
Traffic Management: A Holistic Approach
to Memory Placement on NUMA Systems

Mohammad Dashti
Simon Fraser University

mdashti@sfu.ca

Alexandra Fedorova
Simon Fraser University

fedorova@sfu.ca

Justin Funston
Simon Fraser University

jfunston@sfu.ca

Fabien Gaud
Simon Fraser University

fgaud@sfu.ca

Renaud Lachaize
UJF

renaud.lachaize@imag.fr

Baptiste Lepers
CNRS

baptiste.lepers@imag.fr

Vivien Quéma
Grenoble INP

vivien.quema@imag.fr

Mark Roth
Simon Fraser University

mroth@sfu.ca

Abstract
NUMA systems are characterized by Non-Uniform Memory Ac-
cess times, where accessing data in a remote node takes longer than
a local access. NUMA hardware has been built since the late 80’s,
and the operating systems designed for it were optimized for ac-
cess locality. They co-located memory pages with the threads that
accessed them, so as to avoid the cost of remote accesses. Con-
trary to older systems, modern NUMA hardware has much smaller
remote wire delays, and so remote access costs per se are not the
main concern for performance, as we discovered in this work. In-
stead, congestion on memory controllers and interconnects, caused
by memory traffic from data-intensive applications, hurts perfor-
mance a lot more. Because of that, memory placement algorithms
must be redesigned to target traffic congestion. This requires an
arsenal of techniques that go beyond optimizing locality. In this
paper we describe Carrefour, an algorithm that addresses this goal.
We implemented Carrefour in Linux and obtained performance im-
provements of up to 3.6× relative to the default kernel, as well
as significant improvements compared to NUMA-aware patchsets
available for Linux. Carrefour never hurts performance by more
than 4% when memory placement cannot be improved. We present
the design of Carrefour, the challenges of implementing it on mod-
ern hardware, and draw insights about hardware support that would
help optimize system software on future NUMA systems.

Categories and Subject Descriptors D.4.1 [OPERATING SYS-
TEMS]: Process Management—scheduling

Keywords NUMA, operating systems, multicore, scheduling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’13, March 16–20, 2013, Houston, Texas, USA.
Copyright c© 2013 ACM 978-1-4503-1870-9/13/03. . . $15.00

1. Introduction
Modern servers are built from several processor nodes, each con-
taining a multicore CPU and a local DRAM serviced by one or
more memory controllers (see Figure 1). The nodes are connected
into a single cache-coherent system by a high-speed interconnect.
Physical address space is globally shared, so all cores can trans-
parently access memory in all nodes. Accesses to a local node go
through a local memory controller; accesses to remote nodes must
traverse the interconnect and access a remote controller. Remote
accesses typically take longer than local ones, giving these systems
a property of Non-Uniform Memory Access time (NUMA).

Memory Node 1 Memory Node 2

Memory Node 3 Memory Node 4

L3 cache
C5

L3 cache
C6

C8C7

L3 cache
C13

L3 cache
C14

C16C15

N
o

d
e

 3

N
o

d
e

 4C9 C10

C12C11

N
o

d
e

 1

N
o

d
e

 2

C1 C2

C4C3

Figure 1. A modern NUMA system, with four nodes and four
cores per node. At the time of the writing, NUMA systems are built
with up to 8 nodes and 10 cores per node.

It is well understood that optimal performance on NUMA sys-
tems can be achieved only if we place threads and their memory
in consideration of the system’s physical layout. For instance, pre-
vious work on NUMA-aware memory placement focused on max-
imizing locality of accesses, that is, placing memory pages such
that data accesses are satisfied from a local node whenever possi-

ble. That was done to avoid very high costs of remote memory ac-
cesses. Contrary to insights from previous work, we discover that
on modern NUMA systems remote wire delays, that is, delays re-
sulting from traversing a greater physical distance to reach a remote
node, are not the most important source of performance overhead.
On the other hand, congestion on interconnect links and in memory
controllers, which results from high volume of data flowing across
the system, can dramatically hurt performance. This motivates the
design of new NUMA-aware memory placement policies.

To make these statements concrete, consider the following facts.
On NUMA systems circa 1990s, the time to access data from a
remote node took 4-10 times longer than from a local node [31].
On NUMA systems that are built today, remote wire delays add
at most 30% to the cost of a memory access [7]. For most pro-
grams, this latency differential alone would not have a substantial
impact on performance. However, fast modern CPUs are able to
generate memory requests at very high rates. Massive data traffic
creates congestion in memory controller queues and on intercon-
nects. When this happens, memory access latencies can become as
large as 1000 cycles, from a normal latency of only around 200.
Such a dramatic increase in latencies can slow down data-intensive
applications by more than a factor of three. Fortunately, high laten-
cies can be avoided or substantially reduced if we carefully place
memory pages on nodes so as to avoid traffic congestion.

In response to the changes in hardware bottlenecks, we ap-
proach the problem of thread and memory placement on NUMA
systems from an entirely new perspective. We look at it as the
problem of traffic management. Our algorithm, called Carrefour1,
places threads and memory so as to avoid traffic hotspots and pre-
vent congestion in memory controllers and on interconnect links.
This is akin to traffic management in the context of city planning:
popular residential and business hubs must be placed so as to avoid
congestion on the roads leading to these destinations.

The mechanisms used in our algorithm: e.g., migration and
replication of memory pages, are well understood, but the algo-
rithm itself is new. Our algorithm makes decisions based on global
observations of traffic congestion. Previous algorithms optimized
for locality, and relied on local information, e.g., access pattern of
individual pages. We found that in order to effectively manage con-
gestion on modern systems we need an arsenal of techniques that
go beyond optimizing locality. While locality plays a role in man-
aging congestion (when we reduce remote accesses, we reduce in-
terconnect traffic), alone it is not sufficient to achieve the best per-
formance. The challenge in designing Carrefour was to understand
how to combine different mechanisms in an effective solution for
modern hardware.

Implementing an effective NUMA-aware algorithm on modern
systems presents several challenges. Modern systems do not have
the same performance monitoring hardware that was present (or as-
sumed) on earlier systems. Existing instruction sampling hardware
cannot gather the profiling data needed for the algorithm with the
desired accuracy and speed. We had to navigate around this prob-
lem in our design. Furthermore, the memory latencies that we are
optimizing are lower than on older systems, so we can tolerate less
overhead in the algorithm.

We implemented Carrefour in Linux and evaluated it with sev-
eral data-centric applications: k-means clustering, face recognition,
map/reduce, and others. Carrefour improves performance of these
applications, with the largest gain of 3.6× speedup. When memory
placement cannot be improved Carrefour never hurts performance
by more than 4%. Existing NUMA-aware patches for the Linux
kernel perform less reliably and in general fall short of improve-
ments achieved with Carrefour.

1 Carrefour– (French) intersection, crossroads.

2. Traffic congestion on modern NUMA systems
In this section, we demonstrate that the effects of traffic congestion
are more substantial than those of wire delays, and motivate why
memory placement algorithms must be redesigned. To that end, we
report data from two sets of experiments. In the first set, our goal
is to measure the effects of wire delays only. We run applications
in two configurations: local-memory and remote-memory. Under
local-memory, the thread and its data are co-located on the same
NUMA node; under remote-memory, the thread runs on a different
node than its data. To ensure that wire delay is the dominant per-
formance factor, we had to avoid congestion on memory controllers
and interconnects, so we run one application at a time and use only
one thread in each application. We do not include applications with
CPU utilization less than 30%, because memory performance is
not their main bottleneck. The experiments are run on a system de-
scribed in Section 4 (Machine A – illustrated in Figure 1). We use
applications from the NAS, PARSEC and map/reduce Metis suites,
also described in Section 4.

Figure 2(a) shows relative completion time under remote-
memory vs. local-memory configuration. The performance de-
grades by at most 20% under remote-memory, which is consistent
with at most 30% difference in local-vs-remote memory latencies
measured in microbenchmarks [7].

In the second set of experiments, we want to observe traffic
congestion, so we run each application with as many threads as
there are cores. We demonstrate how performance varies under
two memory placement policies on Linux, as they induce different
degrees of traffic congestion. The first policy is First-touch (F) -
the default policy where the memory pages are placed on the node
where they are first accessed. The second policy is Interleaving (I) -
where memory pages are spread evenly across all nodes. Although
these are not the only possible and not necessarily the best policies,
comparing them illustrates the salient effects of traffic congestion.

