Searching for Concurrent Design Patterns in
Video Games

Micah J Best!, Alexandra Fedorova!, Ryan Dickie', Andrea Tagliasacchi!,
Alex Couture-Beil!, Craig Mustard!, Shane Mottishaw®, Aron Brown!, Zhi
Feng Huang!, Xiaoyuan Xu', Nasser Ghazali', and Andrew Brownsword?

! Simon Fraser University
2 Electronic Arts Blackbox

Abstract. The transition to multicore architectures has dramatically
underscored the necessity for parallelism in software. In particular, while
new gaming consoles are by and large multicore, most existing video
game engines are essentially sequential and thus cannot easily take ad-
vantage of this hardware. In this paper we describe techniques derived
from our experience parallelizing an open-source video game Cube 2. We
analyze the structure and unique requirements of this complex applica-
tion domain, drawing conclusions about parallelization tools and tech-
niques applicable therein. Our experience and analysis convinced us that
while existing tools and techniques can be used to solve parts of this
problem, none of them constitutes a comprehensive solution. As a re-
sult we were inspired to design a new parallel programming environment
(PPE) targeted specifically at video game engines and other complex
soft real-time systems. The initial implementation of this PPE, Cascade,
and its performance analysis are also presented.

1 Introduction

A video game engine is the core software component that provides the skeleton
on which games are built and represents the majority of their computational
complexity. Most game engines were originally written to be executed on ma-
chines with no facility for truly parallel execution. This has become a major
problem in this performance hungry domain. In addition to the near ubiquity of
multicore processors in consumer PCs the latest generation of gaming consoles
have followed this trend as well. Microsoft’s Xbox 360 and Sony’s PlayStation 3
both feature multicore processors. To address this problem, video game engines
are being restructured to take advantage of multiple cores.

Restructuring for parallelization has begun[l], but much of the potential
performance gains have yet to be realized as parallelizing a video game engine
is a daunting task. Game engines are extremely complex systems consisting of
multiple interacting modules that modify global shared state in non-trivial ways.
This paper describes our experience of parallelizing a video game engine, our
preliminary accomplishments, the lessons we learned and the insight for future
research that emerged from this experience.

For our research, we use an open-source video game engine, Cube 2, which we
enhanced by adding extra logic to Al and Physics modules so that it more closely
resembles a commercial engine — we refer to this extended engine as Cube 2-ext.
Careful inspection of this game engine, as well as our knowledge of commercial
game engines, convinced us that hand-coding the engine to use threads and syn-
chronization primitives would not only be difficult for an average programmer,
but introduce a level of complexity that would limit even experts in extracting
parallelism. Instead, we felt that relying on a parallel library that facilitates the
expression of parallel patterns in sequential code and then parallelizes the code
automatically would be more efficient. An evaluation of existing parallel libraries
showed that none of them offered the support that we needed to express all the
computation patterns present in game engines and so we created Cascade, our
own library to fill this gap.

In its first incarnation, Cascade allowed a dependency-graph style of pro-
gramming, where the computation is broken down into tasks organized in a
graph according to their sequential dependencies and, most importantly, sup-
ported an efficient parallel implementation of a producer/consumer pattern.
The producer/consumer pattern, pervasive in video games, consists of two tasks
where one task (the producer) generates data for another (the consumer). While
the pattern itself is not new, the parallel implementation and its semantic ex-
pression described in this paper are unique to Cascade. By applying this pro-
ducer/consumer pattern we were able to achieve, using eight cores, a 51% de-
crease in the computation time necessary for the non-rendering or ‘simulation’
phase of Cube 2-ext.

While this first parallelization attempt was fruitful, we also learned about the
limitations of the producer/consumer pattern and about the difficulty of trying
to overcome these limitations in C++. In particular, we learned that whenever
a computation had a side-effect, i.e., where the modification of some global
state was required, the application of the producer/consumer pattern was very
difficult without significant restructuring of the code. We also learned that the
producer/consumer pattern did not allow for in-place transformations of data as
a producer always generates a new copy of data. This was limiting in terms of
performance and memory demands. At the same time, we were unable to find
the required semantic constructs for expressing parallelism with side-effects and
in-place transformations in existing C++ libraries. This has inspired us to design
the Cascade Data Management Language (CDML). CDML, a work in progress,
allows expression of parallel constructs and yet avoids these limitations. CDML
is translated into C++, the language required by the game industry. We give a
preliminary sketch of parts of CDML and describe its design philosophy.

