
Cascade: A Parallel Programming Framework for Video
Game Engines

Andrea Tagliasacchi
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada
ata2@cs.sfu.ca

Ryan Dickie
School of Engineering

Simon Fraser University
Burnaby, BC, Canada

rdickie@sfu.ca

Alex Couture-Beil
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

asc17@sfu.ca

Micah J Best
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

mbest@sfu.ca

Alexandra Fedorova
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

fedorova@cs.sfu.ca

Andrew Brownsword
Electronic Arts BlackBox
Vancouver, BC, Canada

brownsword@ea.com

ABSTRACT
The Cascade Parallel Processing Framework (PPF) is a user
level library that facilitates manual parallelization of com-
plex C++ systems. In Cascade, processing duties of the sys-
tem are enclosed in a Cascade Task. Tasks are linked by
dependencies in a task dependency graph. The task graph
is traversed at runtime by the Cascade Job Manager who
assigns tasks to threads for execution. The Job Manager
must correctly satisfy dependencies while maximizing per-
formance. While a task-based PPF is not a new concept,
Cascade’s unique goal is to address complex systems, such
as video game engines. These systems are built as multiple
interacting sub-systems, with non-trivial dependencies. Ex-
isting PPFs, while suitable for parallelization of individual
sub-systems, do not solve the entire problem. In this paper
we describe the early design and implementation of Cascade,
present preliminary evaluation, and outline plans for future
research.

1. INTRODUCTION
Cascade is a new parallel programming framework

for complex systems. With Cascade, the programmer
explicitly structures her C++ program as a collection of
independent units of computation, or tasks. Tasks are
linked by dependencies of various forms. For example,
when one task produces data for another task, there
is a dataflow dependency among them. Dependencies
link tasks in a directed acyclic graph, a task dependency
graph. The Cascade Job Manager traverses the graph
at runtime and assigns tasks to threads for execution.
This graph captures both the logic to be executed and
the flow of the data through the system. As any circular
dependency would make execution impossible an acyclic

graph is necessary.
This explicit task-based programming style is tar-

geted for applications where work cannot be split into
parallel units of computation automatically (by a com-
piler) or semi-automatically (e.g., using parallel loop
directives). Cascade is designed for applications that
contain a number of distinct subsystems that have a
high amount of inter-subsystem dependencies which are
well known by the developer, thus, the Cascade system
simply gives the power to exploit them.

Video game engines are structured as multiple inter-
acting sub-systems: physics, artificial intelligence (AI),
geometric computation, scene management, graphics,
I/O, and so on. In these sub-systems, in addition to
dataflow dependencies among tasks, there can also be
interactive dependencies (occurring when tasks share
data) and real-time dependencies (occurring when a
task must be completed by a certain deadline). Cas-
cade allows the programmer to express these additional
dependencies, and this helps the Job Manager extract
the most parallelism out of the workload and achieve
qualitative performance objectives.

Cascade allows layering of other parallel constructs,
such as OpenMP parallel for-each loops [2] or map/re-
duce [11], on top of its task-based framework. While the
entire game engine cannot be parallelized using those
simpler constructs, individual sub-systems can. By lay-
ering other parallel constructs on top of Cascade, the
sub-systems can run in parallel and share the available
hardware in an effective and low-overhead fashion. Cas-
cade Job Manager juggles tasks from these separate task
trees, satisfying dependencies and extracting maximum
parallelism.

Parallelization of game engines is a timely and impor-

tant problem, because video game consoles, like other
hardware, are becoming predominantly multicore: Sony
PlayStation 3 now ships with IBM’s multicore Cell Pro-
cessor and Xbox-360 comes with three multi-threaded
cores. Existing parallel programming frameworks could
be used to parallelize individual sub-systems of a game
engine, but do not solve the entire problem. In building
Cascade, we hope to create a research platform for in-
vestigation of this problem. Cascade has been designed
to allow the expression of the interrelationships between
these sub-systems to facilitate the parallel scheduling of
sub-tasks in way that respects these relationships.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe the structure of a typical game engine
and present our vision of an ideal PPF for this applica-
tion domain. In Section 3 we describe the preliminary
implementation of Cascade, and in Section 4 we report
some performance results and case studies. In Section 5
we discuss related work, and in Section 6 we summarize.