Figure 2(b) shows the absolute difference in completion time
achieved under first-touch and interleaving. The policy that per-
formed the best is indicated in parenthesis next to the application
name; a ”-” is shown when the application performs equally well
with either policy. We observe that the differences are often much
larger than what we can expect from wire delays alone. For Stream-
cluster, a k-means clustering application from PARSEC, the perfor-
mance varies by a factor of two depending on the memory place-
ment policy!

To illustrate that these differences are due to traffic congestion,
we show in Table 1 some supporting data for the two applications,
Streamcluster and PCA (a map/reduce application)2. Local access
ratio is the percent of all memory accesses sourced from a local
node; Memory latency is the average number of cycles to satisfy a
memory request from any node; Memory controller imbalance is
the standard deviation of the load across all memory controllers, ex-
pressed as percent of the mean. Load is measured as the number of
requests per time unit; Average interconnect (IC) usage shows the
utilized interconnect bandwidth as percent of total, averaged across
all links, the imbalance shows the standard deviation of utilization
across the links as percent of mean utilization; L3MPKI is the num-
ber of last-level (L3) cache misses per thousand instructions; IPC
is the number of instructions per cycle.

The data in Table 1 leads to several curious observations. First,
we see that locality of memory accesses either does not change re-
gardless of the memory management policy, or decreases under the
better performing policy. For Streamcluster, most of the memory
pages happen to be placed on a single node under first-touch (be-

2 We are unable to present the same data for all applications due to space
constraints, but the conclusions reached from their measurements are qual-
itatively similar.

 0

 20

 40

 60

 80

 100

B
T

C
G

D
C

E
P

F
T

IS

L
U

M
G

S
P

U
A

b
o
d
y
tra

c
k

fa
c
e
s
im

flu
id

a
n
im

a
te

s
tre

a
m

c
lu

s
te

r

s
w

a
p
tio

n
s

x
2
6
4

k
m

e
a
n
s

m
a
trix

m
u
lt

P
C

A

w
rm

e
m

P
e
rf

o
rm

a
n
c
e
 d

if
fe

re
n
c
e
 (

%
)

(a) Perf. difference for single-thread versions of applications between
local and remote memory configurations.

 0

 20

 40

 60

 80

 100

B
T

 (F
)

C
G

 (F
)

D
C

 (F
)

E
P

 (-)

F
T

 (F
)

IS
 (I)

L
U

 (F
)

M
G

 (F
)

S
P

 (F
)

U
A

 (F
)

b
o
d
y
tra

c
k
 (-)

fa
c
e
s
im

 (I)

flu
id

a
n
im

a
te

 (-)

s
tre

a
m

c
lu

s
te

r (I)

s
w

a
p
tio

n
s
 (-)

x
2
6
4
 (I)

k
m

e
a
n
s
 (I)

m
a
trix

m
u
lt (-)

P
C

A
 (I)

w
rm

e
m

 (F
)

P
e
rf

o
rm

a
n
c
e
 d

if
fe

re
n
c
e
 (

%
)

(b) Absolute perf. difference for multi-thread versions of applications
between First-touch (F) and interleaving (I).

Figure 2. Performance difference of applications depending on the thread and memory configuration.

Streamcluster PCA
Best (I) Worst (F) Best (I) Worst (F)

Local access
ratio 25% 25% 25% 33%

Memory
latency 476 1197 465 660

Mem-ctrl. im-
balance 8% 170% 5% 130%

IC: imbalance,
(avg)

22% (59%) 85% (33%) 20% (48%) 68% (31%)

L3MPKI 16.85 16.89 7.35 7.4
IPC 0.29 0.15 0.52 0.36

Table 1. Traffic congestion effects

cause a single thread initializes them at the beginning of the pro-
gram). Under interleaving the pages are spread across all nodes, but
since the threads access data from all four nodes, the overall access
ratio is about the same in both configurations. For PCA, interleav-
ing decreases the local access ratio and yet increases performance.
So the first surprising conclusion is that better locality does not
necessarily improve performance!

And yet, the IPC substantially improves (2× for Streamcluster
and 41% for PCA), while the L3 miss rate, as well as L1 and L2
miss rates, remain unchanged. The explanation emerges if we look
at the memory latency. Under interleaving, the memory latency re-
duces by a factor of 2.48 for Streamcluster and 1.39 for PCA. This
effect is entirely responsible for performance improvement under
the better policy. The question is, what is responsible for memory
latency improvements? It turns out that interleaving dramatically
reduces memory controller and interconnect congestion by allevi-
ating the load imbalance and mitigating traffic hotspots. Rows 5,
6 in Table 1 show significant reductions in imbalance under inter-
leaving, and Figure 3 illustrates these effects visually for Stream-
cluster. So even without improving locality (we even reduce it for
PCA), we are able to substantially improve performance. And yet,
existing NUMA-aware algorithms disregarded traffic congestion,
optimizing for locality only. Our work addresses this shortcoming.

Although the two selected applications performed significantly
better under interleaving, this does not mean that interleaving is
the only desired policy on modern NUMA hardware. In fact, as
Figure 2(b) shows, many NAS applications fared a lot worse with
interleaving. In the process of designing the algorithm we learned
that a range of techniques – interleaving, page replication and co-

location – must be judiciously applied to different parts of the ad-
dress space depending on global traffic conditions and page access
patterns. So the challenge in designing a good algorithm is under-
standing when to apply each technique, while navigating around
the challenges of obtaining accurate performance data and limiting
the overhead.

1%

1%1%

97%
25% 25%

25% 25%

Figure 3. Traffic imbalance under first-touch (left) and interleav-
ing (right) for Streamcluster. Nodes and links bearing the majority
of the traffic are shown proportionately larger in size and in brighter
colours. The percentage values show the fraction of memory re-
quests destined for each node. The figure is drawn to scale.

3. Design and Implementation
We begin by describing the mechanisms composing the algorithm:
page co-location, interleaving, replication and thread clustering.
Then we explain how they fit together.

3.1 The mechanisms
Page co-location is when we re-locate the physical page to the
same node as the thread that accesses it. Co-location works well for
pages that are accessed by a single thread or by threads co-located
on the same node.

Page interleaving is about evenly distributing physical pages
across nodes. Interleaving is useful when we have imbalance on
memory controllers and interconnect links, and when pages are
accessed by many threads. Operating systems usually provide an
interleaving allocation policy, but only give an option to enable
or disable it globally for the entire application. We found that
interleaving works best when judiciously applied to parts of the
address space that will benefit from it.

Page replication is about placing a copy of a page on several
memory nodes. Replication distributes the pressure across memory
controllers, alleviating traffic hotspots. An added bonus is eliminat-

Global statistics
MC-IMB Memory controller imbalance (as defined

in Section 2)
LAR Local access ratio (as defined in Section 2)
MAPTU Memory (DRAM) accesses per time unit

(microsecond)
Per-application statistics

MRR Memory read ratio. Fraction of DRAM ac-
cesses that are reads

CPU% Percent CPU utilization
Per-page statistics

Number of
accesses

The number of sampled data loads that fell
in that page

Access type Read-only or read-write

Table 2. Statistics collected for the algorithm.

ing remote accesses on replicated pages. When done right, repli-
cation can bring very large performance improvements. Unfortu-
nately, replication also has costs. Since we keep multiple copies
of the same page, we must synchronize their contents, which is
like running a cache coherency protocol in software. The costs can
be very significant if there is a lot of fine-grained read/write shar-
ing. Another potential source of overhead is the synchronization of
page tables. Since modern hardware walks page tables automati-
cally, page tables themselves must be replicated across nodes and
kept in sync. Finally, replication increases the memory footprint.
We should avoid it for workloads with large memory footprints for
fear of increasing the rate of hard page faults.

Thread clustering is about co-locating threads that share data
on the same node, to the extent possible3. Examination of prior
work on the subject revealed two thread clustering algorithms most
relevant for our project [15, 30]. Tam’s algorithm [30] always co-
located on the same node threads that shared data. Kamali’s algo-
rithm [15] balanced between increased contention and the bene-
fits of co-operative sharing. It only co-located data-sharing threads,
provided that these threads would not aggressively compete for the
node’s shared resources. We confirmed the importance of balanc-
ing the two goals in our experiments, so our algorithm assumes
the Kamali’s variant of thread clustering. Since thread clustering
is well documented and understood, we did not evaluate it in our
implementation.