In the rest of the paper we provide an overview of video game engines and
the challenges involved in their parallelization (Section 2), we describe how
we parallelized parts of Cube 2-ext using the new implementation of the pro-
ducer/consumer pattern, briefly introduce Cascade and provide experimental
analysis (Section 3). We describe the lessons learned and introduce CDML in
Section 4. We describe related work and conclude in Sections 5 and 6.

2 Challenges in Parallelizing Video Game Engines

A game engine performs a repeated series of game state updates where a new
state is generated for each video frame. Each part of this state is the responsi-
bility of one or more distinct subsystem in the engine. The AI subsystem, for
example, is responsible for dictating the behaviour of artificial agents in the
game world while the Rendering subsystem is responsible for combining texture
and geometry data and transferring it to the GPU. While the nature of data
and computations in a particular subsystem can be quite different from another
they are tightly coupled and the product of one subsystem may be required by
several others.

A trivial attempt at parallelizing an engine could amount to running each of
these subsystems in its own thread. This is far from ideal as the degree of par-
allelization would be limited by the number of subsystems and the differences
between computational loads. Furthermore, this solution would be difficult to
implement efficiently because the subsystems modify shared global state and in-
teract in non-trivial ways. For instance, the Al subsystem updates the behaviours
of the AI agents and then passes the control to Physics which simulates new po-
sitions and poses for characters’ skeletons based on their behaviour, which are
then used by the Renderer for display. This creates a series of data dependencies
among these subsystems. If these subsystems run in parallel the global shared
state must be protected, significantly limiting concurrency.

One alternative to using threads is to use parallel constructs such as parallel-
for, found in OpenMP [2] and other libraries. Parallel-for is used for loop paral-
lelization where the compiler relies on programmer-inserted directives to gener-
ate threaded code. While such tools are appropriate for some cases they are not
sufficient to solve the entire problem. Data dependencies among different sub-
systems do not easily map to these simple parallel constructs making it difficult
to express fine-grained and inter-subsystem parallelism. These approaches also
exhibit a tendency for execution to alternate between periods of high parallelism
and serial execution, leaving the serial phases as a critical bottleneck.

Furthermore, any parallelization tools must preserve the determinism of re-
sults and guarantee consistent performance to assure a seamless experience and
correctness in multiplayer games. These constraints imply that using dynamic
compilation or other kinds of dynamic optimizations are often a poor choice for
this domain. In fact, some video game platforms simply forbid dynamic compi-
lation.

In summary, video game engines are structured as multiple interacting sub-
systems with complex data dependency patterns making explicit threading and
simple parallel constructs a poor option. A better solution would be to employ
a PPE that allows the integration of diverse styles of parallelization methods.

3 Parallelizing Cube 2-ext

We identified the open source project Cube 2 as a test bed for our research.
Despite having many attractive properties as an experimental test bed, Cube

2 lacked many modern game features such as fully realized physics simulation
or character skinning. We addressed these limitations by adding some of these
features to Cube 2. In particular, we added a more robust physics layer in the
form of the popular Open Dynamics Engine (ODE) [3] and replaced the existing
AT routines with more sophisticated versions that simulated ‘pack behaviour’.
In the rest of the text we refer to this extended version as Cube 2-ext.

3.1 Parallelizing the Producer/Consumer Pattern

Our analysis of Cube 2-ext showed that in many places the computation was
structured as a chain of interacting modules, or subsystems. Similar analysis
applies to commercial video game engines with which we are familiar. For in-
stance, the Al subsystem updates the behaviours of the Al agents and then calls
Physics in order to assess the effect of the agent’s actions on the world. Further,
within the Physics subsystem itself, the simulation first determines which game
objects collide and then passes this data to the next stage which determines how
to react to collisions.

