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Abstract

It is well known that the placement of threads and
memory plays a crucial role for performance on NUMA
(Non-Uniform Memory-Access) systems. The conven-
tional wisdom is to place threads close to their memory,
to collocate on the same node threads that share data,
and to segregate on different nodes threads that com-
pete for memory bandwidth or cache resources. While
many studies addressed thread and data placement, none
of them considered a crucial property of modern NUMA
systems that is likely to prevail in the future: asymmetric
interconnect. When the nodes are connected by links of
different bandwidth, we must consider not only whether
the threads and data are placed on the same or different
nodes, but how these nodes are connected.

We study the effects of asymmetry on a widely avail-
able x86 system and find that performance can vary by
more than 2x under the same distribution of thread and
data across the nodes but different inter-node connectiv-
ity. The key new insight is that the best-performing con-
nectivity is the one with the greatest total bandwidth as
opposed to the smallest number of hops. Based on our
findings we designed and implemented a dynamic thread
and memory placement algorithm in Linux that delivers
similar or better performance than the best static place-
ment and up to 218% better performance than when the
placement is chosen randomly.

1 Introduction

Typical modern CPU systems are structured as sev-
eral CPU/memory nodes connected via an interconnect.
These architectures are usually characterized by non-
uniform memory access times (NUMA), meaning that
the latency of data access depends on where (which
CPU-cache or memory node) the data is located. For
this reason, the placement of threads and memory plays
a crucial role in performance. This property inspired
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many NUMA-aware algorithms for operating systems.
Their insight is to place threads close to their mem-
ory [19, 12, 9], spread the memory pages across the sys-
tem to avoid the overload on memory controllers and in-
terconnect links [12], to collocate data-sharing threads
on the same node [30, 31] while avoiding memory con-
troller contention [7, 31, 10], and to segregate threads
competing for cache and memory bandwidth on differ-
ent nodes [34].

Further, modern operating systems aim to reduce the
number of hops used for thread-to-thread and thread-
to-memory communication. When balancing the load
across CPUs, Linux first uses CPUs on the same node,
then those one hop apart and lastly two or more hops
apart. These techniques assume that the interconnect be-
tween nodes is symmetric: given any pair of nodes con-
nected via a direct link, the links have the same band-
width and the same latency. On modern NUMA systems
this is not the case.

Figure 1 depicts an AMD Bulldozer NUMA machine
with eight nodes (each hosting eight cores). Interconnect
links exhibit many disparities: (i) Links have different
bandwidths: some are 16-bit wide, some are 8-bit wide;
(i) Some links can send data faster in one direction than
in the other (i.e., one side sends data at 3/4 the speed of a
16-bit link, while the other side can only send data at the
speed of an 8-bit link). We call these links 16/8-bit links;
(iii) Links are shared differently. For instance the link
between nodes 4 and 3 is only used by these two nodes,
while the link between nodes 2 and 3 is shared by nodes
0, 1, 2, 3, 6 and 7; (iv) Some links are unidirectional.
For instance node 7 sends requests directly to node 3, but
node 3 routes its answers via node 2. This creates an
asymmetry in read/write bandwidth: node 7 can write at
4GB/s to node 3, but can only read at 2GB/s.

The asymmetry of interconnect links has dramatic and
at times surprising effects on performance. Figure 2
shows the performance of 20 different applications on



Machine A (Figure 1)!. Each application runs with 24
threads and so it needs three nodes to run on. We vary
which three nodes are assigned to the application and
hence the connectivity between the nodes. The rela-
tive placement of threads and memory on those nodes
is identical in all configurations. The only difference is
how the chosen nodes are connected. The figure shows
the performance on the best-performing and the worst-
performing subset of nodes for that application compared
to the average (obtained by measuring the performance
on all 336 unique subsets of nodes and computing the
mean). We make several observations. First, the perfor-
mance on the best subset is up to 88% faster than the
average, and the performance on the worst subset is up
to 44% slower. Second, the maximum performance dif-
ference between the best and the worst subsets is 237%
(for facerec). Finally, the mean difference between the
best and worst subsets is 40% and the median 14%. In
the following section we demonstrate that these perfor-
mance differences are caused by the asymmetry of the
interconnect between the nodes.
This work makes the following contributions:

e We quantify and characterize the effects of asym-
metric interconnect on a commercial x86 NUMA
system. The key insight is that the best-performing
connectivity is the one with the greatest total band-
width as opposed to the smallest number of hops.

e We design, implement and evaluate a new algorithm
that dynamically picks the best subset of nodes for
applications requiring more than one node. This
algorithm places the clusters of threads and their
memory to ensure that the most intensive CPU-to-
CPU or CPU-to-memory communication occurs be-
tween the best-connected nodes. Our evaluation
shows that this algorithm performs as well as or bet-
ter than the best set of nodes chosen statically.

e Our implementation revealed a limitation in hard-
ware counters, which prevented us from having cer-
tain flexibilities in the algorithm. We discuss them
and make suggestions for improvements.