3.2 The Algorithm
Our memory management algorithm has three components: mea-
surement, global decisions and page-local decisions. The mea-
surement component continuously gathers various metrics (Ta-
ble 2) that later drive page placement decisions. Global and per-
application metrics are collected using hardware counters with very
low overhead. Per-page statistics are collected via instruction-based
sampling (IBS) [12], which can introduce significant overheads at
high sampling rates. Section 3.3 describes how we keep the over-
heads at bay. Global decisions are based on system-wide traffic
congestion and workload properties which determine what mech-
anisms to use. Page-local decisions examine access patterns of
individual pages to decide their fate.

3.2.1 Global Decisions
The global decision-making process is outlined in Figure 4.

Step 1: we decide whether to enable Carrefour. We only want
to run Carrefour for applications that generate substantial memory
traffic. Other applications would not be affected by memory place-
ment policies, so there is no reason to subject them to sampling

3 We never want to sacrifice CPU load balance in favour of clustering.

overhead. This decision is driven by the application’s memory ac-
cess rate (MAPTU – see Table 2). Carrefour is enabled for appli-
cations with the MAPTU above a certain threshold. The MAPTU
threshold is to be determined experimentally and the right setting
may vary from system to system. We found the threshold of 50
MAPTU worked well on all hardware we evaluated, and the perfor-
mance was not very sensitive to its choice. To determine the right
MAPTU threshold on a system very different from ours, we rec-
ommend running a benchmark suite under different NUMA poli-
cies, noting which applications are affected and using the lowest
observed MAPTU from those experiments.

Once we decided whether there is sufficient memory traffic to
justify running Carrefour, we need to decide which of the available
mechanisms, replication, interleaving and co-location, should be
enabled for each application given its memory access patterns. The
goal here is to choose the most beneficial techniques and avoid any
associated overhead. The next three steps take care of this decision.

Step 2: we decide whether it is worthwhile to use replication.
Replication risks introducing significant overheads if it forces us to
run out of RAM (and causes additional hard page faults) or requires
frequent synchronization of pages across nodes (see more discus-
sion in Section 3.3.2). To avoid the first peril, we conservatively
enable replication only if there is sufficient free RAM to replicate
the entire resident set. That is, the fraction of free RAM must be at
least 1− 1

NUM NODES
. This is a conservative threshold, because

not all pages will be replicated, and not all resident pages will be
accessed frequently enough to generate significant page fault over-
head if evicted. Evaluating the trade-off between replication benefit
and potentially increased page-fault rate was outside the scope of
the work. This requires workloads that both benefit from replica-
tion and have very large memory-resident sets, which we did not
encounter in our experiments.

To avoid the overhead associated with the synchronization of
page content across nodes, we do not replicate pages that are
frequently written. An application must have the memory read
ratio (MRR) of at least 95% in order for its memory pages to be
considered for replication4. The setting of this parameter can have
a very significant effect on performance. While we found that the
performance was not sensitive when we varied the parameter in the
range of 90-99%, it is always safe to err on the high side.

Step 3: we decide whether to use interleaving. Interleaving im-
proves performance if we have large memory controller imbalance.
We enable interleaving if memory controller imbalance is above
35%, but found that the performance was not highly sensitive to
this parameter. Applications that benefit from interleaving usually
begin with a very large imbalance.

Step 4: we decide whether or not to enable co-location. Co-
location will be triggered only for pages that are accessed from a
single node, and so it will not exacerbate the imbalance if memory-
intensive threads are evenly spread across nodes, which is ensured
by thread clustering. Therefore, we enable co-location if the local
access rate is slightly less than ideal (LAR < 80%). Performance
is not highly sensitive to this parameter; we observed that if this
parameter is completely eliminated from the algorithm, the largest
performance impact is only a few percent.

Although we expect that optimal settings for the parameters
used in the algorithm would vary from one system to another, we
found that we did not need to adjust the settings when we moved
between the two experimental systems used in our evaluation. Al-
though our systems had the same number of nodes and both used

4 MRR is approximated as fraction of L1 refills from DRAM in modified
state, because there is no a hardware counter that provides this quantity
precisely per core, as opposed to per-node. Similarly, due to hardware
counter limitations described in Section 3.3.2, it is very difficult to measure
the MRR per page. That is why we use the MRR for the entire application.

MAPTU > 50 ?

Enable

Carrefour

Disable

Carrefour

Yes

No

Step 1

MRR > 95%

&&

Free RAM ≥

1 −
�

���_��	
�
?

Enable

replication

Disable

replication

Yes

No

Step 2

MC_IMB > 35% ?

Enable

interleaving

Disable

interleaving

Yes

No

Step 3

LAR < 80% ?

Enable

co-location

Disable

co-location

Yes

No

Step 4

Figure 4. Global decisions in Carrefour.

AMD CPUs, they differed in the number of cores per node, the
cache-coherency protocol (broadcast vs. directory-based), and one
had a higher interconnect throughput than the other. Therefore, it
is possible that the algorithm parameters settings are rather stable
across all but drastically different systems.

3.2.2 Page-local Decisions
Carrefour makes page-local decisions depending on the mecha-
nisms enabled: e.g., pages are only considered for replication if
replication is enabled for that application. The following explana-
tion assumes that all three mechanisms are enabled.

To decide the fate of each page, we need at least two memory-
access samples for that page. If the page was accessed from only a
single node we migrate it to that node. We do not migrate the thread,
because we assume that thread clustering, performed before mem-
ory placement, already made good thread placement decisions. If
the page is accessed from two or more nodes, it is a candidate for
either interleaving or replication. If the accesses are read-only, the
page is replicated. Otherwise it is marked for interleaving. To de-
cide where to place a page marked for interleaving, we use two
probabilities: Pmigrate and Pnode. Pmigrate determines the likeli-
hood of migrating the page away from the current node. Pmigrate

is the MAPTU of the current node as the fraction of MAPTU on all
nodes, so the higher the load on the current node relative to others,
the higher the chance that we will migrate a page. Pnode gives us
the probability of migrating a page to a particular node, and it is the
complement of Pmigrate for that node, so Carrefour will migrate
the page to the least loaded node.

3.3 Implementation
We implemented Carrefour in the Linux kernel 3.6.0. Car-
refour runs measures the selected performance indicators, and with
periodicity of one second makes decisions regarding page place-
ment and resets statistic counters. To a large extent, Carrefour relies
on well-understood mechanisms in the Linux kernel, such as phys-
ical page migration. The non-trivial aspects of the implementation
were understanding how to accomplish fast and accurate sampling
of memory accesses and navigating around the overheads of repli-
cation. We describe how we overcame these challenges in the two
sections that follow.

3.3.1 Fast and accurate memory access sampling
A crucial goal of the algorithm is to quickly and accurately detect
memory pages that cause the most DRAM accesses, and accurately
estimate the read/write ratio of those pages. To that end, we used
Instruction-Based Sampling (IBS) – hardware-supported sampling
of instructions available in AMD processors. Intel processors sup-

port similar functionality in the form of PEBS: Precise Event-Based
Sampling. IBS can be configured to deliver instruction samples at
a desired interval, e.g., after expiration of a certain number of cy-
cles or micro-ops. Each sample contains detailed information about
the sampled instruction, such as the address of the accessed data (if
the instruction is a load or a store), whether or not it missed in the
cache and how long it took to fetch the data. Unfortunately, every
delivered sample generates an interrupt, so processing samples at
a high rate becomes very costly. Other systems that relied on IBS
performed off-line profiling [17, 27], so they could tolerate much
higher overhead than what would be acceptable in our online algo-
rithm.

After experimenting with IBS on our systems, we found that for
most applications the sampling interval of 130,000 cycles incurs a
reasonable overhead of less than 5%. The desired sampling rate can
be trivially derived for new systems: it amounts to experimenting
with different sampling rates and settling for the one that generates
acceptable runtime overhead.