2. A PPF FOR GAME ENGINES
The state of the video game is captured by the game

scene and a collection of game objects that are re-drawn
on the screen in each video frame. From one frame to
the next, objects’ position and appearance are trans-
formed based on the user input. These transformations
are computed and presented to the user by various sub-
systems: physics, AI, scene management, graphics, au-
dio, and so on. A single object is handed from one
sub-system to the next: for example, to transform a
game character, its skeletal position is first updated by
the physics and AI subsystems, and then “skinning”,
texture and lighting are applied by the graphics sub-
system.

Usually each sub-system performs a series of identical
operations on a large collection of game objects. These
batches of computation are essentially data-parallel it-
erations over ordered collections, and so they can be
parallelized either via explicit task-based programming
or using existing high-level PPFs targeted at iterated
collections (parallel for-each loops, map/reduce [11],
StreamIt [9], Ct [3], etc.).

Our vision is that in Cascade, higher-level PPFs may
be layered on top of the Job Manager. For example,
StreamIt and Ct might be used to implement task trees
that are then scheduled alongside trees from other sub-
systems (which also might be implemented with higher
level tools). The nice thing about running multiple in-
dependent trees in parallel is that they could be un-
ordered with respect to each other and thus have lots
of potential parallelism. And yet they can be made
dependent upon each other because they share the un-
derlying job manager. We can envision a StreamIt task
tree that doesn’t begin until the Ct task tree it is de-
pendent on finishes, and that one might be dependent

on another system’s parallel-foreach loop and another
StreamIt job.

Very complex systems with lots of parallelism can
be assembled using this approach. To do all this, the
higher level systems would want to expose some kind
of handle to their internally created task so that the
programmer can use that to create dependencies. For
example, the programmer may specify that some tasks
in the AI sub-system’s tree depend on some (but not
all) tasks in the physics sub-system’s tree, a so-called
partial dependency. The Job Manager will then be able
to begin scheduling tasks from the AI tree before the
physics tree has finished running. This way more par-
allelism can be extracted out of the workload than with
explicit threaded implementation or with higher-level
tools alone.

In exploring the viability of this vision, we expect to
address many research problems. One problem has to
do with task dependencies. As we mentioned, task de-
pendencies can arise in a variety of forms: dataflow de-
pendencies, interactive dependencies, real-time depen-
dencies and possibly others. Interesting work remains
to be done in the area of defining each kind of depen-
dency and in refining the Job Manager to allow their
explicit expression. As an example real-time depen-
dencies are one key type of dependency for our chosen
target domain, video games. It is crucial to the require-
ments domain to that our architecture has the facilities
to specify that a task is dependent on a system event
and that time budgeting can be explicitly specified. We
expect that modeling real-time events and constraints
will form a major part of the final version of Cascade.

Another interesting problem is amortizing scheduling
overhead. If the task is too small, the running time may
be dominated by the overhead of creating and schedul-
ing this task. Therefore, it may be wise to batch sev-
eral smaller logical tasks, called chores, in a single Cas-
cade Task. In this respect, high-level parallelization
constructs layered on top of Cascade could be useful,
because some of them already implement batching.