The paper is structured as follows. Section 2 stud-
ies the impact of interconnect asymmetry and discusses
challenges in catering to this phenomenon in an oper-
ating system. Section 3 discusses current architectural
trends and shows that machines are becoming increas-
ingly asymmetric. Section 4 presents our algorithm, and
Section 5 reports on the evaluation. Section 6 discusses
related work, and Section 7 provides a summary.

! Additional details about the applications and the machine are pro-
vided in Section 5.

2 The Impact of Interconnect Asymmetry
on Performance

To explain the reasons behind the performance reported
in Figure 2, Figure 3 shows the memory latency mea-
sured when the application runs on the best and worst
node subsets relative to the latency averaged across all
336 possible subsets. We can see that memory accesses
performed by facerec are approximately 600 cycles faster
when running on the best subset of nodes relative to the
average, and 1400 cycles faster relative to the worst. We
can see that the latency differences are tightly correlated
with the performance difference between configurations.
The applications that are the most affected by the choice
of nodes on which to run are also those with the highest
difference in the memory latencies.

To further understand the cause of very high laten-
cies on “bad” configurations we analyzed streamcluster
— an application from the Parsec [26] benchmark suite,
which was among the most affected by the placement of
its threads and memory. In the following experiment we
run streamcluster with 16 threads on two nodes. Table 1
presents the salient metrics for each possible two-node
subset. Depending on which two nodes we chose, we
observe large (up to 133%) disparities in performance.
The data in Table 1 leads to several crucial observations:

o As shown earlier, performance is correlated with the
latency of memory accesses.

e Surprisingly, the latency of memory accesses is
not correlated with the number of hops between
the nodes: some two-hop configurations (shown in
bold) are faster than one-hop configurations.

e The latency of memory accesses is actually corre-
lated with the bandwidth between the nodes. Note
that this makes sense: the difference between one-
hop vs. two-hop latency is only 80 cycles when the
interconnect is nearly idle. So a higher number of
hops alone cannot explain the latency differences of
thousands of cycles.

Bandwidth between the nodes matters more than the
distance between them.

So the problem of choosing a “good” subset of nodes
is essentially the problem of the placement of threads
and memory pages on a well-connected subset of nodes.
When an application executes on only two nodes on a
machine similar to the one used in the aforementioned
experiments, the placement on the nodes connected with
the widest (16-bit) link is always the best because it max-
imizes the bandwidth and minimizes the latency between
the nodes. However, when an application needs more
than two nodes to run, no configuration exists with 16-
bit links between every pair of nodes, so we must decide
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Figure 1: Modern NUMA systems, with eight nodes. The width of links varies, some paths are unidirectional (e.g.,
between 7 and 3) and links may be shared by multiple nodes. Machine A has 64 cores (8 cores per node - not
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Figure 2: Performance difference between the best, and worst thread placement with respect to the average thread
placement on Machine A. Applications run with 24 threads on three nodes. Graph500, specjbb, streamcluster, pca and
facerec are highly affected by the choice of nodes and are shown separately with a different y-axis range.
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Figure 3: Difference in latency of memory accesses between the best, and worst thread placement with respect to the
average node configuration on Machine A. Positive numbers mean that memory accesses are faster than the average.



Master thread Execution Time Diff with Latency of memory % accesses Bandwidth to

node (s) 0-1 (%) accesses (cycles) via 2-hop the “master”

(compared to 0-1(%)) links node (MB/s)
0 1 148 0% 750 0 5598
0 4 228 56% 1169 (56%) 0 2999
| | 0 228 56% 1179 (57%) 0 2973
0 2 2 168 5% 855 (14%) 0 4329
r I 0 340 133% 1527 (104%) 98 1915
0 |3 3 185 27% 1040 (39%) o8 3741
| | 0 340 133% 1601 (113%) 98 1903
1 0] R 5 228 56% 1206 (61%) o8 2884
| S | 3 185 27% 1020 (36%) 0 3748
3 7 7 338 132% T614 (115%) 98 1928
r_ S| 1 338 132% 1612 (115%) 98 1891
5 1 3 230 38% 1200 60%) 0 2880
| I 2 167 15% 867 (16%) 98 3748
2 7 7 225 54% 1220 (63%) 0 3014
| | 4 230 38% 1205 (60%) 0 2959
4 11 T 226 55% 1203 (60%) 98 7880

Table 1: Performance of streamcluster executing with 16 threads on 2 nodes on machine A. The performance depends
on the connectivity between the nodes on which streamcluster is executing and on the node on which the master thread
is executing. Numbers in bold indicate 2-hops configurations that are as fast or faster than some 1-hop configurations.

which nodes to pick. When there is more than one ap-
plication running, we need to decide how to allocate the
nodes among multiple applications.