We observed that a dependency-based decompo-
sition of interrelated subsystems maps nicely to the
well known dependency graph model [4][5][6][7]. In
this model, the program is represented as a directed
acyclic graph where each node represents a compu-

World Update A

P':m':; Al Producer tational task and directed edges between nodes rep-
resent dependencies or data flow. We can execute

Ty tasks in parallel by mapping tasks to threads while
Consumer ['World Update 8 | respecting these dependencies. In our rendition of
o 7N this model dependencies are one of two types, either

[Servr || Sound |L| Paride | Jogical or dataflow. In a logical dependency the par-
" L L ent must complete before the child commences exe-
ysics Entity

Worldstep Managment cution. A dataflow dependency defines a relationship
in which data comprising a shared state between par-
ent and child is passed from the parent to the child
when it is safe for the child to process it. Figure
1 shows the dependency graph of our preliminary
parallelization of Cube 2-ext. In our graphical rep-
resentation an edge from parent to child represents a dependency, hollow arrow
denoting dataflow and thin arrow indicating logical dependency.

Additional parallelism is possible in the case of a dataflow dependency. If
the parent has produced enough data that the child can begin processing the
child can begin execution before the parent completes. We exploit this possibility
when parallelizing with the producer/consumer pattern.

In Cube 2-ext we applied this pattern in the ODE Physics and Al subsystems.
The Physics subsystem determines whether there is a collision between objects in
the world, boxes bouncing off floors and walls in our case, and packs the resulting
collision data in an array. This process comprises the producer part. Then, the
consumer processes each object to determine how to respond to the collision.

Fig.1. The Cube 2-ext
Dependency Graph

o~ \ = Ak "
<
m m
E.] £ I
o ©7 o
£ £ I
= [
©
Physics Producer
- EI Physics Consumer -
O Physics Worldstep
= 8 Albodeer ,/L,,/,,,,,////,,,//W
ﬁ) T T T T T T T T (F\") T T T T T T T T
o 1 2 3 4 5 6 7 0 2 3 4 5 6 7
Thread Thread

Fig. 2. Producers/consumers in Cube 2-ext(left) and Simulating parallel-for(right)

In the AI subsystem, the producer has been applied to the ‘monster control’
algorithm. The producer determines whether the monsters can ‘see’ each other
and then makes this visibility data available to the consumer who processes it
to determine the monster’s next action. Since the updates performed on each
object in the consumer steps are independent the work of the task can be divided
over multiple threads without synchronization.

The parts of a task that are mapped to threads at runtime are referred to
as its instances. Note that although this producer/consumer pattern with multi-
instance tasks is very similar to a data-parallel pattern using a parallel-for or
parallel do-all, there is an important difference. In parallel-for or parallel do-all
the parallel computation cannot begin before all the required data is ready as all
parallel tasks commence simultaneously. However, with the producer/consumer
pattern the first child instance begins as soon as the parent readies the first
batch of data.

Figure 2(left) illustrates a typical execution for a single frame of the above
task graph on 8 cores, showing the work done by each of the eight threads
(x-axis) over time (y-axis). The AI and Physics represent the vast majority of
calculations performed so we have eliminated the others from analysis for clarity.
The experiments that follow were done on a Mac Pro system with two Quad-
Core Intel Xeon CPUs. The 7ms execution time presented in this figure is typical
based on averages of thousands of executions. Observe that the Physics consumer
begins well before the producer has finished.

To demonstrate the difference between the producer/consumer pattern and
parallel-for, we emulated parallel-for by adding restrictions to the task graph
such that consumers did not begin processing data until the producer completed.
Figure 2(right) demonstrates a typical execution of the above task graph on 8
cores when these restrictions are introduced. Notice that it takes 12ms to execute
the task graph, longer than the 7ms in the unrestricted case.

// Create task objects.