Another set of interesting problems has to do with
catering to the architectural properties of the system.
Existing game consoles consist of heterogeneous cores
(Sony PS3 comes with several vector cores and a single
general-purpose core). In the future, even general pur-
pose cores will be heterogeneous (they may expose the
same ISA, but will differ in features and performance).
The Job Manager will face the challenge of assigning
the tasks to the “right” cores, to achieve the optimal
performance/power trade-off. Another example of such
architecture-specific optimizations has to do with cache
utilization. Tasks working on the same data could run
faster if they are assigned to cores that share a cache. If,
on the other hand, the instruction cache is scarce, tasks
running the same code should be placed on adjacent

cores (or thread contexts).
These, and other related problems, are similar to

those in operating systems schedulers on multicore sys-
tems [4][7][18]. Operating systems typically try to de-
termine the best assignment of threads to cores via
online performance monitoring, because they have no
knowledge of threads’ characteristics. In our environ-
ment, the Job Manager (that acts as scheduler) is part
of the application, so the software can provide semantic
hints to simplify scheduling. The addition of semantic
information to a scheduler not only relieves it of having
to do dynamic measurement, it also makes information
available that may simply not be discernible at all. This
is particularly true when the OS and hardware see only
threads, and not the task division/organization that sits
on top of the threads. Also, any observational/mea-
surement system is based on the idea that by looking
at what has happened it can predict what will happen,
but this does not always work in highly dynamic and
changing systems like games. The system itself will of-
ten have fore-knowledge of what it is going to do, and
can tell the scheduler by hinting.

In summary, Cascade framework must provide an
easy way for the programmer to express task depen-
dencies so as to allow the Job Manager to extract the
maximum parallelism, and Cascade Job Manager must
juggle tasks so as to amortize scheduling overhead and
cater to the underlying architecture. This discussion
only scratches the surface of the interesting research
problems that arise in this environment; we omit a
broader discussion due to space constraints.

3. CORE ARCHITECTURE
At the heart of our Cascade is the Job Manager. It is

built on top of pthreads (on Unix) or WinApi (on Win-
dows). We used boost::function and boost::bind pro-
vided in the Boost C++ library. boost::function is a
C++ struct with an overloaded operator(). It wraps
the function arguments and function pointer, allowing
for an easy way to convert functions to Cascade Tasks.

The Job Manager supports both static and dynamic
task graphs. The static version is designed for applica-
tions where the dependency graph is built all at once
ahead of execution, as in scientific computing. The dy-
namic version allows for tasks to be constructed and
appended to the graph at runtime in order to meet the
dynamic needs of game development. Both versions use
lock-free synchronization. In the future, we will sup-
port hybrid graphs, where a static graph can be added
to the dynamic graph. This will give us much of the
best of both worlds, particularly if a static portion can
be re-submitted at each frame with a minimal amount
of work.

The Job Manager recursively executes the collection
of tasks starting from the root of the dependency graph.

In order to traverse the graph correctly, the Job Man-
ager maintains two lists. The first, runList, contais
tasks that are currently running or have recently com-
pleted. The second, waitList, contains tasks whose de-
pendencies have been satisfied and that are ready to be
scheduled. Tasks in the runlist are periodically checked
for the presence of runnable children. If the child is
runnable it is placed in the waitlist.

There are two modes for traversing the waitList :
LIFO and FIFO. The LIFO mode executes first the
children of recently completed tasks, and in doing so
keeps the cache reasonably warm. FIFO schedules ear-
lier tasks first, and in doing so may be better at meeting
real-time deadlines.

Tasks from waitList are emptied into ThreadPool, a
lightweight class designed to assign tasks to some col-
lection of threads. It contains a single thread for each
virtual processor (i.e., CPU, core, or hardware context).

Proper memory allocation in the Job Manager is cru-
cial for performance, because memory management can
involve expensive system calls, synchronization, and
fragmentation. In the static case, we will need to
rapidly allocate task nodes in a cache friendly manner.
In the dynamic case, Task nodes may be created by
any of the running threads with real-time constraints.
In both cases, objects also need to be freed rapidly. In
order to address these problems, we create a memory
pool for Task objects. The dynamic version keeps a
fixed sized pool of objects and automatically reclaims
tasks that are no longer needed. This process is lock-
free and wait-free and has minimal overhead.

The Task node provides an excellent place to store
profiling information and hints to the scheduler. Each
task node contains a user supplied unique identifier
along with optional timing parameters to track the state
changes of the task node. We have developed graphical
tools in order to visualize this output. Presently, this
data is only for the user but in the future we will con-
sider using this information to automatically optimize
the dependency graph and its execution.