Our initial decision was to filter out all the samples that did
not generate a DRAM access. However, we found that the result-
ing number of samples was extremely low. Even very memory-
intensive workloads access DRAM only a few times for every thou-
sand instructions. That, combined with a low IBS sampling fre-
quency, gave us the sampling rate of less than one hundred thou-
sandth of a percent, and made it very difficult to generate a suf-
ficient number of samples. Furthermore, filtering samples that did
not access DRAM caused us to miss the accesses generated by the
hardware prefetcher. These accesses are not part of any instruction
so they will not be tagged by IBS. For prefetch-intensive applica-
tions, we obtain a very small number of samples and a very dis-
torted read-write ratio.

To address this problem, we used two solutions. First, is the
adaptive sampling rate. When the program begins to run, we sam-
ple it at a relatively high rate of 1/65,000 cycles. If after this mea-
surement phase we take fewer than ten actions in the algorithm (an
action is any change in page placement) we switch to a much lower
rate of 1/260,000 cycles. Otherwise we continue sampling at the
high rate.

The second solution was, when filtering IBS samples, to retain
not just the data samples that accessed the DRAM, but those that
hit in the first-level cache as well. First-level cache loads include
accesses to prefetched data, so we avoid prefetcher-related inaccu-
racy. On the one hand, considering cache accesses can introduce
”noise” in the data, because we could be sampling pages that never
access DRAM. On the other hand, Carrefour is only activated for
memory-intensive applications, and for them there is a higher cor-

relation between the accesses that hit in the cache and those that
access DRAM.

With these two solutions combined, we were able to success-
fully identify the pages that are worth replicating, while this was
nearly impossible prior to introducing these solutions. For example,
for Streamcluster we used to be able to detect only a few percent
of the pages that are worth replicating, but with these solutions in
place, we were able to identify 100% of them5.

However, even though performance became much better (we
were able to speed up Streamcluster by 26% relative to the default
kernel), we were still far from the ”ideal” manual replication, which
sped it up by more than 2.5×. To approach ideal performance, we
had to mitigate the overheads of replication, which we describe
next.

3.3.2 Replication
Replication has overhead from the following three sources. First,
there is the initial set-up cost and slightly more expensive page
faults. Modern hardware walks page tables automatically, so a
separate copy of a page table must be created for each node. Page
faults become slightly more costly, because a new page table entry
must be installed on every node. To avoid these costs when we
are not likely to benefit from replication, we avoid replication
unless the applications has at least a few hundred pages marked
for replication6.

The second source of overhead comes from additional hard page
faults if we exceed the physical RAM capacity by replicating pages.
As explained earlier, we avoided this overhead by conservatively
setting the free memory threshold when enabling replication.

The final and most significant source of overhead stems from
the need to synchronize the contents of replicated pages when they
are written. This involves a physical page copy and is very costly.
Before explaining how we avoid this overhead we provide a brief
overview of our implementation of replication.

In Linux, a process address space is represented by a
mm struct, which keeps track of valid address space segments and
holds a pointer to the page table, which is stored as a hierarchical
array. Since modern hardware walks page tables automatically, we
cannot modify the structure of the page table to point to several
physical locations (one for each node) for a given virtual page. In-
stead, we must maintain a separate copy of the page table for each
node and synchronize the page tables when they are modified, even
for virtual pages that are not replicated. Linux dictates that the page
table entry (PTE) be locked when it is being modified. We do not
make any changes to this locking protocol. The only difference is
that we designate one copy of the page table as the master copy,
and only lock the PTE in the master copy while installing the cor-
responding PTEs into all other replicas.

When a page is replicated, we create a physical copy on every
memory node that runs threads from the corresponding application.
We install a different virtual-to-physical translation in each node’s
page table. We write-protect the replicated page, so when any node
writes that page we receive a page protection fault. To handle this
fault, we read-protect the page on all nodes except the faulting one,
and enable writing on the faulting node. If another node accesses
that page, we must copy the new version of the page to that node,
enable the page for reading and protect it from writing.

We refer to all the actions needed to keep the pages synchro-
nized as page collapses. Collapses are extremely costly, and would

5 Streamcluster holds shared data in a single large array, so it is trivial to
detect which data is worth replicating and implement a manual solution to
use as the performance upper-bound.
6 We use the threshold of at least 500 pages. Performance is not highly
sensitive to this parameter.

occur if we replicate a page that is write-shared. Even with very
infrequent writes (e.g., one in 1000 accesses), the collapse over-
head could be prohibitively high. With limited capabilities of IBS,
we are unable to detect read/write ratio on individual pages with
sufficient accuracy. That is why we use the application-wide MRR
and disable replication for the entire application if the MRR is low.
Furthermore, we monitor collapse statistics of individual pages and
disable replication for any page that generated more than five col-
lapses.

With these optimizations, as well as those described in Sec-
tion 3.3.1, we were able to avoid replication costs for the appli-
cations we tested and approached within 10% the performance of
manual replication for Streamcluster.

4. Evaluation
In this section, we study the performance of Carrefour on a set of
benchmarks. The main questions that we address are the following:

1. How does Carrefour impact the performance of applications,
including those that cannot benefit from its heuristics?

2. How does Carrefour compare against existing heuristics for
modern NUMA hardware?

3. How well does Carrefour leverage the different memory place-
ment mechanisms?

4. What is the overhead of Carrefour?

To assess the performance of Carrefour, we compare it against
three other configurations: Linux – a standard Linux kernel with
the default first-touch memory allocation policy, Manual interleav-
ing – a standard Linux kernel with the interleaving policy manu-
ally enabled for the application, and AutoNUMA – a recent Linux
patchset [2] considered as the best thread and memory management
algorithm available for Linux.

The rest of the section is organized as follows: we first describe
our experimental testbed. Next, we study single-application sce-
narios, followed by workloads with multiple co-scheduled applica-
tions. We then detail the overhead of Carrefour and conclude with
a discussion on additional hardware support that would improve
Carrefour’s operation.

4.1 Testbed
We used two different machines for the experiments:
Machine A has four 2.3GHz AMD Opteron 8385 processors with
4 cores in each (16 cores in total) and 64GB of RAM. It features
4 nodes (i.e., 4 cores and 16GB of RAM per node) interconnected
with HyperTransport 1.0 links.
Machine B has four 2.6GHz AMD Opteron 8435 processors with
6 cores in each (24 cores in total) and 64GB of RAM. It features
4 nodes (i.e., 6 cores and 16GB of RAM per node) interconnected
with HyperTransport 3.0 links.

All experiments were performed on both machines. We present
the main performance results for both machines. However, due to
space constraints, we only show the detailed profiling measure-
ments for machine A (the results obtained on machine B are quali-
tatively similar).

We used Linux kernel v3.6 for all experiments. For the AutoN-
UMA configuration, we used AutoNUMA v27 and disabled PMD
scan because we it decreases performance on all applications we
measured7.

We used the following set of applications: the PARSEC bench-
mark suite v2.1 [26], the FaceRec facial recognition engine

7 We also tested AutoNUMA v28. The performance results are very similar.
However, we observed a significantly higher standard deviation (up to 18%
on machine A and 23% on machine B) which makes profiling very difficult.

v5.0 [10], the Metis MapReduce benchmark suite [22] and the
NAS parallel benchmark suite v3.3 [24]. PARSEC applications run
with the native workload. From the available workloads in NAS
we chose those with the running time of at least ten seconds. We
excluded applications whose CPU utilization was below 33%, be-
cause they were not affected by memory management policies. We
also excluded applications using shared memory across processes
(as opposed to threads) or memory-mapped files, because our repli-
cation mechanism does not yet support this behaviour. For Fac-
eRec, we used two kinds of workloads: a short-running one and a
long running one (named FaceRecLong in the remainder of the pa-
per). The reason why we present two different workloads is to show
that Carrefour is able to successfully handle very short workloads
(less than 4s on machine B when running with Carrefour). Each
experiment was run ten times. Overall, we observed a standard de-
viation between 1% and 2% for the Linux, Manual interleaving and
Carrefour configurations. AutoNUMA has a more significant stan-
dard deviation (up to 9% on machine A and 13% on machine B).

4.2 Single-application workloads

Performance comparison. Figures 5 and 6 show the performance
improvement relative to default Linux obtained under all configu-
rations for machine A and machine B. Performance improvement
is computed as:

DefaultLinuxtime − Systemtime

Systemtime
∗ 100%,

where System can be either Carrefour, Manual interleaving or
AutoNUMA.