// Task A: 1 instance

AaC1);

// Task B: batch size 2, 1 instance
Bb(2,1);

// Task C: batch size 1, 4 instances
Cc(1, 4);

// Task D: batch size 1, 3 instances
Dd(1, 3);

a->addDependent(b);
b->connectOutput(¢);
c->connectOutput(d);

class C :

{

public:
C(int batchSize, int numThreads) :
Task<int,int>(batchSize, numThreads) {}

public Task<int,int>

void work_kernel(TaskInstance<int,int>* tI) {
for(int i=0;
i < tI->receivedBatch->size();
i++)
tI->sendOutput (tI->receivedBatch->at (i)+1);
}
};

Fig. 3. Declaring a task graph Fig. 4. A task with work kernel

3.2 Cascade

Although several existing PPEs compatible with C++ supported a dependency-
graph pattern, such as Intel TBB [6], Cilk [4] and Microsoft PCP [7], none of
them supported the concept of multi-instance tasks, which was key in our design.
Dryad [5], a PPE that does support multi-instance tasks is targeted largely for
database-style queries over computing clusters so it did not suit our needs either.

To fill this void we designed a new PPE, Cascade.
Cascade began as a simple C++ PPE enabling the par-
allelization of producer/consumer and conventional de-
pendency graph patterns with support for multi-instance
tasks. In this section we describe the implementation of
Cascade used for this paper and Section 4 details its fu-
ture.

The key constructs in Cascade are tasks, instances,
the task graph and the task manager. A Cascade task is
an object that includes a work kernel and input/output
channels. A work kernel is a function that encapsulates
the computation performed by the task and an input
or output channel is a memory buffer to facilitate com-
munication. Tasks are organized into a computation graph according to their
dependencies and the programmer specifies the producer/consumer semantics
by connecting the tasks’ input and output channels. Figure 5 shows an example
dependency graph.

Figure 3 illustrates the C++ syntax used to map this dependency graph onto
a Cascade graph abstraction. The programmer instantiates task objects, inher-
iting from one of Cascade’s generic classes, specifying the number of instances
to run in each task and the size of the batch that must be made ready by the
parent before the child instance is launched. An example implementation of the
class for task C from the example is shown in Figure 4.

As Figure 4 demonstrates, complexity of the code for creating parallel child
instances is hidden from the programmer. The simplicity of semantics for creat-
ing producer/consumer relationships means that very few changes were required

I

Fig.5. Task graph
from Figure 3

to the code in Cube 2-ext. Producer and consumer work functions were wrapped
in work kernels and made to exchange data via input/output channels.

3.3 Cascade Performance Evaluation

For experiments in this section

e I
we used microbenchmarks, similar - Work:
to that shown in Figure 5. The 3 A 198
work kernel was almost identical o | + 20000

. . . v oS S
o
to that in Figure 4, except for it E o | \;\ -
was configured to perform some o S _°
\$§A\°

amount of ‘work’ after receiving S F=a—0n_p
the batch and before sending it o |

o

out. The amount of work was var-
ied depending on the experiment.
In all cases, we report average per- Threads

formance based on at least 20,000 Fig. 6. Scalability with varying work.
trials. The standard deviation in all cases was under 5% with the exception of
experiments where the work size was very small, taking only a few microsec-
onds to execute, or the number of threads was large, more than six — in these
cases operating system activity, interrupts, and non-determinism in scheduling
contributed to the noise.

3.4 Summary of Evaluation

In the first set of experiments

we evaluated the scalability of Cas- i Batch Size: P
cade. Figure 6 demonstrates the re- 7 i % 2
sults. The x-axis shows the num- ° i + %8
ber of threads and the y-axis shows E o 40

-

the time normalized to the single-
threaded runtime. As the number
of threads increases, we expect the
running time to decrease. Scalabil- ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

ity in Cascade may be limited due o2 3 4 s 678

to contention on the runqueue, the Threads

queue of tasks whose dependencies Fig. 7. Effect of batch size

have been satisfied and that are ready to be assigned to a thread. The degree of
runqueue contention depends on the amount of work done in the work kernel.
Contention varies inversely proportional to the amount of work done. To demon-
strate this effect, we show several curves for different work sizes, displayed in the
number of instructions. With a small work size, 4000 instructions, the overhead
of synchronizing on the runqueue hurts scalability and so beyond six threads we
see no benefit. In fact, we witness performance degradation. With larger work
sizes, however, the workload achieves nearly linear scalability, the running time
with eight threads being 0.14 at 40K instructions. This demonstrates that the

\s\
~

°o—

°

°§6-0—;=$=$

00 05 10 15 20 25

choice of work size is important for applying Cascade. In Cube 2-ext the work
size in producers and consumers was on the order of millions of instructions.