We have also implemented several parallel constructs
layered on top of Cascade: map, reduce, zip, and others.
We omit description of these components due to space
constraints.

4. BENCHMARKS AND CASE STUDIES
In our preliminary evaluation of Cascade, we con-

sider its effectiveness from two points of view, those
of performance and programmability. To benchmark
the performance we chose sequence alignment, a dy-
namic programming algorithm heavily used in bioin-
formatics. In presenting this benchmark we are not
attempting to show a better parallelization scheme for
this algorithm, as extensive research has already been
conducted. Rather, we want to show quantitatively

that overhead introduced by our task-based approach
is competitive with more traditional multithreading
multithreading-based solutions in terms of performance.
The relative simplicity of this algorithm allows for more
objective comparison. We believe that this serves to il-
lustrate the flexibility of our approach in that the sys-
tem performs well not only a very broad decomposition
of subsystem, such as the video game case study below,
but also those that use a high degree of granularity of
their task decomposition.

To evaluate programmability we modified “Destroy
The Castle (DtC)” [1], a game demo from Intel. Paral-
lelization of game engines is a relatively new topic and
has distinct challenges from those found in operating
system or ‘hard’ realtime systems. Robust general so-
lutions tailored to the domain do not exist yet. Cascade
is, as far as we are aware, the only research-oriented ar-
chitecture to use this form of task decomposition and
expression. Solutions exist in the commercial world,
but they are proprietary and generally tightly coupled
to the software they are being used to parallelize. As
we already highlighted, our system is a particularly well
suited to game engines which are a collection of distinct
subsystems where each subsystem can co-exist in par-
allel with several others while needing to be exclusive
of the rest. These subsystem map naturally on to our
task-based model and have high performance demands
requiring that any management scheme have low and
consistent overhead.

4.1 Performance: Dynamic Programming, Se-
quence Alignment

The sequence alignment algorithm computes optimal
alignment of two strings. In bioinformatics, sequence
alignment is used to identify regions of similarity of
DNA or RNA sequences. To compute the alignment
of two strings of size n and m, the algorithms creates
an n ×m matrix, where rows and columns correspond
to the strings’ characters. The aligner computes scores
for each element (i, j) in the matrix based on maximum
score in adjacent elements (i−1, j), (i−1, j−1), (i, j−1).
So the computation of each score depends on the scores
of three neighbors (see Figure 1). Using this depen-
dency information, the programmer constructs the Cas-
cade task graph, starting with element (0, 0) before con-
tinuing to adjacent elements (see Figure 2).

To transform this information into an OpenMP im-
plementation, the task dependency graph must be ma-
nipulated into a list of task-sets that can be run in par-
allel:
{(0, 0)}, {(1, 0), (0, 1)}, {(2, 0), (1, 1), (0, 2)}, ..., {(n, m)}
Each set is a collection of diagonal elements that can

be run in parallel; however, since each diagonal set is
dependent on the previous set, the diagonal must com-
plete before calculating the next. In contrast, the Cas-

(a)

Figure 1: Data dependency of matrix elements.
The arrows indicate the true data dependencies,
which can be used with the dataflow framework.
The diagonal groups represent elements that can
be calculated in parallel once the previous di-
agonal group has been calculated. (that’s the
OpenMP way).

cade implementation does not have such an artificial
constraint, and will keep idle threads busy by progress-
ing to subsets of other diagonals.

The benchmarks are run on a Sun T2000, 64-bit
SPARC v9 processor with 32 hardware thread contexts
on eight cores. The sequence aligner computes the op-
timal alignment of two strings both of length 7700, thus
requiring 59,290,000 element calculations. To minimize
system overhead incurred from switching tasks, the ma-
trix is subdivided into square blocks whose elements
are sequentially calculated. Even with optimal block
sizes, the Cascade implementation completes 1.5 times
quicker than the OpenMP implementation. See Table
1 for a break down of execution times. We also col-
lected data showing that Cascade runs faster despite
the scheduling overhead, because it extract more paral-
lelism out of the workload and produces less thread-idle
time than OpenMP.

