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Abstract

Contention for shared resources on multicore processors remains
an unsolved problem in existing systems despite significant re-
search efforts dedicated to this problem in the past. Previous solu-
tions focused primarily on hardware techniques and software page
coloring to mitigate this problem. Our goal is to investigate how
and to what extent contention for shared resource can be mitigated
via thread scheduling. Scheduling is an attractive tool, because it
does not require extra hardware and is relatively easy to integrate
into the system. Our study is the first to provide a comprehensive
analysis of contention-mitigating techniques that use only schedul-
ing. The most difficult part of the problem is to find a classification
scheme for threads, which would determine how they affect each
other when competing for shared resources. We provide a com-
prehensive analysis of such classification schemes using a newly
proposed methodology that enables to evaluate these schemes sep-
arately from the scheduling algorithm itself and to compare them
to the optimal. As a result of this analysis we discovered a classifi-
cation scheme that addresses not only contention for cache space,
but contention for other shared resources, such as the memory con-
troller, memory bus and prefetching hardware. To show the applica-
bility of our analysis we design a new scheduling algorithm, which
we prototype at user level, and demonstrate that it performs within
2% of the optimal. We also conclude that the highest impact of
contention-aware scheduling techniques is not in improving perfor-
mance of a workload as a whole but in improving quality of service
or performance isolation for individual applications.

Categories and Subject Descriptors D.4.1 [Process Manageent):
Scheduling

General Terms Performance, Measurement, Algorithms

Keywords Multicore processors, shared resource contention,
scheduling

1. Introduction

Multicore processors have become so prevalent in both desktops
and servers that they may be considered the norm for modern com-
puting systems. The limitations of techniques focused on extrac-
tion of instruction-level parallelism (ILP) and the constraints on
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Figure 1. The performance degradation relative to running solo for
two different schedules of SPEC CPU2006 applications on an Intel
Xeon X3565 quad-core processor (two cores share an LLC).

power budgets have greatly staggered the development of large sin-
gle cores and made multicore systems a very likely future of com-
puting, with hundreds to thousands of cores per chip. In operating
system scheduling algorithms used on multicore systems, the pri-
mary strategy for placing threads on cores is load balancing. The
OS scheduler tries to balance the runnable threads across the avail-
able resources to ensure fair distribution of CPU time and minimize
the idling of cores. There is a fundamental flaw with this strategy
which arises from the fact that a core is not an independent proces-
sor but rather a part of a larger on-chip system and hence shares
resources with other cores. It has been documented in previous
studies [6, 14, 15, 17, 22, 24] that the execution time of a thread
can vary greatly depending on which threads run on the other cores
of the same chip. This is especially true if several cores share the
same last-level cache (LLC).

Figure 1 highlights how the decisions made by the scheduler
can affect the performance of an application. This figure shows
the results of an experiment where four applications were running
simultaneously on a system with four cores and two shared caches.
There are three unique ways to distribute the four applications
across the four cores, with respect to the pairs of co-runners sharing
the cache; this gives us three unique schedules. We ran the threads
in each of these schedules, recorded the average completion time
for all applications in the workload, and labeled the schedule with
the lowest average completion time as the best and the one with the
highest average completion time as the worst. Figure 1 shows the
performance degradation that occurs due to sharing an LLC with
another application, relative to running solo (contention-free). The
best schedule delivers a 20% better average completion time than
the worst one. Performance of individual applications improves by
as much as 50%.



Previous work on the topic of improving thread performance
in multicore systems focused on the problem of cache contention
since this was assumed to be the main if not the only cause of
performance degradation. In this context cache contention refers
to the effect when an application is suffering extra cache misses
because its co-runners (threads running on cores that share the same
LLC) bring their own data into the LLC evicting the data of others.
Methods such as utility cache partitioning (UCP) [17] and page
coloring [6, 24, 27] were devised to mitigate cache contention.

Through extensive experimentation on real systems as opposed
to simulators we determined that cache contention is not the dom-
inant cause of performance degradation of threads co-scheduled to
the same LLC. Along with cache contention other factors like mem-
ory controller contention, memory bus contention, and prefetching
hardware contention all combine in complex ways to create the
performance degradation that threads experience when sharing an
LLC.

Our goal is to investigate contention-aware scheduling tech-
niques that are able to mitigate as much as possible the factors
that cause performance degradation due to contention for shared re-
sources. Such a scheduler would provide speedier as well as more
stable execution times from run to run. Any cache aware scheduler
must consist of two parts: a classification scheme for identifying
which applications should and should not be scheduled together as
well as the scheduling policy which assigns threads to cores given
their classification. Since the classification scheme is crucial for an
effective algorithm, we focused on the analysis of various classifi-
cation schemes. We studied the following schemes: Stack Distance
Competition (SDC) [5], Animal Classes [26], Solo Miss Rate [12],
and the Pain Metric. The best classification scheme was used to de-
sign a scheduling algorithm, which was prototyped at user level and
tested on two very different systems with a variety of workloads.