The batch size is a measurement of the amount of data the producer accu-
mulates before sending it to a consumer. We next examined the performance
effects of varying this parameter. The smaller the batch the more work needs
to be done to process it and the more synchronization there is on the batch
queue. Figure 7 shows that with a very small batch size scalability is poor, but
it quickly improves as the batch size is increased and we see reasonable scaling
with batch sizes as small as 5 or 10.

Our analysis of Cascade demonstrates that scalability depends on the amount
of work done by the task and the size of the batches. With work size of 10K
instructions and a batch size of 10 scalability approaches linear. Using a lock-
free queue as opposed to a mutex queue improves performance and scalability
dramatically when the work size is small.

Applying the producer/consumer parallelization style to the Physics and Al
subsystems of Cube2-ext reduced the average time per frame from 15.5ms using a
single thread to 7.8ms using 8 threads. This gives the 51% speedup that we have
claimed. Despite these improvements, there is still vast numbers of opportunities
for parallelization that we have yet to exploit.

4 Cascade Data Management Language: Inspiration from
the Lessons Learned

Our experience with Cascade and Cube 2-ext underscored the fact that there
is no universal remedy that address all the complexities of this domain. Discus-
sions from previous sections promote the dataflow approach expressed through
the producer/consumer pattern as a good model for organizing programs and
managing their interactions efficiently in parallel. While this model was effective
for many cases, in our experiments we discovered that it has inherent limitations.

Problems parallelizing the Al subsystem illustrates these limitations. In this
subsystem, each agent performs multiple checks to ascertain if another agent
is visible. These tests were implemented using Cube’s original routines to walk
the octree structure that held the world data. In theory, walking an octree is a
read-only algorithm, but as an optimization collision results were being cached
in static buffers. Concurrent writes to these cache structures caused corruption
and resulted in crashes. These unexpected side-effects were not readily appar-
ent in the public interface and were further obscured by the complexity of the
system. Efficiently managing this complexity in parallel is a primary motivation
for Cascade.

This situation is a perfect example of how changes to the system’s state
are outside of the dataflow model. Transformations of the system state or side
effects are not exceptions in the video game domain, but generally represent the
only feasible solution to many problems. The problems with AI could have been
prevented with a more sophisticated scheduling mechanism that is aware of side
effects and schedules accordingly.

Our scheduler, built on dataflow principles, had only limited facility for incor-
porating state change information as dataflow is essentially stateless outside of
the contents of the communication channels. Logical dependencies serve as very
coarse grained constraints, indicating that the state changes a parent makes must
precede the child’s execution. However, there is no direct association between a
particular state change and the logical dependency and this dependency is only
available between tasks and not between instances of the same task. Making spe-
cific information about these side effects available to the scheduler would allow
it to correctly manage data accesses while promoting concurrency. Explicit and
highly granular data dependencies allow for a number of optimizations particu-
lar to parallelizations such as an automatic Read-Copy Update [8] style solution
to the multiple reader/one writer problem.

We have come to the conclusion that any effective parallelization strategy
in this domain must provide rich and compact semantics for describing side ef-
fects in terms of transformations to the program state and provide first class
support for specifying data dependencies. We believe that C++ is a poor choice
to express these concepts, even mediated through a library. C++ pointers are
of particular concern. Giving the programmer direct access to memory invali-
dates most guarantees of any system attempting to manage data. However, we
acknowledge that C/C++ can be used to generate highly efficient serial code
and is the industry standard language, especially in console development.