This result demonstrates the efficiency of our prelim-
inary implementation and the fundamental scaling po-
tential of the task-based approach. The performance
achieved by this task-based approach is competitive
with a classical OpenMP implementation. In addi-
tion, the task-based PPF extracts greater parallelism
out of the workload than a higher-level parallel con-
struct thanks to having precise information on dataflow
dependencies.

In a more subjective vein, we discovered in producing

JobManager jm(NUM THREADS) ;
t = new Task ∗ [j o b ma t r i x s i z e] ;

//Create the tasks in the array
f o r (i n t y = 0 ; y < rows ; y++) {

f o r (i n t x = 0 ; x < c o l s ; x++) {
t [index (x , y)] = jm . createTask (
boost : : bind (calcElement , x , y)) ;

}
}

// Set task at [0 , 0] as the entry point
jm . getRoot()−>addChild (t [0]) ;

// Set up a l l remaining dependencies
Task ∗ t ;
f o r (i n t y = 0 ; y < rows ; y++) {

f o r (i n t x = 0 ; x < c o l s ; x++) {
t = t [index (x , y)] ;
i f (y < rows− 1) {

//add bottom ch i l d
t−>addChild (t [index (x , y+1)]) ;

}
i f (x < c o l s − 1) {

//add r i gh t ch i l d
t−>addChild (t [index (x+1, y)]) ;
i f (y < rows − 1) {

//add bottom r i gh t ch i l d
t−>addChild (t [index (x+1, y+1)]) ;

}
}

}
}

Figure 2: Cascade task graph creation for se-
quence alignment.

this test that a task-based decomposition of the problem
was easier to implement than one using OpenMP.

4.2 Programmability: Game Engine, Destroy
The Castle

Given that Cascade is primarily designed to model
complex systems such as video games it was necessary to
assess how well it was suited for parallelization of these
systems. For this purpose we modified the “Destroy
The Castle (DtC)” [1] video game, a technology demo
from Intel. DtC proved to be well suited to our purposes
as it contained many of the facets of a modern game
engine, but in a simplified form, which allowed us to
test our design assumptions. In this section we report
on our preliminary experiences of converting DtC to use
Cascade and describe the lessons learned in the process.

The existing DtC code used Thread Building Blocks
and standard Windows threading primitives to coor-
dinate the various tasks that produce a frame. Once
player input had been taken into account the physical
behaviors of all the non-intelligent entities would be cal-
culated. The AI system would then be invoked using
the current physical state of the world to make decisions
for the AI controlled entities. Finally once the current
position of all entities had been determined the parti-
cle system would be invoked to add atmospheric effects
such as smoke. We converted this code to use the Cas-
cade framework. The resulting dependency structure is
shown in Figure 3.

Refactoring the existing code to use Cascade was, in
general, straightforward. Sequential function calls and
various types of ‘wait’ calls were mapped onto depen-
dencies. For most of the modules only their points of in-

Block Size Cascade time OpenMP time
50× 50 1.535 2.418
75× 75 1.358 2.405
100× 100 1.348 2.292
125× 125 1.406 2.103
150× 150 1.459 2.199
175× 175 1.524 2.323
200× 200 1.581 2.466
250× 250 1.763 2.027
300× 300 1.919 2.133

Table 1: Execution time in seconds depends
on the framework, and number of elements per
block. A larger block size results in fewer tasks.
Finding an optimal balance between the level
of parallelization, and framework overhead re-
quires static profiling.

Figure 3: Cascade task graph for calculating a
frame of DtC.

vocation needed to be modified and their internals were
left virtually unchanged. One large issue was encoun-
tered when dealing with DirectX, Microsoft’s DirectX
API for graphical and audio output. DirectX runs its
own threads internally, and those threads are outside of
control of Cascade’s Job Manager. The inability to con-
trol this sub-system limited the parallelism that could
be extracted and created counterproductive interactions
with Cascade threads. This kind of ‘external depen-
dence’ issues should be addressed in future versions of
Cascade and should only affect existing systems that
use closed components.