We can make two main observations. First, Carrefour almost
systematically outperforms default Linux, AutoNUMA, and Man-
ual interleaving, sometimes quite substantially. For instance, when
running Streamcluster or FaceRecLong, we observe that Car-
refour is up to 58% faster than Manual interleaving, up to 165%
faster than AutoNUMA, and up to 263% faster than default Linux
on machine B. Second, we observe that, unlike other techniques,
Carrefour never performs significantly worse than default Linux:
the maximum performance degradation over Linux is below 4%. In
contrast, AutoNUMA and Manual interleaving cause performance
degradations of up to 25% and 38% respectively. Besides, we no-
tice that Manual Interleaving has a very irregular impact on perfor-
mance. While it does fairly well for PARSEC, NAS applications
suffer significant performance degradation (up to 38%) when run
with manual interleaving.

IS is an exception among the NAS benchmarks: Manual inter-
leaving improves its performance, while Carrefour does no better
than default Linux. That is because IS suffers from very short im-
balance bursts that we are not able to correct due to limited sam-
pling accuracy achievable with low overhead using existing hard-
ware counters. Section 4.6 discusses hardware counter support that
would help us address this problem.

In order to understand the reasons for the performance impact
of the different policies, we study in detail a set of applications
whose performance is improved the most by Carrefour. To that
end, we present several metrics: the load imbalance on memory
controllers (Figure 7(a)), the load imbalance on interconnect links
(Figure 7(b)), the average memory latency (Figure 8(a)) and the
local access ratio (Figure 8(b)).

We draw the following observations. First, Carrefour much bet-
ter balances the load on both memory controllers and interconnect
links than Linux and AutoNUMA. Not surprisingly, Manual inter-
leaving is also very good at balancing the load. Nevertheless, we
observe in Figure 8(a) that Carrefour induces lower average mem-
ory latencies than Manual interleaving, which explains its better

performance. To understand why Carrefour reduces memory laten-
cies we refer to Figure 8(b), which shows that Carrefour not only
balances the load on memory controllers and interconnect links,
but also often induces a much higher ratio of local memory ac-
cesses than other techniques. This is a consequence of Carrefour’s
judiciously applying the right techniques (interleaving, replication
or co-location) in places where they are beneficial. Interleaving
mostly balances the load; replication and co-location in addition
to balancing the load improve the local access ratio. Better locality
improves latencies in two ways: it avoids remote wire delays and,
most importantly, decreases congestion on the interconnect links.

We also study MG as a representative example of the NAS
applications, for which Carrefour does not bring significant
improvements over default Linux (but still performs better than
AutoNUMA and Manual interleaving in most cases). MG has a
low imbalance and a very good local access ratio to begin with.
That is why Manual interleaving has a very bad impact on such
workloads, significantly decreasing the local access ratio and as a
result stressing the interconnect.

Looking inside Carrefour. To better understand the behavior of
Carrefour, we show in Table 3 the number of replicated pages, the
number of interleaved pages, and the number of co-located pages
for the chosen benchmarks. These numbers provide a better insight
into how Carrefour manages the memory. We observe that all three
memory placement mechanisms are in use, and that most applica-
tions rely on two or three techniques. As discussed previously, MG
does not suffer from traffic congestion, so Carrefour does not en-
able any technique for this application.

A legitimate question we can ask is whether Carrefour always
selects the best technique. In Table 4, we report the performance
improvement over Linux obtained when running a full-fledged Car-
refour and when running a reduced version of Carrefour enabling
only one technique at a time. We observe that Carrefour systemati-
cally selects the best technique. It is also interesting to remark how
different techniques work together and how the numbers provided
here echo those in Table 3. We notice that, for all the studied appli-
cations except MG and SP, the combination of several techniques
employed by Carrefour outperforms any single technique, even
when a given technique has a dominant impact (e.g., for Stream-
cluster). The slight performance degradation for MG corresponds
to the monitoring overhead of Carrefour.

4.3 Multi-application workloads
In this section, we study how Carrefour behaves in the context of
workloads with multiple applications that are co-scheduled on the
same machine. The goal is to assess that Carrefour is able to work
on complex access patterns and to make the distinction between the
diverse requirements of different applications. We consider several
scenarios based on some of the applications previously studied in
Section 4.2:

(i) MG + Streamcluster, (ii) PCA + Streamcluster, (iii) FaceRe-
cLong + Streamcluster. We chose these scenarios because they ex-
hibit interesting patterns, which require combining several memory
placement techniques in order to achieve good performance.

Each application is run with half as many threads as the number
of cores (i.e., 8 threads on machine A, 12 on machine B). With
two applications, the workload occupies all the available cores. The
threads of each application are clustered on the same node, so each
application uses all the cores on two of the four nodes on a machine.

Figure 9 shows, for each workload, the performance improve-
ment with respect to Linux for AutoNUMA, Manual interleaving
and Carrefour on machine A and machine B. We observe that Car-
refour always outperforms AutoNUMA and Manual interleaving,
by up to 62% and 36% respectively. Besides, Carrefour also out-

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Bodytrack

Facesim

Fluidanim
ate

Stream
cluster

Sw
aptions

x264
FaceR

ec

FaceR
ecLong

Km
eans

M
atrixm

ultiply

PC
A

W
rm

em

P
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

 w
it
h
 r

e
s
p
e
c
t
to

 L
in

u
x
 (

%
) AutoNUMA

Manual interleaving
Carrefour

Machine A

 0

 30

 60

 90

 120

 150

 180

 210

 240

 270

Bodytrack

Facesim

Fluidanim
ate

Stream
cluster

Sw
aptions

x264
FaceR

ec

FaceR
ecLong

Km
eans

M
atrixm

ultiply

PC
A

W
rm

em

P
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

 w
it
h
 r

e
s
p
e
c
t
to

 L
in

u
x
 (

%
) AutoNUMA

Manual interleaving
Carrefour

Machine B

Figure 5. PARSEC/Metis: AutoNUMA, Manual interleaving and Carrefour vs.Default Linux.

-40

-30

-20

-10

 0

 10

BT CG DC EP FT IS LU MG SP UA

P
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

 w
it
h
 r

e
s
p
e
c
t
to

 L
in

u
x
 (

%
) AutoNUMA

Manual interleaving
Carrefour

Machine A

-40

-20

 0

 20

 40

 60

BT CG DC EP FT IS LU MG SP UA

P
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

 w
it
h
 r

e
s
p
e
c
t
to

 L
in

u
x
 (

%
) AutoNUMA

Manual interleaving
Carrefour

Machine B

Figure 6. NAS: AutoNUMA, Manual interleaving and Carrefour vs. Default Linux.

 0

 20

 40

 60

 80

 100

 120

 140

 160

Facesim Streamcluster FaceRec FaceRecLong PCA MG SP

L
o
a
d
 i
m

b
a
la

n
c
e

o
n
 m

e
m

o
ry

 c
o
n
tr

o
lle

rs
 (

%
)

Linux
AutoNUMA

Manual interleaving
Carrefour

(a) memory controllers

 0

 20

 40

 60

 80

Facesim Streamcluster FaceRec FaceRecLong PCA MG SP

L
o
a
d
 i
m

b
a
la

n
c
e

o
n
 i
n
te

rc
o
n
n
e
c
t
lin

k
s
 (

%
)

Linux
AutoNUMA

Manual interleaving
Carrefour

(b) interconnect links

Figure 7. Load imbalance for selected single-application benchmarks (machine A).

 0

 200

 400

 600

 800

 1000

 1200

Facesim Streamcluster FaceRec FaceRecLong PCA MG SP

A
v
g
 l
a
te

n
c
y

 (
n
b
C

y
c
le

s
/r

e
q
)

Linux
AutoNUMA

Manual interleaving
Carrefour

(a) Average memory latency

 0

 20

 40

 60

 80

 100

 120

Facesim Streamcluster FaceRec FaceRecLong PCA MG SP

R
a
ti
o
 o

f
lo

c
a
l

m
e
m

o
ry

 a
c
c
e
s
s
e
s
 (

%
) Linux

AutoNUMA
Manual interleaving

Carrefour

(b) Local memory access ratio

Figure 8. DRAM latency and locality for selected single-application benchmarks (machine A).

