-intensive and half are CPU-intensive,
FACT finds better combinations for “difficult” workloads, where
there is a larger number of memory-intensive threads.

Snavely et al. [23] proposed a scheduling algorithm for reducing
contention for various architectural resources on a simultaneous
multithreading processor. Their technique samples some of the
possible thread assignments and then builds a predictive model
according to the observation. In a sense, Snavely’s technique also
uses learning, but the difference from our approach is that they
pursue a different goal, and do not rely on supervised learning. Since
Snavely’s algorithm targeted a different problem, it was difficult to
make a direct comparison with our algorithm.

Boyd-Wickizer et al. [3] proposed an algorithm for scheduling
objects and operations to caches and cores, rather than scheduling
threads to optimize CPU cycles utilization. However, optimizing
CPU cycles utilization is still important and a major limitation of
this work is that the algorithm relies on application developers
to specify what must be scheduled. Several other works [18, 19,
20, 25] showed various scheduling techniques using cache usage
characteristics of applications that dynamically estimate the usage

of system resources and then optimize performance or power or
both.

There is a large body of other work on reducing cache con-
tention on multicore processors that is largely complementary to
our work. Several researchers proposed a technique for detecting
sharing among threads and co-scheduling threads that share data on
the same chip [17, 22]. Fedorova et al. proposed a technique for
improving performance isolation in light of cache contention [8].
A number of researchers used page coloring to reduce contention
for cache [10, 9]. Lee et al. [26] proposed a hybrid system model
for accelerating executions of warehouse-style queries, which relies
on the DBMS knowledge of data access patterns to minimize last-
level cache conflicts in multicore systems through an enhanced OS
facility of cache partitioning. While in our previous work [24] we
focused on a methodology for selecting good predictors, this paper
presents a complete framework, including the development of the
statistical models and adaptive migration techniques for improving
the running times of the workloads.

Finally, a number of studies looked into hardware cache par-
titioning schemes [11, 12, 13, 14] as well as memory controller
allocation algorithms [15]. Ipek et al. [16], presented an approach
to designing memory controllers that operate using the principles of
reinforcement learning (RL). An RL-based, self-optimizing memory
controller continuously and automatically adapts its DRAM com-
mand scheduling policy based on its interaction with the system to
optimize performance. These approaches can be used in conjunc-
tion with FACT to co-operatively reduce contention to even greater
levels.

8 Conclusions and Future Work
This paper described the design and implementation of a Frame-

work for Adaptive Contention-aware Thread migrations (FACT).
This framework fully exploits the performance monitoring events
by using them as inputs to a statistical model that predicts the IPC
of co-scheduled threads. This model is then used to make opti-
mal scheduling decisions that minimize cache interference among
the threads and maximizes the average IPC of all running threads.
We found that a Fuzzy Rule-Base (FRB) model had the highest
IPC prediction accuracy of 74% among the considered statistical
models, and the FACT-FRB combination resulted in a speedup of
up to 11.6% on the selected SPECcpu2006 workloads relative to
the default OpenSolaris scheduler. Moreover, FACT resulted in
a smaller variance of the running times and in a smaller thread
migration cost than the default scheduler. When compared to the
state-of-the-art DI thread allocation algorithm, FACT was able to
find the best thread assignments more consistently. Finally, we show
that multi-step migration architectures can significantly increase the
probability of finding the optimal thread assignment. For example,
if FACT is allowed to make just two successive thread migrations,
then the probability of finding the optimal thread assignment on
SPECcpu2006 increases to 0.994, starting with the probability of
0.94 for a single migration based on FACT (for comparison, a single
migration based on DI finds the optimal thread assignment with
probability of 0.29).

In the future, we plan to evaluate FACT on a server with more
than 4 cores running other workloads besides SPECcpu. We be-
lieve that multi-threaded workloads will highlight even more the
benefit of the FACT framework, since such workloads will require
learning a tradeoff between contention for the memory resources of
the co-scheduled threads and data sharing of such threads (thread
characteristics correlated with the degree of data sharing will simply
be used as additional inputs to the IPC prediction model in FACT).

Ultimately, it is desirable for the system to make smart dynamic



tradeoffs between allocating CPU resources to executing workload
threads vs. using the CPU resources for I/O processing vs. clocking
down the CPU and conserving power, and these kinds of tradeoffs
should be performed dynamically based on the current state of the
system. FACT can be easily extended to such problems by using
additional input variables that are correlated with I/O performance
and power consumption and then using a weighted average of IPC,
I/O performance and power consumption as the target variable to be
predicted.
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