These observations have indicated the need for a system that requires the
explicit expression of data interactions, contains primitives that reflect common
data access patterns, allows for the decomposition of programs into dataflow
tasks without an arduous amount of programmer effort and acknowledges the
dominance of C++ in the domain. With this in mind we have begun work on
CDML (Cascade Data Management Language) which addresses the problem of
side effects inherent in procedural programming. State changes will be performed
by composable transformations described in a declarative manner. Changes to
system state are explicitly given as part of both the input and output to these
function-like constructs. Larger units can be created by binding together these
transformational constructs in a familiar procedural style. A program is created
by joining these units together into an explicit dataflow graph. In this way all
dependencies are expressible and many parallel optimizations are possible. This
blending of styles allows the programmer to put emphasis on those best suited
to the problem at hand.

CDML code will not actually be compiled, but instead translated to C++4. To
support the transition to CDML the embedding of C++ code will be supported.
Unlike CDML, where stated dependencies are verified at translation time, the
onus will fall on the programmer to ensure that all of the effects of C++ code
on global state are declared.

While space limitations prevent us from giving a comprehensive example,
we will illustrate how a programmer would take advantage of these concepts
when implementing a single transformation. In Al systems it is common to pick
a number of arbitrary members of a group as pack leaders. Expensive calcu-

lations, such as the line of sight testing in the AI subsystem discussed above,
are performed only for pack leaders and the others inherit the results. In this
case the player’s actions may attract the attention of monsters by causing some
kind of disturbance. If a pack leader can see the player then that disturbance in-
creases the alertness level of it and its followers. A list of any sufficiently affected
monsters is sent to another part of the Al subsystem.

In order to implement this process, the programmer will need to iterate over
a list of entities and apply a transformation to each one. The following CDML
example provides the code for this transformation.

iterator distributeAlertness (Entity[] enemies as agent)
views: enemies, disturbancelLevel, playerPos < Input.check
modifies: agent
sends: hunters => AI.initiateHunt

if (agent.packLeader == true) {
if (lineDfSight(playerPos, agent.position)) {
agent.alertness += disturbancelevel;
}
} else {
agent.alertness = enemies[agent.packLeader].alertness;
}
if (agent.alertness > HUNTINGTHRESHOLD) {
hunters << agent;

}

CDML makes explicit the natural decision making process a programmer
goes through when implementing an algorithm. First the scope of the transfor-
mation must be determined. Does it affect a single data item or collection? If
the later, is only a subset affected or is the entire collection modified? Finally, is
there an ordering to the modifications? In our example, we would like to process
a collection structured as an index set, or array, and the ordering of updates is
unimportant. The construct selected for this operation is the iterator, which
corresponds in CDML to this data pattern. The signature of the transform de-
fines the type accepted by this transformation (Entity) and defines a name
(agent) for the individual element of the collection (enemies) being modified.

CDML will contain constructs adaptable to all the permutations of scope
mentioned above and more. For example, if we only wanted to process a subset
of the index set we could have specified a filter on the input. Filters are very
important in CDML as they provide more information about the exact data
affected by a transformation.

Following the signature is the constraint block which explicitly states the data
dependencies of the transformation. For pure CDML code these dependencies are
verified at translation time. There are several possible categories in the constraint
block, but only views, modifies and sends are needed so the others are omitted.

The input required to perform the desired computation is specified in the
views list. In this case we would like to read the other elements of the enemies ar-
ray, the current disturbanceLevel and the players current position, playerPos.

In the case of playerPos, we would like to use it’s value after it has been
calculated by the input checking subsystem. Thus we use the ‘<’ operator, to

denote that we would like playerPos ‘as modified by’ Input.check. This is one
way of specifying logical dependencies in CDML.

Output is either in the form of state changes as specified by the modifies list
or directly output through named data channels as specified by the sends list.
In the example, we would like to change the current agent’s alertness value
and produce a list of agents that reach the threshold to be further processed by
AT.initiateHunt. Sending through a channel is done using the ‘<<’ operator.

The information required for the constraint block represents considerations
a programmer already makes. These characteristics of a process are simple for a
programmer to specify, but can be extremely difficult to derive computationally.
Most computations in this domain can be expressed as operations on structured
collections and since constraints are inherited when transformations are com-
posed, any given transformation will have a manageable number of constraints.

To further ease specification of data constraints, the constraint block will be
refined in translation to eliminate, if possible, over-constraint. For example, the
programmer could have added enemies to the modifies list, instead of agent.
This would be detected and reduced to agent alone. The requirement to list all
constraints in the code itself, as opposed to deriving them during translation, is
partially to facilitate the embedding C++ and other languages and to encourage
a parallelization-friendly programming style.