Our methodology allowed us to identity the solo last-level cache
miss rate as one of the most accurate predictors of the degree to
which applications will suffer when co-scheduled. We used it to de-
sign and implement a new scheduling algorithm called Distributed
Intensity (DI). We show experimentally on two different multi-
core systems that DI always performs better than the default Linux
scheduler, delivers much more stable execution times than the de-
fault scheduler, and performs within a few percentage points of the
theoretical optimal. DI needs only the real miss rates of applica-
tions, which can be easily obtained online. As such we developed
an online version of DI, DI Online (DIO), which dynamically reads
miss counters online and schedules applications in real time.

The key contribution of our work is the analysis demonstrat-
ing the effectiveness of various classification schemes in aiding the
scheduler to mitigate shared resource contention. Previous studies
focusing on contention-aware scheduling did not investigate this is-
sue comprehensively. They attempted isolated techniques, in some
cases on a limited number of workloads, but did not analyze a
variety of techniques and did not quantify how close they are to
optimal. Therefore, understanding what is the best we can do in
terms of contention-aware scheduling remains an open question.
Our analysis, in contrast, explores a variety of possible classifica-
tion schemes for determining to what extent the threads will af-
fect each other’s performance, and we believe to cover most of the
schemes previously proposed in literature as well as introducing
our own. We compare each classification scheme to the theoretical
optimal, and this provides a clear understanding of what is the best
we can do in a scheduler. Further, we analyze the extent of perfor-
mance improvements that can be achieved for different workloads
by methodically categorizing the workloads based on the potential
speedup they can achieve via cache-aware scheduling. This enables
us to evaluate the applicability of cache-aware scheduling tech-
niques for a wide variety of workloads. We believe that our work is

the first to comprehensively evaluate the potential of scheduling to
mitigate contention for shared resources.

The primary application of our analysis is for building new
scheduling algorithms that mitigate the effects of shared resource
contention. We demonstrate this by designing and evaluating a new
algorithm Distributed Intensity Online. Our evaluation of this al-
gorithm leads us to a few interesting and often unexpected find-
ings. First of all, we were surprised to learn that if one is try-
ing to improve average workload performance, the default cache-
unaware scheduler already does a rather good job if we measure
performance of a workload over a large number of trials. The rea-
son is that for a given workload there typically exists a number of
“good” and “bad” scheduling assignments. In some workloads each
of these assignments can picked be with a roughly equal probabil-
ity if selecting uniformly at random, but in other workloads a good
assignment is far more likely to occur than the bad one. A cache-
unaware default scheduler runs into good and bad assignments ac-
cording to their respective probabilities, so over time it achieves
performance that is not much worse than a contention-aware algo-
rithm that always picks the good assignment. However, when one is
interested in improving performance of individual applications, for
example to deliver quality of service guarantees or to accomplish
performance isolation, a contention-aware scheduler can offer sig-
nificant improvements over default, because this scheduler can en-
sure to never select a bad scheduling assignment for the prioritized
application.

The rest of the paper is organized as follows: Section 2 de-
scribes the classification schemes and policies that we evaluated,
the methodology for evaluating the classification schemes sepa-
rately from the policies and provides the evaluation results for the
classification schemes. Section 3 attempts to quantify the effects of
different factors resulting from contention for shared on-chip re-
sources on performance on multicore CPUs in order to better ex-
plain the results of Section 2. Section 4 describes the scheduling
algorithms which were implemented and tested on real systems.
Section 5 provides the experimental results. Section 6 discusses the
related work and Section 7 offers conclusions and discusses our
plans for future work.

2. Classification Schemes
2.1 Methodology

A conventional approach to evaluate new scheduling algorithms is
to compare the speedup they deliver relative to a default scheduler.
This approach, however, has two potential flaws. First, the schedule
chosen by the default scheduler varies greatly based on stochas-
tic events, such as thread spawning order. Second, this approach
does not necessarily provide the needed insight into the quality
of the algorithms. A scheduling algorithm consists of two compo-
nents: the information (classification scheme, in our case) used for
scheduling decisions and the policy that makes the decisions based
on this information. The most challenging part of a cache-aware
scheduling algorithm is to select the right classification scheme,
because the classification scheme enables the scheduler to predict
the performance effects of co-scheduling any group of threads in
a shared cache. Our goal was to evaluate the quality of classifi-
cation schemes separately from any scheduling policies, and only
then evaluate the algorithm as a whole. To evaluate classification
schemes independently of scheduling policies, we have to use the
classification schemes in conjunction with a “perfect” policy. In
this way, we are confident that any differences in the performance
between the different algorithms are due to classification schemes,
and not to the policy.