With the exception of this conflict between high level
process management systems the transformation of DtC
to use Cascade was not at all arduous. While further
case studies of this type are needed to determine if this
simplicity is as common we suspect it has given us con-
fidence in approach that we are taking. While the code
contained in DtC is admittedly simpler than a commer-
cial engine we were able to carry out the conversion with
no previous knowledge of the code and a very limited
time budget.

While a complete ‘post-mortem’ of the refactoring of
this very specific piece of software would not be very
instructive to the reader something of the process may
help to illustrate some of the attributes of Cascade.

The code to perform the game logic, or simulation,
was originally all invoked from a single lengthy func-
tion encompassing calls to all non-rendering related li-
braries and objects. This monolithic function was first
divided into many separate functions which became the
tasks. So, in the first iteration task graph began as sin-
gle path, mimicking the serial nature of sequential code.
No parallelism was present at this point, but with only
some minor refactoring and not more than 30 lines of
additional code Cascade was present and the code was
executable.

Following this was the process of exploiting paral-
lelism over several iterations. Our architecture was not
designed for automatic parallel extraction, but for the
easy expression of the knowledge of the designer. In
this case we first determined that the code responsi-
ble for sound was in actuality independent from every
operation except those involved with determining the
input of the player and so it was made a child of Player
Control task with no dependents of its own.

In a similar fashion with minor source code changes
the tree widened and some tasks were split into smaller
tasks. This task splitting shows one of Cascade’s
strengths. The sequence alignment tests showed that
Cascade was capable of handling many tasks with min-
imal overhead. The designer has the option to employee
a high degree of granularity for some systems and very
course granularity for other depending on amount of po-
tential parallelism without incurring too much overhead
in either case.

A lot was learned from this implementation experi-
ment. The lessons that will certainly inform the growth
of Cascade are the need for a ‘distributed’ scheduling
mechanism, the importance of batching, and the need
for the specification of partial dependencies.

In the early implementation of Cascade the sched-
uler was implemented in its own thread that was in-
voked upon completion of every task. While this caused
no performance problems with the sequence alignment
benchmark, with DtC it produced a great deal of un-
necessary context switching and significant performance
overhead. As a countermeasure, we changed the sched-
uler to execute in the context of Cascade threads.
The scheduler now runs in a distributed fashion as a
postscript to each task. This new design significantly
reduced the overhead and produced smoother perfor-
mance.

Another lesson learned was the importance of batch-
ing and the need for specifying partial dependencies.
Consider, in Figure 3, the dependence that the Parti-
cle system has on the AI system. In this case it is not

required that all calculations done by the AI system
complete before the Particle system begins. Once the
AI system completes modification for a single entity,
any particle effects for this entity can already be calcu-
lated. So in theory the Particle system could start sig-
nificantly earlier than the completion of the AI system.
In the extreme case, the dependency graph could be
built of fine-grained tasks, each performing an update
on a single entity. We found, however, that such fine-
grained parallelization was inefficient due to scheduling
overhead. Instead, batching of multiple updates in a
single task dramatically improved performance. On the
other hand, having very large batches limits the par-
allelism, so it would be desirable to create moderately
sized batches and specify partial dependencies between
the batches belonging to the AI and the Particle sys-
tems. To find a happy medium, future versions of Cas-
cade will be designed with a mechanism to reflect these
partial dependencies.

At the present, we are continuing the transformation
of DtC to Cascade, and hope to report more on our
experiences as well as performance results in the future.
Also, we are examining other platforms, which has more
complexity than DtC, to apply cascade to for a further
case study. The will allow us to further evaluate and
refine our architecture and give us further confidence in
generality of our assumptions.