Nodes % perf. relative to best subset
streamcluster SPECjbb
0,1,3,4,and 7 -64% 0% (best)
2,3,4,5,and 6 0% (best) -9.4%

Table 2: Performance of streamcluster and SPECjbb on
two different set of nodes on machine A, relative to the
best set of nodes for the respective application.

In this paper, we present a new thread and memory
placement algorithm. Designing such an algorithm for
asymmetrically connected NUMA systems is challeng-
ing for the following reasons:

Efficient online measurement of communication
patterns is challenging: The algorithm must measure
the volume of CPU-to-CPU and CPU-to-memory com-
munication for different threads in order to determine the
best placement when we cannot run the entire application
on the best connected nodes. This measurement process
must be very efficient, because it must be done continu-
ously in order to adapt to phase changes.

Changing the placement of threads and mem-
ory may incur high overhead: Frequent migration of
threads may be costly, because of the associated CPU
overhead, but most importantly because cache affinity
is not preserved. Moreover, when threads are migrated
to “better” nodes, it might be necessary to migrate their
memory in order to avoid the overhead of remote ac-
cesses and overloaded memory controllers. Migrating
large amounts of memory can be extremely costly. Thus,

thread migration must be done in a way that minimizes
memory migration.

Accomodating multiple applications simultane-
ously is challenging: Applications have different com-
munication patterns and are thus differently impacted by
the connectivity between the nodes they run on. As an
illustration, Table 2 presents the performance of stream-
cluster and SPECjbb executing on two different sets of
five nodes (the best set of nodes for the two applications,
respectively). The two applications behave differently on
these two sets of nodes: streamcluster is 64% slower on
the best set of nodes for SPECjbb than on its own best
set. The algorithm must, therefore, determine the best
set of nodes for every application. Furthermore, it can-
not always place each application on its best set of nodes,
because applications may have conflicting preferences.

Selecting the best placement is combinatorially dif-
ficult: The number of possible application placements
on an eight-node machine is very large (e.g., 5040 possi-
ble configurations for four applications executing on two
nodes). So, (i) it is not possible to try all configurations
online by migrating threads and then choosing the best
configurations, and (ii) doing even the simplest compu-
tation involving “all possible placements” can still add a
significant overhead to a placement algorithm.

Before describing how we addressed these challenges,
we briefly discuss architectural trends and the increasing
impact of interconnect asymmetry.

3 Architectural trends

Asymmetric interconnect is not a new phenomenon.
Nevertheless, we show in this section that its effects on



performance are increasing as machines are built with
more nodes and cores. For that purpose, we measured
the performance of streamcluster on four different asym-
metric machines: two recent machines with 64 and 48
cores respectively, and 8 nodes (Machines A and B, Fig-
ure 1), and two older machines with 24 and 16 cores
respectively, and 4 nodes (Machines C and D, not de-
picted). Machines A and B have highly asymmetric in-
terconnect; Table 1 lists all possible interconnect config-
urations between 2 nodes. Machines C and D have a less
pronounced asymmetry. Machine C has full connectiv-
ity, but two of the links are slower than the rest. Machine
D has links with equal bandwidth, but two nodes do not
have a link between them.

Table 3 shows the performance of streamcluster
with 16 threads on the best-performing and the worst-
performing set of nodes on each machine. The perfor-
mance difference between the best and worst configura-
tions increases with the number of cores in the machine:
from 3% for the 16-core machine to 133% for the 64-core
machine. We explain this as follows: (i) On the 16-core
Machine D, the only difference between configurations
is the longer wire delay between the nodes that are not
connected via a direct link. This delay is not significant
compared to the extra latency induced by bandwidth con-
tention on the interconnect. (ii) The CPUs on 24-core
Machine C have a low frequency compared to the other
machines. As a result, the impact of longer memory la-
tency is not as pronounced. More importantly, the net-
work on this machine is still a fully connected mesh, so
there is less asymmetry than on Machines A and B. (iii)
The 48- and 64-core Machines B and A offer a wider
range of bandwidth configurations, which increases the
difference between the best and the worst placements.
The 64-core machine is more affected than the 48-core
machine because it has more cores per node, which in-
creases the effects of bandwidth contention.

If this trend holds across different machines and archi-
tectures, then it is clear that the effects of asymmetry can
no longer be ignored.

Machine Best time | Worst time | Difference
A (64 cores) 148s 340s 133%

B (48 cores) 149s 277s 85%

C (24 cores) 171s 229s 33%

D (16 cores) 255s 262s 3%

Table 3: Performance of streamcluster executing on 2
nodes on machine A, B, C, and D. The performance of
streamcluster depends on the placement of its threads.
The impact of thread placement is more important on re-
cent machines (A and B) than on older ones (C and D).