5 Related Work

Cascade shares many similarities with other PPEs such as Intel’s TBB [6], Mi-
crosoft’s Parallel Computing Platform (PCP) [7], and Cilk [4]. Those PPEs are
also built on top of general-purpose languages (C++, C#, C) and also sup-
port parallelization of computations expressed as a dependency graph. Due to
the reasons detailed in Section 3.2, we could not use any of these PPEs for
our project. Dryad [5], a PPE designed largely for database-style queries over
computing clusters, provides rich support for parallel patterns and does include
functionality similar to multi-instance tasks. Although we have not used any of
the existing PPEs in our work so far, we envision using them in our future work
to parallelize concurrent patterns that are not supported in Cascade. OpenCL
[9], a new open standard for C-based parallel environments supporting both
CPU and GPU programming, seems well suited to this.

Cascade shares similarity with domain-specific PPEs, in that it was designed
with application specific needs in mind. Thies et. al. described a library targeted
for streaming applications [10]. Galois [11] is a library targeted at irregular data
structures. While these domain-specific libraries target a particular computation
pattern, Cascade has a broader focus in considering an application domain, and
so it must support multiple computation patterns and consider domain-specific
performance needs.

Finally, in our work we rely on research into algorithmic patterns. Although
we do not cite all work in this area due to space limitations, we note a relatively
recent report from UC Berkeley [12] that categorized computation patterns ac-

cording to thirteen classes, or ‘dwarfs’. Many of these ‘dwarfs’ are present in
video game engines and so this classification system will be instructive in our
further search for concurrent patterns in video games.

6 Summary

While parallelization of video game engines is a serious challenge faced by ma-
jor video game companies [1], very little information describing details of this
problem exists in the public domain. Our work sheds light on this subject and
to the best of our knowledge this is the first detailed account of this problem
in the public domain. We identified computations that could be parallelized by
applying the producer/consumer pattern; this allowed us to achieve as much
as 51% speedup on eight cores in AI and Physics subsystems. This process of
parallelization and our analysis of existing tools informed the design of our PPE
Cascade and more importantly shed light on the requirements for a set of tools
that would truly encompass the patterns of this domain. Our experiences using
Cascade showed that an even more general solution, one based around explicit
data transformation and the expectation of side-effects is needed. To address
this fact we are designing CDML, the Cascade Data Management Language, to
leverage our constantly expanded and refined library and improve programmer
performance while increasing program efficiency and correctness.

References

1. Leonard, T.: Dragged Kicking and Screaming: Source Multicore. Game Developers
Conference (2007)

2. Chandra, R.: Parallel Programming in OpenMP. Morgan Kaufmann (2001)

Open Dynamics Engine. (http://www.ode.org/)

4. Blumofe, R.D., et al: Cilk: An efficient multithreaded runtime system. Journal of
Parallel and Distributed Computing 37(1) (1996) 55-69

5. Isard, M., et al: Dryad: distributed data-parallel programs from sequential building
blocks. SIGOPS Oper. Syst. Rev. 41(3) (2007) 59-72

6. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-Core
Processor Parallelism. O’Reilly (2007)

7. Microsoft Parallel Computing Platform. (http://msdn.microsoft.com/en-ca/
concurrency/)

8. McKenney, P.E., et al: Read-copy update. In: Ottawa Linux Symposium. (2002)
338-367

9. Munshi, A.: OpenCL: Parallel Computing on the GPU and CPU. (2008)

10. Thies, W., et al: A practical approach to exploiting coarse-grained pipeline paral-
lelism in C programs. In: MICRO (2007)

11. Kulkarni, M., et al: Optimistic parallelism requires abstractions. (2007) 211-222

12. Asanovic, K., et al: The Landscape of Parallel Computing Research: A View from
Berkeley. Electrical Engineering and Computer Sciences, University of California
at Berkeley, Technical Report No. UCB/EECS-2006-183, December 18(2006-183)
(2006) 19

@