5. RELATED WORK
Increasing parallelism in the hardware coupled with

the difficulty and limitations of thread-based program-
ming has inspired much new research in parallelization
techniques, ranging thread-level speculation (TLS) to
new parallel programming languages. We compare and
contrast Cascade with some of these techniques. Due to
space limitations we are unable to provide a complete
discussion.

Solutions like OpenMP [2] and TLS [19] are suitable
for parallelization of portions of code, such as loops, and
are not whole-system solutions. They can be integrated
with Cascade for parallelization of individual tasks.

Use of new programming languages with explicit sup-
port for parallelism presents an attractive alternative
[5, 6, 10, 12], but the downside is that this requires re-
training of engineers. A notable exception is Cilk++ [8],
a parallel syntax extension to standard programming
languages like C++ that allows specifying synchro-
nization dependencies between functions. Cilk, unlike
Cascade, does not allow explicit constructions of task
graphs and permits no modifications to the Job Man-
ager.

Recently, the map/reduce paradigm [11] has received
much attention thanks to its ability of semantically de-
scribing potential concurrency in an algorithm. Opera-
tors (map/reduce), which act on a collection, hide the

complexity of parallel implementation. There are sev-
eral PPFs that use map/reduce. One example is the
Galois system [14]. This framework, which also has a
job manager, has recently been extended with several
different task scheduling algorithms tailored for differ-
ent workloads. The authors found that catering the
algorithm to the workload results in significant perfor-
mance improvements [13]. Some of the lessons learned
in that study will be applicable to our research.

Other recent PPFs that use map/reduce paradigm are
the Ct framework from Intel [3], RapidMind [16], and
Merge [15]. They allow inserting an abstraction layer
over standard C++ to exploit parallelism in a map/re-
duce fashion over heterogeneous hardware. Rapid-
Mind performs just-in-time (JIT) compilation to create
platform-specific code. Merge allows the specification
of multiple implementations at design time and chooses
the right one at runtime. These high-level tools, per-
haps with the exception of RapidMind, can be inte-
grated with Cascade. RapidMind performs JIT com-
pilation, which is a limitation in soft real-time systems
like game engines.

Even though all the discussed approaches can be suf-
ficient in representing the most common types of par-
allelism, there are cases in which we want to clearly
express complex dependencies between parallel tasks.
StreamIt [9] and Intel Thread Building Blocks (TBB) [17]
are task-based PPFs suitable for this purpose. StreamIt
contains basic constructs that expose the parallelism
and communication of streaming applications without
depending on the topology or granularity of the under-
lying architecture. The system structure is similar to
ours since the program is specified as a graph of ele-
ments with dependencies. Nevertheless the system is
built, as the name suggests, for streaming purposes, so
its applicability is limited.

Intel (TBB) is the closest in spirit to our system.
However, it does not support explicit construction of
task graphs (graphs are constructed recursively via
spawn call) and allows no customization of the Job
Manager. TBB is limited to expressing dataflow depen-
dencies, performs no architecture-specific optimizations
and offers no special support for heterogeneous hard-
ware.

6. CONCLUSION
We presented our preliminary work on Cascade, the

parallel programming framework for complex systems.
In the future we hope to use Cascade to address research
challenges outlined in this paper and others.

Our experiences with DtC have indicated that our
model of the simple acyclic graph is not yet rich enough
to describe the complex interaction we wish to manage.
The dependencies are currently absolute in the sense
that nothing of the child will be executed until the par-

ent is completely finished. We believe that a more ro-
bust system would allow further specification of types
and parameters of the dependencies. We believe that
a further increase in parallelism could be achieved if
the architecture had facilities to allow a child to begin
the computations when a predetermined portion of the
parent workload has been completed.

Additionally we are aware that Cascade has only be-
gun to address the intricacies of real-time dependencies
and constraints. Future versions will dramatically in-
crease the number of architectural constructs available
to address these issues.