4 Solution

4.1 Overview

We designed AsymSched, a thread and memory place-
ment algorithm that takes into account the bandwidth
asymmetry of asymmetric NUMA systems. Asym-
Sched’s goal is to maximize the bandwidth for CPU-
to-CPU communication, which occurs between threads
that exchange data, and CPU-to-memory communica-
tion, which occurs between a CPU and a memory node
upon a cache miss. To that end, AsymSched places
threads that perform extensive communication on rela-
tively well-connected nodes and places the frequently
accessed memory pages such that the data requests are
either local or travel across high-bandwidth paths.

AsymSched is implemented as a user level process and
interacts with the kernel and the hardware using system
calls and /proc file system, but could also be easily in-
tegrated with the kernel scheduler if needed.

AsymSched continuously monitors hardware counters
to detect opportunities for better thread placements. The
thread placement decision occurs every second, and
AsymSched only migrates threads when the benefits of
migration is expected to exceed its overhead. The place-
ment of memory pages follows the placement of threads.

AsymSched relies on three main techniques to manage
threads and memory: (i) Thread migration: changing
the node where a thread is running. (ii) Full memory mi-
gration: migrating all pages of an application from one
node to another. Full memory migration is performed us-
ing a new system call that we present in Section 4.3. (iii)
Dynamic memory migration: migrating only the pages
that an application actively accesses. Dynamic memory
migration uses Instruction-Based Sampling (IBS), a pro-
filing mechanism available in AMD processorsz, to sam-
ple memory accesses and to identify the most frequently
accessed pages. Then, the pages that are not shared are
migrated to the node that accesses them. Shared pages
are spread across multiple nodes. We use the same al-
gorithm and techniques described in [12]; we therefore
omit further details on dynamic memory migration.

4.2 Algorithm

AsymSched relies on 3 components. The measurement
component continuously computes salient metrics. The
decision component uses these metrics to periodically
compute the best thread placements. The migration com-
ponent migrates threads and memory. Table 4 presents
the definitions relevant to AsymSched. Algorithm 1 sum-
marizes the algorithm.

%Intel processors have a similar mechanism called Precise Event-
Based Sampling (PEBS).



Per cluster (C) statistics

Crpw Remote bandwidth: the number of mem-
ory accesses performed by threads in the
cluster to another node, i.e., remote ac-

cesses.

“Weight” of the cluster. Clusters with the
highest weights are scheduled on the nodes
with the highest interconnect bandwidth.
By default C,ign = 10g(Crpy).

Cweight

Cpy(P) Maximum bandwidth of C threads on

placement P.

Per placement (P) statistics

Weighted total bandwidth of P. Is equal to
the sum of the Cp, (P) x Civeign: for every
placed cluster C.

waw

Pum Amount of memory that has to be migrated

to use this placement.

Per application (A) statistics

A Time already spent migrating memory.

Ay Dynamic running time of the application.

Apm[node] | Resident set size of the application, per
node.

Percentage of memory accesses performed
on nodes on which the application was
scheduled but is no longer scheduled on.

Aolaa

Table 4: Definitions relevant to AsymSched.

Measurement. AsymSched continuously gathers the
metrics characterizing the volume of CPU-to-CPU and
CPU-to-memory communication. On our experimental
system there is a single counter that captures both: it
measures the number of data accesses performed by a
CPU to a given node and includes both the accesses to
cached data (CPU-to-CPU communication) and to the
data located in RAM (CPU-to-memory communication).
Ideally, we would like to measure the communication
volume from every CPU to every other CPU, however
the counters available on AMD systems do not offer this
opportunity. One alternative is to use AMD’s Instruc-
tion Based Sampling (IBS)3. Unfortunately, to accurately
track CPU-to-CPU communication, IBS requires a high
sampling rate, and that introduces too much overhead.
Lightweight Profiling (LWP), a new profiling facility of
AMD processors, has a smaller overhead, but is only par-
tially implemented in current processors. Despite these
limitations, we believe that it is only a matter of time un-
til they are addressed in the mainstream hardware, so for
the time being we use the following work-around.

The algorithm described below relies on detecting
which threads share data. Since we can only practically

3PEBS, Precise Event-Based Sampling, is a similar feature on Intel
systems.

measure the communication between a CPU and a re-
mote node, but not CPU-to-CPU communication (either
across or within nodes), we make the following simpli-
fying assumptions: (a) a thread may share data with any
other thread running on the same node, (b) if there is a
high volume of communication between a CPU and a
node, a thread running on that CPU may share data with
any thread of the same application on that node. To re-
duce the occurrence of situations where we assume data
sharing while in reality there is none, we initially collo-
cate threads from the same application on the same node,
to the extent possible. Data sharing is far more common
between threads from the same application than between
threads from different applications.

The downside of this simplifying assumption is that
we may unnecessarily keep a group of threads collocated
on the same node even if they do not share data. But there
is also an important benefit: characterizing the commu-
nication in terms of CPU-to-node keeps the number of
sharing relationships to consider small and reduces the
complexity of the algorithm.