Nb replicated pages Nb interleaved pages Nb migrated pages
Facesim 0 431 10.1k
Streamcluster 25.4k 14.5 858
FaceRec 4k 3 1.3k
FaceRecLong 4.1k 5 1.4k
PCA 31k 33 41.3k
MG 0 0 1
SP 0 305 1.7k

Table 3. Number of memory pages that are replicated, interleaved and co-located on single-application workloads (machine A).

Carrefour Replication Interleaving Co-location
Facesim 74% -4% 0% 65%
Streamcluster 184% 176% 94% 51%
FaceRec 66% 61% 32% 1%
FaceRecLong 117% 113% 51% 1%
PCA 46% 45% 29% 24%
MG -2% -2% -2% -2%
SP 8% -1% -7% 8%

Table 4. Performance improvement over Linux when running Carrefour and the three different techniques individually on single-application
workloads (machine A).

performs default Linux, while Manual interleaving hurts MG with
a -25% slowdown. Overall, the results obtained with Manual inter-
leaving are closer to the ones of Carrefour compared to the other
setups.

The reason why Manual interleaving performs relatively well
in these scenarios is because, with each application using two
domains, there is a lot less cross-domain traffic than in the single-
application case. Hence there are fewer ”problems” that need to be
fixed and there is a smaller discrepancy between the performance
of different memory management algorithms.

To explain the results, we show the same detailed metrics as
in Section 4.2: load imbalance on memory controllers, load imbal-
ance on interconnect links, average DRAM latency and ratio of lo-
cal DRAM accesses in Figures 10, 11, 12 and 13 respectively. The
metrics are aggregated for the two applications of each workload.
As was the case with the single-application workloads, we see that
Carrefour systematically improves the latency of the studied work-
loads for two reasons: a more balanced load on memory controllers
and interconnect links as well as an improved locality for DRAM
accesses. Note that, for each workload, the depicted latencies are

averaged over the two applications. This explains the small latency
variations between Linux, AutoNUMA and Manual Interleaving in
the case of MG + Streamcluster.

Finally, we show in Table 5 the performance improvement for
each application when the effects of only one of the techniques
are enabled. We observe that the multi-applications workloads per-
form as well or better with an arsenal of techniques used in Car-
refour rather than with any single technique alone (especially for
PCA + Streamcluster).

4.4 Overhead
Carrefour incurs CPU and memory overhead. The first source of
CPU overhead is the periodic IBS profiling. To measure CPU over-
head, we compared performance of Carrefour with Linux on those
applications where Carrefour does not yield any performance ben-
efits. We observed the overhead between 0.2% and 3.2%. Adaptive
sampling rate in Carrefour is crucial to keeping this overhead low.
A second and potentially significant source of CPU overhead is
replication, if we perform a lot of collapses. A single collapse costs
a few hundred microseconds when it occurs in isolation. Parallel

-20

 0

 20

 40

 60

 80

MG
+ Streamcluster

PCA
+ Streamcluster

FaceRecLong
+ Streamcluster

P
e

rf
o

rm
a

n
c
e

 i
m

p
ro

v
e

m
e

n
t

 w
it
h

 r
e

s
p

e
c
t

to
 L

in
u

x
 (

%
)

MG Streamcluster PCA Streamcluster FaceRecLong Streamcluster

AutoNUMA
Manual interleaving

Carrefour

Machine A

-20

 0

 20

 40

 60

 80

MG
+ Streamcluster

PCA
+ Streamcluster

FaceRecLong
+ Streamcluster

P
e

rf
o

rm
a

n
c
e

 i
m

p
ro

v
e

m
e

n
t

 w
it
h

 r
e

s
p

e
c
t

to
 L

in
u

x
 (

%
)

MG Streamcluster PCA Streamcluster FaceRecLong Streamcluster

AutoNUMA
Manual interleaving

Carrefour

Machine B

Figure 9. Multi-application workloads: AutoNUMA, Manual in-
terleaving and Carrefour vs. Default Linux.

 0

 20

 40

 60

 80

 100

MG
+ Streamcluster

PCA
+ Streamcluster

FaceRecLong
+ Streamcluster

L
o

a
d

 i
m

b
a

la
n

c
e

o
n

 m
e

m
o

ry
 c

o
n

tr
o

lle
rs

 (
%

)

Linux
AutoNUMA

Manual interleaving
Carrefour

Figure 10. Multi-application workloads: load imbalance on mem-
ory controllers (machine A).

 0

 20

 40

 60

 80

MG
+ Streamcluster

PCA
+ Streamcluster

FaceRecLong
+ Streamcluster

L
o

a
d

 i
m

b
a

la
n

c
e

o
n

 i
n

te
rc

o
n

n
e

c
t

lin
k
s
 (

%
)

Linux
AutoNUMA

Manual interleaving
Carrefour

Figure 11. Multi-application workloads: load imbalance on inter-
connect links (machine A).

 0

 100

 200

 300

 400

 500

 600

 700

MG
+ Streamcluster

PCA
+ Streamcluster

FaceRecLong
+ Streamcluster

A
v
g

 l
a

te
n

c
y

 (
n

b
C

y
c
le

s
/r

e
q

)

Linux
AutoNUMA

Manual interleaving
Carrefour

Figure 12. Multi-application workloads: average memory latency
(machine A).

 0

 20

 40

 60

 80

 100

MG
+ Streamcluster

PCA
+ Streamcluster

FaceRecLong
+ Streamcluster

R
a

ti
o

 o
f

lo
c
a

l
m

e
m

o
ry

 a
c
c
e

s
s
e

s
 (

%
)

Linux
AutoNUMA

Manual interleaving
Carrefour

Figure 13. Multi-application workloads: local memory access ra-
tio (machine A).

Carrefour Replication Interleaving Co-location
MG 2% / 71% 2% / 73% -5% / 17% -1% / 6%+ Streamcluster
PCA 24% / 57% 18% / 57% 8% / 5% 14% / 1%+ Streamcluster
FaceRecLong 53% / 71% 53% / 71% 12% / 9% 12% / 4%+ Streamcluster

Table 5. Multi-application workloads: performance improvement
over Linux when running Carrefour and the three different tech-
niques individually (machine A).

collapses can take a few milliseconds because of lock contention.
That is why it is crucial to avoid collapses and other synchroniza-
tion events by disabling replication for write-intensive workloads,
as is done in Carrefour.

The first source of memory overhead is the allocation of data
structures to keep track of profiling data. This overhead is negli-
gible: e.g., 5MB on Machine A with 64GB of RAM. Carrefour’s
data structures are pre-allocated on startup to avoid memory allo-
cation during the runtime. We limit the number of profiled pages
to 30,000 to avoid the cost of managing dynamically sized struc-
tures. The second source of memory overhead is memory repli-
cation. When enabled, replication introduces a memory footprint
overhead of 400MB (353%), 60MB (210%), 60MB (126%) and
614MB (5%) for Streamcluster, FaceRec, FacerecLong and PCA
respectively.

4.5 Impact on energy consumption
It was observed that remote memory accesses require significantly
more energy than local ones [11]. Since Carrefour may both
decrease and increase the number of remote memory accesses,
we were interested in evaluating its impact on energy consump-
tion8. We show the results for selected applications from single-
application workloads on Machine A. We report the increase in en-
ergy consumption as well as the increase in completion time of all
configurations compared to default Linux in Figure 14. Completion
time increase is computed here as:

Systemtime −DefaultLinuxtime

DefaultLinuxtime
∗ 100%.

We observe that there is a strong relationship between the com-
pletion time and the energy consumption: if the completion time
is decreased, the energy consumption is also decreased proportion-
ally. As a result, Carrefour saves up to 58% of energy. When no
traffic management is needed, Carrefour on its own has a low im-
pact on energy consumption (e.g., 2% on MG).

More generally, we found that the increase of remote memory
accesses has little or no impact on the global energy consump-
tion of the machine. For example, Manual interleaving drops the
local access ratio of MG from 97% to 25% and thus proportion-

8 We used IPMI which gives access to the current global power consumption
on our servers.

ally increases the number of remote accesses. However, the energy
consumption increase is slightly lower that the completion time in-
crease, which indicates that the extra energy overhead of remote
memory accesses have no strong impact on overall energy con-
sumption.