As has been mentioned, video games as prime ex-
ample of complex soft real-time systems have their own
specific needs distinct from other similar domains. Cas-
cade currently uses a rather simple scheduling mecha-
nism that only examines the local context (i.e. a nodes
direct children) to determine scheduling order. To be
fully suitable for the video game domain these will need
to be addressed. A more complex mechanism is needed
which is more aware of the entire tree and of possible
heterogeneous processing units such as the SPU proces-
sors on the Playstation 3.

We would like to thank all the anonymous reviewers
for their valuable observations and Tim Reid for his
help in the early development of these ideas.

7. REFERENCES
[1] Code Demo: Destroy The Castle

http://softwarecommunity.intel.com/
articles/eng/1363.htm.

[2] The OpenMP specification for parallel
programming http://www.openmp.org.

[3] A. Ghuloum, T. Smith, G. Wu, X. Zhou, J. Fang,
P. Guo, B. So, M. Rajagopalan, Y. Chen, B.
Chen. Future-Proof Data Parallel Algorithms and
Software on Intel Multi-Core Architecture. Intel
Technology Journal, 2007.

[4] M. Becchi and P. Crowley. Dynamic Thread
Assignment on Heterogeneous Multiprocessor
Architectures. Proceedings of the International
Conference on Computing Frontiers, 2006.

[5] G. Blelloch and G. Sabot. Compiling
collection-oriented languages onto massively
parallel computers. Proceedings of the 2nd
Symposium of Frontiers of Massively Parallel
Computation, pages 575–585, 1988.

[6] M. M. T. Chakravarty, R. Leshchinskiy, S. P.
Jones, G. Keller, and S. Marlow. Data parallel
haskell: a status report. pages 10–18, 2007.

[7] A. Fedorova. Operating System Scheduling for
Chip Multithreaded Processors. Doctorate
dissertation, Harvard University, Division of

Engineering and Applied, 2006.
[8] M. Frigo, C. Leiserson, and K. Randall. The

implementation of the Cilk-5 multithreaded
language. Proceedings of the ACM SIGPLAN
1998 conference on Programming language design
and implementation, pages 212–223, 1998.

[9] M. Gordon, D. Maze, S. Amarasinghe, W. Thies,
M. Karczmarek, J. Lin, A. Meli, A. Lamb,
C. Leger, J. Wong, et al. A stream compiler for
communication-exposed architectures. ACM
SIGARCH Computer Architecture News,
30(5):291–303, 2002.

[10] K. Iverson. A programming language. John Wiley
& Sons, Inc. New York, NY, USA, 1962.

[11] S. G. Jeffrey Dean. Mapreduce: Simplified data
processing on large clusters. In OSDI, pages
137–150, 2004.

[12] S. P. Jones. Beautiful Concurrency. O’Reilly
Media, Inc., 2007.

[13] M. Kulkarni, K. Pingali, G. Ramanarayanan,
B. Walter, K. Bala, and L. P. Chew. Optimistic
parallelism benefits from data partitioning.
SIGARCH Comput. Archit. News, 36(1):233–243,
2008.

[14] M. Kulkarni, K. Pingali, B. Walter,
G. Ramanarayanan, K. Bala, and L. P. Chew.
Optimistic parallelism requires abstractions.
pages 211–222, 2007.

[15] M. D. Linderman, J. D. Collins, H. Wang, and
T. H. Meng. Merge: a programming model for
heterogeneous multi-core systems. pages 287–296,
2008.

[16] M. McCool and R. Inc. Data-Parallel
Programming on the Cell BE and the GPU using
the RapidMind Development Platform.
Proceedings of GSPx Multicore Applications
Conference, 2006.

[17] J. Reinders. Intel Threading Building Blocks:
Outfitting C++ for Multi-Core Processor
Parallelism. O’Reilly, 2007.

[18] A. Snavely and D. Tullsen. Symbiotic
Jobscheduling for a Simultaneous Multithreaded
Processor. Ninth International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2000.

[19] J. G. Steffan and T. C. Mowry. The potential for
using thread-level data speculation to facilitate
automatic parallelization. pages 2–13, 1998.