Decision. The following description relies on defini-
tions in Table 4. Step 1: AsymSched groups threads of
the same application that share data in virtual clusters.
A cluster is simply a list of threads that share data. It
then assigns a weight C,,;,, to each cluster; clusters with
the highest weights will be scheduled on the nodes with
the best connectivity. By default clusters are weighed
by the logarithm of the number of remote memory ac-
cesses performed by their threads (Cyeign = [0g(Crpw))-
The logarithm deemphasizes small differences in Cy,,
between the clusters, while preserving large differences.
This makes it much easier for the algorithm to pick out
the clusters with a relatively high C,,, and place them on
well-connected nodes.

Step 2: AsymSched computes possible placements for
all the clusters. A placement is an array mapping clus-
ters to nodes. It works at the node granularity, so the
number of possible placements is equal to the number of
node permutations (i.e., migrating all threads of node X
to node Y and vice versa). As this number can be very
large, it is important that AsymSched not test all possible
placements. Section 4.3 details how AsymSched avoids
testing all possible placements. For each placement P,
AsymSched computes the maximum bandwidth Cp,,(P)
that each cluster C would receive if it were put in this
placement. Each placement is assigned a performance
metric, P,p,, the weighted bandwidth of P, defined as
Piow= L Cpw(P) % Cyeign- The higher P, the

Ceclusters
higher the bandwidth available to clusters that perform a

lot of remote communications. The definition of C,yeigns
implies that our algorithm aims to optimize the overall
communication bandwidth across all applications. The



algorithm can be easily changed to optimize a different
metric, e.g., one that takes into account application pri-
orities, by changing the definition of C,;gps.

Step 3: AsymSched filters placements to keep only
those that have a weighted bandwidth value at least equal
to 90% of the maximum weighted bandwidth. Among
these remaining placements AsymSched chooses those
that will minimize the number of page migrations.

Step 4: For each application, AsymSched estimates
the overhead of memory migration assuming the cost
of 0.3s per GB, which was derived on our system us-
ing simple experiments. If the overhead is deemed too
high, the new placement will not be applied. Another
goal here is to avoid migrating the applications back
and forth because of recurring changes in communica-
tion patterns and accumulating a high overhead. To that
end, AsymSched keeps track of the total time already
spent doing memory migration for the application: Ay,.
If that time plus the estimated cost of additional migra-
tion ( Y Apm|n] %0.3) exceeds 5% of the run-

nemigrated_nodes

ning time of the application (A;), then AsymSched does
not apply the new thread placement. We chose 5% as
a reasonable maximum overhead value. In practice, the
highest overhead we observed was around 3%.

Migration. Step 1: AsymSched migrates threads us-
ing system calls that are available in the Linux kernel.

Step 2: AsymSched relies on dynamic migration to mi-
grate the subset of pages that the application uses. If,
after two seconds, the application still performs more
than 90% of its memory accesses on the nodes where
it was previously running (Ay74a > 90%), then Asym-
Sched concludes that dynamic migration was not able to
migrate the working set of the application and performs
a full memory migration.

The Measurement, Decision and Migration phases de-
scribed above are performed continuosly to account for
phase changes in applications and other dynamics.

4.3 Optimizations and tricks

We integrated several optimizations within AsymSched
to ensure that it runs accurately and with low overhead.

Fast memory migration. When AsymSched performs
full memory migration, all the pages located on one node
are migrated to another node. The applications we tested
have large working sets (up to 15GB per node), and
migrating pages is costly. We measured that migrating
10GB of data using the standard migrate_pages sys-
tem call takes 51 seconds on average, making migration
of large applications impractical.

Therefore, we designed a new system call for memory
migration. This system call performs memory migration
without locks in most cases, and exploits the parallelism

Algorithm 1 AsymSched algorithm

1: if Threads of nodes N; and N, access a common
memory controller and threads of N; and N, have
the same pid then

2:  Put all threads running on N; and N in a cluster

C and Increase C,p,,

3: end if

4: Compute relevant cluster placements

5: Max,,p, =0

6: for all P € computed placements do

7: Popw = Z CbW(P) * Cweighl
Ceclusters

8 Maxyp, = max(Max,py, Pepw)

9: end for

10: for all P € computed placements do

11 Skip if Bypyy <90%*Maxypy,

12:  Compute Py,

13: end for

14: Choose the placement with the lowest P,

15: for all A € migrated applications do

16:  if Agpy + Y Apm[n] *0.3 > 0.05%A,,

ncmigrated_nodes

then
17: Do not change thread placement
18:  end if
19: end for

20: Migrate threads

21: Use dynamic memory migration

22: After 2 seconds:

23: for all A € migrated applications do
24:  ifAyga > 90% then

25: Fully migrate memory of A
26:  end if
27: end for

available on multicore machines. Using our system call,
migrating memory between two nodes is on average 17 x
faster than using the default Linux system call and is only
limited by the bandwidth available on interconnect links.
Unlike the Linux system call, our system call can migrate
memory from multiple nodes simultaneously. So if we
are migrating the memory simultaneously between two
pairs of nodes that do not use the same interconnect path,
our system call will run about 34 times faster.