4.6 Discussion: hardware support
We have shown that a traffic management system like Car-
refour can bring significant performance benefits. However, the
challenge in building Carrefour was the need to navigate around
the limitations of the performance monitoring units of our hard-
ware as well as the costs of replicating pages. In this section, we
draw some insights on the features that could be integrated into
future machines in order to further mitigate the overhead and im-
prove accuracy, efficiency and performance of traffic management
algorithms.

First, Carrefour would benefit from hardware profiling mech-
anisms that sample memory accesses with high precision and low
overhead. For instance, it would be useful to have a profiling mech-
anism that accumulates and aggregates page access statistics in an
internal buffer before triggering an interrupt. In this regard, the
AMD Lightweight Profiling [1] facility seems a promising evolu-
tion of profiling hardware9, but we believe the hardware should go
even further, and not only accumulate the samples but be configured
to aggregate them according to user needs, to reduce the number of
interrupts even further.

Second, Carrefour would benefit from dedicated hardware sup-
port for memory replication. We believe that there should be in-
terfaces allowing the operating system to indicate to the processor
which pages to replicate. The processor would then be in charge
of replicating the pages on the nodes accessing it and maintain-
ing consistency between the various replicas (in the same way as it
maintains consistency for cache lines). Given that maintaining con-
sistency between frequently written pages is costly, we believe that
such processors should also be able to trigger an interrupt when a
page is written too frequently. The OS would then decide to keep
the page replicated or to revert the replication decision.

This hardware support can be made a lot more scalable than
cache coherency protocols, because it is not automatic, but con-
trolled by the OS, which, armed with better hardware profiling, will
only invoke it for pages that perform very little write sharing. So the
actual synchronization protocol would be triggered infrequently.

5. Related Work
In this section, we explain how Carrefour relates to different works
on multicore systems. First, we review systems aimed at maxi-
mizing data locality. Second, we contrast Carrefour with previ-
ous contention-aware systems. Third, we consider application-level
techniques to mitigate contention on data-sharing applications. Fi-
nally, we discuss traffic characterization observations for modern
NUMA systems.

Locality-driven optimizations NUMA-aware thread and mem-
ory management policies were proposed for earlier research sys-
tems [6, 9, 18, 31] as well as in commercial OS. Their main differ-
ence from our work is that their goal was to optimize locality. How-
ever, on modern systems, the main performance problems are due
to traffic congestion. Our algorithm is the first one that meets the
goal of mitigating traffic congestion. Among the above-mentioned
works, the one most related to Carrefour is the system by Verghese
et al. [31] for early cache-coherent NUMA machines, which lever-

9 Unfortunately, Lightweight Profiling is only available on recent AMD
processors (AMD Bulldozer) and we were not able to evaluate it in this
work. We plan to study it in the future.

ages page replication and migration mechanisms. Their system re-
lies on assumptions about hardware support that do not hold on
currently available machines (e.g., precise per-page access statis-
tics). Thus, Carrefour’s logic is more involved, as it is more dif-
ficult to amortize the costs of the monitoring and memory page
placement mechanisms. The authors noticed that locality-driven
optimizations could, as a side effect, reduce the overall contention
in the system. However, their system does not systematically ad-
dress contention issues. For instance, shared written pages are not
taken into account, whereas Carrefour uses memory interleaving
techniques when there is contention on such pages. Moreover, the
load on memory controllers is ignored when making page replica-
tion/migration decisions.

Similarly to earlier NUMA-aware policies, Solaris and Linux
focus primarily on co-location of threads and data, but to the dis-
advantage of data-sharing workloads, replication is not supported.
Linux provides the option to interleave parts of the address space
across all memory nodes, but the decision when to invoke the in-
terleaving is left to the programmer or the administrator. Solaris
supports the notion of a home load group, such that the thread’s
memory is always allocated in its home group and the thread is
preferentially scheduled in its home group. This, again, favours lo-
cality, but does not necessarily address traffic congestion.

The recent AutoNUMA patches for Linux also implement
locality-driven optimizations, along two main heuristics. First,
threads migrate toward nodes holding the majority of the pages
accessed by these threads. Memory residence is determined by
page fault statistics. Second, pages are periodically unmapped from
a process address space and, upon the next page fault, migrated
to the requesting node. As shown in the evaluation section, this
approach yields irregular results. We attribute this limitation to
the following sources of overhead: local thread/page migration
decisions that do not take data sharing patterns nor access fre-
quencies into account (thus leading to page bouncing or useless
migrations) nor MC/interconnect load (thus leading to memory
load imbalance/congestion), continuous overhead due to the scan-
ning/unmapping of page-table entries and the corresponding soft
page faults. In contrast, Carrefour makes global data placement de-
cisions based on precise traffic patterns and adjusts the monitoring
overhead based on the observed contention level.

Locality-driven optimizations for data-sharing applications
were addressed in a study that dynamically identified data-sharing
thread groups and co-located them on the same node [30]. How-
ever, that solution was for a system with a centralized (UMA) mem-
ory architecture. Thus, it only studied the benefits of thread place-
ment for improved cache locality and did not address the placement
of memory pages on multiple memory nodes.

Zhou and Demsky [32] investigated how to distribute memory
pages to caches on a many-core Tilera processor, in order to im-
plement an efficient garbage collector. The authors tried various
policies but found that maximizing locality was the best approach
for their system. This is in contrast to the systems Carrefour is
targeting, where reducing congestion is more important than just
improving locality. Also, the authors used a very different method
for monitoring page access patterns that relies on software-serviced
TLB misses, which is not possible on x86.

Contention management techniques Several recent studies ad-
dressed contention issues in the memory hierarchy. Some of these
works were designed for UMA systems [16, 21, 33] and are inef-
ficient on NUMA systems because they fail to address or even ac-
centuate issues such as remote access latencies and contention on
memory controllers and on the interconnect links [5]. Other works
have been specifically designed for NUMA systems but only par-
tially address contention issues. The N-Mass thread placement al-
gorithm [19] attempts to achieve good DRAM locality while avoid-

-70
-60
-50
-40
-30
-20
-10

 0
 10
 20
 30
 40
 50
 60
 70

A
u

to
n

u
m

a

M
a

n
u

a
l In

t.

C
a

rre
fo

u
r

A
u

to
n

u
m

a

M
a

n
u

a
l In

t.

C
a

rre
fo

u
r

A
u

to
n

u
m

a

M
a

n
u

a
l In

t.

C
a

rre
fo

u
r

A
u

to
n

u
m

a

M
a

n
u

a
l In

t.

C
a

rre
fo

u
r

A
u

to
n

u
m

a

M
a

n
u

a
l In

t.

C
a

rre
fo

u
r

A
u

to
n

u
m

a

M
a

n
u

a
l In

t.

C
a

rre
fo

u
r

A
u

to
n

u
m

a

M
a

n
u

a
l In

t.

C
a

rre
fo

u
r

In
c
re

a
s
e
 i
n

 w
it
h
 r

e
s
p
e
c
t
to

 L
in

u
x
 (

%
)

Energy consumption
Completion time

SPMGPCAFaceRecLongFaceRecStreamclusterFacesim

Figure 14. Increase in completion time and energy consumption for selected single-application benchmarks with respect to Linux (machine
A). Lower is better.

ing cache contention. However, it does not address contention is-
sues at the level of memory controllers and interconnect links.
Two studies [3, 20] have shown the importance of taking mem-
ory controller congestion into account for data placement deci-
sions, but they did not provide a complete solution to address multi-
level resource contention. The most comprehensive work to date on
NUMA-aware contention management is the DINO scheduler [5],
which spreads memory intensive threads across memory domains
and accordingly migrates the corresponding memory pages. How-
ever, DINO does not address workloads with data sharing between
threads or processes, which require identifying per-page memory
access patterns and making the appropriate data placement deci-
sions.

No-sharing application design principle When introducing a
new resource-management policy in the OS, it is worth asking
whether a similar or better effect could be achieved by restruc-
turing the application. In our context, it is important to consider
the so-called no-sharing principle of application design. The key
idea behind no-sharing is that the data must be partitioned or repli-
cated between memory nodes, and a thread needing to access data
in a different domain than its own either migrates to the target do-
main or asks the thread running in that domain to perform the work
on its behalf, instead of fetching the data over the memory chan-
nels [4, 8, 14, 23, 25, 28, 29]. While the no-sharing architecture
was primarily motivated by the need to avoid locking, it could sim-
ilarly help reduce the amount of traffic sent across the interconnect,
and thus alleviate the traffic congestion problem.