Fast migration works as follows. (i) First, we “freeze”
the application by sending SIGSTOP to all its threads.
Freezing the application is done to ensure that the appli-
cation does not allocate or free pages during migration.
This allows removing many locks taken by the Linux
memory migration mechanism, and since up to 80% of
migration time can be wasted waiting on locks, the re-
sulting performance improvements are significant. (ii)
Second, we parse the memory map of the application
and store all pages in an array. We then launch worker



threads on the node(s) on which the application is sched-
uled. Worker threads process pages stored in the array
in chunks of 30 thousand. The old page is unmapped,
data is copied to a new page, the new page is remapped,
and the old page is freed. Shared pages or pages that are
currently swapped are ignored.

Avoiding evaluation of all possible placements. The
number of all possible thread placements on a machine
can be very large. We use two techniques to avoid com-
puting all thread placements: (i) A lot of thread place-
ment configurations are “obviously” bad. For instance,
when a communication-intensive application uses two
nodes, we only consider configurations with nodes con-
nected with a 16-bit link. (ii) Several configurations are
equivalent (e.g., the bandwidth between nodes 0 and 1
and between nodes 2 and 3 is the same). To avoid esti-
mating the bandwidth of all placements, we create a hash
for each placement. The hash is computed so that equiva-
lent configurations have the same hash. Using simple dy-
namic programming techniques, we only perform com-
putations on non-equivalent configurations.

These two techniques allow skipping between 67%
and 99% of computations in all tested configurations
with clusters of 2, 3 or 5 nodes (e.g., with 4 clusters of 2
nodes, we only evaluate 20 configurations out of 5040).

5 Evaluation

Our goal is to evaluate the impact of asymmetry-aware
thread placement in isolation from other effects, such
as those stemming purely from collocating threads that
share data on the same node. Performance benefits of
sharing-aware thread clustering are well known [30].
AsymSched clusters threads that share data as described
in the Section 4; the Linux thread scheduler, how-
ever, does not. We experimentally observed that Linux
performed worse than clustered configurations. E.g.,
when graph500 and specjbb are scheduled simultane-
ously, both run 23% slower on Linux than on an av-
erage clustered placement. Since comparing Linux to
AsymSched would not be meaningful because of that, we
instead compare AsymSched* to the best and the worst
static placements of data-sharing thread clusters. We
also compare the average performance achieved under all
static placements that are unique in terms of connectiv-
ity. We obtain all unique static placements with respect to
connectivity by examining the topology of the machine.
There are 336 placements for single-application scenar-
i0os and 560 placements for multi-application scenarios.
Further, we want to isolate the effects of thread place-
ment with AsymSched from the effects of dynamic mem-

4When running AsymSched, thread clusters are initially placed on a
randomly chosen set of nodes.

ory migration. To that end, we compare AsymSched to
the subset of our algorithm that performs the dynamic
placement of memory only, turning off the parts perform-
ing thread placement.

5.1 Experimental platform

We evaluate AsymSched on machine A. It is equipped
with four AMD Opteron 6272 processors, each with two
NUMA nodes and 8 cores per node (64 cores in total).
The machine has 256GB of RAM and uses HyperTrans-
port 3.0. It runs Linux 3.9.

We used several benchmark suites: the NAS Paral-
lel Benchmarks suite [6] which is composed of numeric
kernels, MapReduce benchmarks from Metis [25], paral-
lel applications from Parsec [26], Graph500 [1], a graph
processing application with a problem size of 21, Fac-
eRec from the ALPBench benchmark suite [11], and
SPECjbb [2] running on OpenJDK7. From the NAS
and Parsec benchmark suites we picked the benchmarks
that run for at least 15 seconds, and that can be exe-
cuted with arbitrary numbers of threads. The memory
usage of the benchmarks ranges from 518MB for EP
from the NAS suite to 34,291MB for IS from NAS. Ex-
cept for SPECjbb, we use the execution time of applica-
tions as performance indicator. SPECjbb runs during a
fixed amount of time; we use the throughput (measured
in SPECjbb bops) as performance indicator.

5.2 Single application workloads

The results are presented in Figure 4. AsymSched always
performs close to the best static thread placement. In
a few cases where it does not, the difference is not sta-
tistically significant. For applications that produce the
highest degree of contention on the interconnect links
(streamcluster, pca, and facerec), AsymSched achieves
much better performance than the best thread placement,
because the dynamic memory migration component bal-
ances memory accesses across nodes, thus reducing con-
tention on interconnect links and memory controllers.

We also observe that dynamic memory migration
without the migration of threads is not sufficient to
achieve the best performance. More precisely, dynamic
memory migration alone often achieves performance
close to average. Moreover, it produces a high standard
deviation for many benchmarks: the minimum and max-
imum performance often being the same as that of the
best and worst static thread placement. For instance,
on SPEC;jbb, the difference between the minimum and
maximum performance with dynamic memory migration
alone is 91%.

In contrast, AsymSched produces a very low standard
deviation for most benchmarks. Two exceptions are is.D
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Figure 4: Performance difference between the best and worst static thread placement, dynamic memory placement,
AsymSched and the average thread placement on machine A. Applications run with 24 threads on 3 nodes.
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Figure 5: Memory latency under the best and worst static thread placement, dynamic memory placement, AsymSched
and the average thread placement on machine A. Applications run with 24 threads on 3 nodes.

and SPECjbb. This is because in both cases, AsymSched
migrates a large amount of memory. Both applications
become memory intensive after an initialization phase,
and AsymSched starts migrating memory only after the
entire working set has been allocated. For instance, in
the case of is.D, AsymSched migrates between 0GB and
20GB, depending on the initial placement of threads.
Figure 5 shows the latency of memory accesses com-
pared to the average. For most applications, the dynam-
ics of latency closely matches that of the performance.
A few exceptions are is.D, lu.B and kmeans. For is.D,
the latency is drastically improved by AsymSched but
the impact on performance is not visible because of the
time lost performing memory migrations. Lu.B is ex-
tremely memory intensive during its first seconds of ex-
ecution, but performs very few memory accesses there-
after; AsymSched improves this initial phase but has no
impact on the rest of the running time. Kmeans is very
bursty; placing its threads has a huge impact on the la-
tency of memory accesses performed during bursts of
memory accesses but not on the rest of the execution.

5.3 Multi application workloads

We evaluate several multi-application workloads us-
ing the applications studied in section 5.2. We chose
four applications that benefit to various degrees from

AsymSched: streamcluster (benefits to a high degree),
SPEC;jbb (benefits to a moderate degree), graph500 (ben-
efits to a small degree), and matrixmultiply (does not
benefit). Some of these applications have different
phases during their execution; for instance, streamclus-
ter processes its input set in five distinct rounds, and
SPEC;jbb spends significant amount of time initializing
data before emulating a three-tier client/server system.

Figure 6 presents the performance on multi application
workloads. We chose two different clustering configura-
tions: (i) Three applications executing on three, three and
two nodes, respectively; (ii) Two applications executing
on five and three nodes respectively.

In all workloads, AsymSched achieves performance
that is close or better than the best static thread place-
ment on Linux. Furthermore, it produces a very low
standard deviation. In constrast, dynamic memory mi-
gration alone exhibits high standard deviation and, like
with single application workloads, is unable to improve
performance for Graph500 and SPECjbb.

AsymSched significantly improves the latency of ap-
plications that benefit from thread and memory migra-
tion (Figure 7), in particular for streamcluster. This is
because AsymSched chooses configurations in which the
links used by streamcluster are not shared with any other
application.
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Figure 6: Performance difference between the best thread placement, the worst thread placement, dynamic memory
placement, AsymSched and the average thread placement of applications on machine A. The numbers appended to the
name of applications specify the number of nodes on which the application runs.
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Figure 7: Performance difference between the best thread placement, the worst thread placement, dynamic memory
placement, AsymSched and the average thread placement of applications on machine A.

cg.B ft.C is.D sp.A | streamcluster | graph500 | specJBB
Migrated memory (GB) 0.17 2.5 20 0.1 0.15 0.3 10
Average time - Linux syscall (ms) | 860 | 12700 | 101000 | 490 750 1500 50500
Average time - fast migration (ms) 51 380 3050 30 45 90 1500

Table 5: Average amount of migrated memory for various applications running on 3 nodes and required time to
perform the migration using the standard Linux system call and using fast memory migration.

5.4 Overhead

The main overhead of AsymSched is due to memory mi-
gration. This explains why we implemented a custom
system call (see Section 4.3). Table 5 compares the mi-
gration time when running the standard Linux system
call and when running our custom system call. For in-
stance, for is.D, migration takes 101 seconds using the
Linux system call (50% overhead), but only 3 seconds
using our custom system call (1.5% overhead). To keep
the overhead low, AsymSched performs migrations only
if the predicted overhead is below 5%. In practice, the
maximum migration overhead we observed was 3%.

The cost of collecting metrics and computing clus-
ter placement is below 0.5% on all studied applications.
Moreover, AsymSched requires less than 2MB of RAM.

The overhead of thread migration is negligible and we

did not observe any noticeable effect of thread migrations
on cache misses.
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Finally, when dynamic memory placement is used,
IBS sampling incurs a light overhead (within 2% in
our experiments) and statistics on memory accesses are
stored in about 20MB of RAM.