Unfortunately, no-sharing architectures are not a universal rem-
edy. First of all, they trade-off data accesses for messages or thread
migration; the trade-off is only worth making if the size of the data
used in a single operation is much larger than the size of the mes-
sage or the state of the migrated thread [8]. Second, adopting a
no-sharing architecture often requires very significant changes to
the application (and to the OS, if the application is OS-intensive).
A good illustration of the potential challenges can be gleaned from
two studies that converted a database system to the no-sharing de-
sign. The first study took the path of least resistance and simply
replicated and/or partitioned the database among domains, adding a
message-routing layer on top [28]. While this worked well for small
read-mostly workloads, for large workloads replication had very
significant memory overhead (unacceptable because of increased
paging), and partitioning required a priori knowledge of query-
to-data mapping, which is not a reasonable assumption in a gen-
eral case. A solution that overcame these limitations, DORA [25],
required a very significant restructuring of the database system,

which could easily amount to millions of dollars in development
costs for a commercial database.

Our goal was to address scenarios where adopting a no-sharing
architecture is not feasible either for technical reasons or for
practical considerations. Providing an OS-level, rather than an
application-level, solution allows us to address many applications
at once. Understanding the limitations of the OS-level solution and
determining what optimizations can be done only at the level of an
application is an open research question. Although we did provide
some comparison of Carrefour with application-level techniques, a
deeper analysis of this problem would be worthwhile.

Traffic characterization on modern systems A recent study char-
acterized the performance of emerging ”scale-out” workloads on
modern hardware [13]. The authors observed that there is little
inter-thread data sharing, and the utilization of the off-chip mem-
ory bandwidth is low. As a result, they argue that memory band-
width on existing processors is unnecessarily high. Our findings do
not agree with this observation. Although it is also true that the
workloads we consider perform very little fine-grained data shar-
ing, they still stress the cross-chip interconnect, because they ac-
cess a large working set, which is spread across the entire NUMA
memory space. The authors of the scale-out study reported a very
low bandwidth utilization (<10%), even for database workloads.
In contrast, our measurements show a utilization as low as 45% in
some cases. These differences could be because the authors of [13]
used a system with only two chips and 12 cores in their exper-
iments. On larger systems, more threads are making requests to
remote memories and so there is greater pressure on bandwidth.
Further, we found that low bandwidth utilization is not necessar-
ily a healthy symptom. In our experiments, performance dropped
steeply even as bandwidth utilization went from 10% to 30%. The
interconnect became the bottleneck even at a fraction of the total
available bandwidth! The reason is that memory requests are not
spread evenly in time; they are bursty. Burstiness causes requests to
clash on the link even if the overall bandwidth is not exceeded. In
summary, we conclude that contrary to the suggestion made in [13],
it is too early to reduce the bandwidth of cross-chip interconnects
on large multicore systems, especially if they are used for running
large data-centric workloads.

6. Conclusion
We presented Carrefour, a new memory management algorithm for
NUMA systems that manages traffic on memory controllers and
interconnects. Earlier NUMA-aware memory management policies

aimed to mitigate the cost of remote wire delays, which is no longer
the main bottleneck on modern systems. Carrefour’s design was
motivated by the evolution of modern NUMA hardware, where
traffic congestion plays a much larger role in performance than wire
delays.

System design principles embodied in Carrefour are important
not only for today’s systems, but also for future hardware. The
amount of memory bandwidth per core is projected to decrease in
the future [8], so managing traffic congestion will be as crucial as
ever.

7. Code availability
The source code for Carrefour will be made available at
https://github.com/Carrefour.

8. Acknowledgments
We thank Oracle Labs and the British Columbia Innovation Council
for funding this work.

References
[1] AMD64 Technology Lightweight Profiling Specification, Aug.

2010. http://support.amd.com/us/Processor_TechDocs/
43724.pdf.

[2] AutoNUMA: the other approach to NUMA scheduling. LWN.net,
Mar. 2012. http://lwn.net/Articles/488709/.

[3] M. Awasthi, D. Nellans, K. Sudan, R. Balasubramonian, and A. Davis.
Handling the problems and opportunities posed by multiple on-chip
memory controllers. In PACT, 2010.

[4] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The Multikernel: A New
OS Architecture for Scalable Multicore Systems. In SOSP, 2009.

[5] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova. A Case
for NUMA-aware Contention Management on Multicore Systems. In
USENIX ATC, 2011.

[6] W. Bolosky, R. Fitzgerald, and M. Scott. Simple but Effective Tech-
niques for NUMA Memory Management. In SOSP, 1989.

[7] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey:
an operating system for many cores. In OSDI, 2008.

[8] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich. A
software approach to unifying multicore caches. Technical Report
MIT-CSAIL-TR-2011-032, 2011.

[9] T. Brecht. On the Importance of Parallel Application Placement in
NUMA Multiprocessors. In USENIX SEDMS, 1993.

[10] CSU Face Identification Evaluation System. http://www.cs.
colostate.edu/evalfacerec/index10.php.

[11] B. Dally. Power, programmability, and granularity: The challenges of
exascale computing. http://techtalks.tv/talks/54110.

[12] P. Drongowski and B. Center. Instruction-based sampling: A new
performance analysis technique for amd family 10h processors. 2007.

[13] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi.
Clearing the clouds: A study of emerging scale-out workloads on mod-
ern hardware. In ASPLOS, 2012.

[14] B. Gamsa, O. Krieger, and M. Stumm. Tornado: Maximizing Local-
ity and Concurrency in a Shared Memory Multiprocessor Operating
System. In OSDI, 1999.

[15] A. Kamali. Sharing aware scheduling on multicore systems. In MSc
Thesis, Simon Fraser Univ., 2010.

[16] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using OS
Observations to Improve Performance in Multicore Systems. IEEE
Micro, 28(3):pp. 54–66, 2008.

[17] R. Lachaize, B. Lepers, and V. Quéma. MemProf: A Memory Profiler
for NUMA Multicore Systems. In USENIX ATC, 2012.

[18] R. P. LaRowe, Jr., C. S. Ellis, and M. A. Holliday. Evaluation of
NUMA Memory Management Through Modeling and Measurements.
IEEE TPDS, 3:686–701, 1991.

[19] Z. Majo and T. R. Gross. Memory management in numa multicore sys-
tems: Trapped between cache contention and interconnect overhead.
In ISMM, 2011.

[20] Z. Majo and T. R. Gross. Memory System Performance in a NUMA
Multicore Multiprocessor. In SYSTOR, 2011.

[21] A. Merkel, J. Stoess, and F. Bellosa. Resource-Conscious Scheduling
for Energy Efficiency on Multicore Processors. In EuroSys, 2010.

[22] Metis MapReduce Library. http://pdos.csail.mit.edu/
metis/.

[23] Z. Metreveli, N. Zeldovich, and F. Kaashoek. Cphash: a cache-
partitioned hash table. In PPoPP, 2012.

[24] NAS Parallel Benchmarks. http://www.nas.nasa.gov/
publications/npb.html.

[25] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki. Data-oriented
transaction execution. Proc. VLDB Endow., 3:928–939, September
2010. ISSN 2150-8097.

[26] PARSEC Benchmark Suite. http://parsec.cs.princeton.
edu/.

[27] A. Pesterev, N. Zeldovich, and R. T. Morris. Locating cache perfor-
mance bottlenecks using data profiling. In EuroSys, 2010.

[28] T.-I. Salomie, I. E. Subasu, J. Giceva, and G. Alonso. Database engines
on multicores, why parallelize when you can distribute? In EuroSys,
2011.

[29] X. Song, H. Chen, R. Chen, Y. Wang, and B. Zang. A case for scaling
applications to many-core with OS clustering. In EuroSys, 2011.

[30] D. Tam, R. Azimi, and M. Stumm. Thread Clustering: Sharing-Aware
Scheduling on SMP-CMP-SMT Multiprocessors. In EuroSys, 2007.

[31] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Operating
system support for improving data locality on CC-NUMA compute
servers. In ASPLOS, 1996.

[32] J. Zhou and B. Demsky. Memory management for many-core proces-
sors with software configurable locality policies. In ISMM, 2012.

[33] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing Contention
on Multicore Processors via Scheduling. In ASPLOS, 2010.