5.5 Discussion - Applicability on future
NUMA machines

We believe that the findings and the solution presented
in this paper are likely to be applicable on future NUMA
systems. First, we believe that the clustering and place-
ment techniques used in AsymSched can scale on ma-
chines with a much larger number of nodes. With very
simple heuristics we were able to avoid computing up
to 99% of the possible thread placements. Such op-
timizations will still likely be possible on future ma-
chines, as machines are usually made of multiple iden-
tical cores/sockets (e.g., our 64-core machine has 4 iden-
tical sockets). On machines that offer a wider diversity



of thread placements, a possibility is to use statistical ap-
proaches, such as that of Radojkovic et al. [27] to find
good thread placements with a bounded overhead.

Furthermore, AsymSched can easily be adapted to dif-
ferent optimization goals. On current NUMA machines,
maximizing the bandwidth between threads was the key
to achieving good performance, but our solution could be
easily adapted to take other metrics into account.

6 Related Work

NUMA optimizations and contention management:
Optimizing thread and memory placement on NUMA
systems has been extensively studied [8, 9, 20, 33, 19, 12,
9,7, 31,5, 23, 22, 10]. However, as shown in [19, 12, 5,
23], contention on interconnect links and memory con-
trollers remains a major source of inefficiencies on mod-
ern NUMA machines. Our work complements these pre-
vious studies by minimizing contention on interconnect
links on asymmetrically connected NUMA systems. We
adopt a dynamic memory management algorithm pre-
sented in [12] for memory placement, but the key contri-
bution of our work is the algorithm that efficiently com-
putes the placement of threads on nodes to maximize the
bandwidth between communicating threads.

Several extensions to Linux improve data-access lo-
cality on NUMA systems, but do not improve the band-
width for communicating threads and do not address in-
terconnect asymmetry. For example, Sched/NUMA [32]
adds the notion of a “home node”: when scheduling
threads, Linux will try to collocate threads and data on
the “home node” of the corresponding process. While
this may improve communication bandwidth for applica-
tions with the number of threads not exceeding the num-
ber of cores in a node, it does not address applications
spanning several nodes. Another extension, called Au-
toNUMA [4], implements locality optimizations by mi-
grating pages on the nodes from which they are accessed.
AsymSched uses a similar dynamic algorithm to migrate
memory, but unlike AutoNUMA it also places threads so
as to optimize communication bandwidth.

Several studies addressed contention for the memory
hierarchy of UMA systems [16, 24, 34] by segregating
competing threads on different nodes. None of these sys-
tems, however, addressed contention on the interconnect.

Scheduling on asymmetric architectures: Several
thread schedulers catered to the asymmetry of CPUs
[29, 15, 21, 17]. They optimize thread placement on pro-
cessors with asymmetric characteristics (e.g., different
frequencies, or different hardware features). The tech-
niques used to address processor asymmetry are funda-
mentally different than those needed to address intercon-
nect asymmetry, so there is no overlap with our study.
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Thread clustering: Pusukuri et al. [18] cluster
threads based on lock contention and memory access la-
tencies. Kamali [14] and Tam [30] proposed algorithms
that cluster threads that share data on the same shared
cache. AsymSched uses a similar high-level idea: it sam-
ples hardware counters to detect communicating threads
and place them onto a well-connected nodes. However,
the problem addressed in AsymSched (asymmetric inter-
connect) and the specific algorithm proposed is quite dif-
ferent from those in the aforementioned studies.

Radojkovic et al. [28] present a scheduler that takes
into account resource sharing inside a processor. They
model the benefits and drawbacks of data and instruction
cache sharing between threads, and they schedule threads
on the the set of cores that will maximize performance.
Their solution explores all possible thread placements.
Their follow-up work [27] refines the solution to use a
statistical approach to find the optimal placement. Our
solution could benefit from a similar technique on ma-
chines with a much larger number of dissimilar nodes.

Network optimizations: Network traffic optimization
is a well studied problem. Machines are often intercon-
nected with asymmetric Ethernet links; optimizing the
bandwidth on asymmetric NUMA systems shares a lot of
similarities with optimizations problems found in these
systems. For instance, Volley [3] proposed an algorithm
to place data used by Cloud services. As AsymSched,
this algorithm takes into account the available bandwidth
between nodes (that are geographically distributed com-
puters in their case) in order to optimize performance.

Hermenier et al. [13] present a consolidation man-
ager for distributed systems. The goal of their system
is to minimize energy consumption in a cluster. To this
end, they place virtual machines on the smallest pos-
sible number of physical machines while meeting cer-
tain performance constraints. They model the problem
as the multiple knapsack problem and use a constraint-
satisfaction solver to find good placements. AsymSched
could use a similar technique, but we found that on ex-
isting systems a much simpler solution was sufficient.

7 Conclusion

We showed that the asymmetry of the interconnect
in modern NUMA systems drastically impacts perfor-
mance. We found that the performance is more affected
by the bandwidth between nodes than by the distance be-
tween them. We developed AsymSched, a new thread and
memory placement algorithm that maximizes the band-
width for communicating threads.

As the number of nodes in NUMA systems increases,
the interconnect is less likely to remain symmetric.
AsymSched design principles will, therefore, be of grow-
ing importance in the future.
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