2.1.1 A “perfect” scheduling policy

As a perfect scheduling policy, we use an algorithm proposed by
Jiang et al. [11]. This algorithm is guaranteed to find an optimal
scheduling assignment, i.e., the mapping of threads to cores, on
a machine with several clusters of cores sharing a cache as long
as the co-run degradations for applications are known. A co-run
degradation is an increase in the execution time of an application
when it shares a cache with a co-runner, relative to running solo.
Jiang’s methodology uses the co-run degradations to construct
a graph theoretic representation of the problem, where threads are
represented as nodes connected by edges, and the weights of the
edges are given by the sum of the mutual co-run degradations be-
tween the two threads. The optimal scheduling assignment can be
found by solving a min-weight perfect matching problem. For in-
stance, given the co-run degradations in Table 1, Figure 2 demon-
strates how Jiang’s method would be used to find the best and the
worst scheduling assignment. In Table 1, the value on the inter-
section of row ¢ and column j indicates the performance degra-
dation that application ¢ experiences when co-scheduled with ap-
plication j. In Figure 2, edge weights show the sum of mutual
co-run degradations of the corresponding nodes. For example, the
weight of 90.4% on the edge between MCF and MILC is the sum of
65.63% (the degradation of MCF when co-scheduled with MILC)
and 24.75% (the degradation of MILC co-scheduled with MCF).

Table 1. Co-run degradations of four obtained on a real system.
Small negative degradations for some benchmarks occur as a result
of sharing of certain libraries. The value on the intersection of
row ¢ and column j indicates the performance degradation that
application ¢ experiences when co-scheduled with application j.
mcf milc gamess  namd
mcf 48.01% 65.63%  2.0% 2.11%
milc 24.75% 45.39% 1.23% 1.11%
gamess  2.67% 448% -1.01% -121%
namd 1.48% 345% -1.19% -0.93%

Although Jiang’s methodology and the corresponding algo-
rithms would be too expensive to use online (the complexity of
the algorithm is polynomial in the number of threads on systems
with two cores per shared cache and the problem is NP-complete
on systems where the degree of sharing is larger), it is acceptable
for offline evaluation of the quality of classification schemes.

Using Jiang’s algorithm as the perfect policy implies that the
classification schemes we are evaluating must be suitable for
estimating co-run degradations. All of our chosen classification
schemes answered this requirement: they can be used to estimate
co-run degradations in absolute or in relative terms.

2.1.2 An optimal classification scheme

To determine the quality of various classification schemes we not
only need to compare them with each other, but also to evaluate
how they measure up to the optimal classification scheme. All of
our evaluated classification schemes attempt to approximate rela-
tive performance degradation that arbitrary tuples of threads ex-
perience when sharing a cache relative to running solo. An opti-
mal classification scheme would therefore have the knowledge of
actual such degradation, as measured on a real system. To obtain
these measured degradations, we selected ten representative bench-
marks from the SPEC CPU2006 benchmark suite (the methodol-
ogy for selection is described later in this section), ran them solo
on our experimental system (described in detail in Section 5), ran
all possible pairs of these applications and recorded their perfor-
mance degradation relative to solo performance. In order to make
the analysis tractable it was performed based on pairwise degrada-
tions, assuming that only two threads may share a cache, but the

Worst Schedule:
Average Degradation = 22%

Figure 2. An overview of using Jiang’s method for determining
the optimal and the worst thread schedule. Edges connecting nodes
are labeled with mutual co-run degradations, i.e., the sum of indi-
vidual degradations for a given pair. The average degradation for a

schedule is computed by summing up all mutual degradations and
dividing by the total number of applications (four in our case).

Best Schedule:
Average Degradation = 2.3%

90.4% 4.67%

-2.4% 4.56%

resultant scheduling algorithms are evaluated on systems with four
cores per shared cache as well.

2.1.3 Evaluating classification schemes

To evaluate a classification scheme on a particular set of applica-
tions, we follow these steps:

1. Find the optimal schedule using Jiang’s method and the optimal
classification scheme, i.e., relying on measured degradations.
Record its average performance degradation (see Figure 2).

2. Find the estimated best schedule using Jiang’s method and
the evaluated classification scheme, i.e., relying on estimated
degradations. Record its average performance degradation.

3. Compute the difference between the degradation of the optimal
schedule and of the estimated best schedule. The smaller the
difference, the better the evaluated classification scheme.

To perform a rigorous evaluation, we construct a large num-
ber of workloads consisting of four, eight and ten applications. We
evaluate all classification schemes using this method, and for each
classification scheme report the average degradation above the op-
timal scheme across all workloads.

2.1.4 Benchmarks and workloads

We selected ten benchmarks from the SPEC2006 benchmark suite
to represent a wide range of cache access behaviors. The cache
miss rates and access rates for every application in the SPEC2006
benchmark suite were obtained from a third party characterization
report [10] and a clustering technique was employed to select the
ten representative applications.

From these ten applications we constructed workloads for a
four-core, six-core, eight-core, and ten-core processor with two
cores per LLC. With the ten benchmarks we selected, there are
210 unique four-application workloads, 210 unique six-application



workloads, 45 unique eight-application workloads, and 1 unique
ten-application workload to be constructed on each system. There
are three unique ways to schedule a four-application workload on
a machine with four cores and two shared caches. The number
of unique schedules grows to 15, 105, and 945 for the six, eight,
and ten-core systems respectively. Using Jiang’s methodology, as
opposed to running all these 9450 schedules, saves a considerable
amount of time and actually makes it feasible to evaluate such a
large number of workloads.

2.2 The Classification Schemes

For any classification scheme to work it must first obtain some
“raw” data about the applications it will classify. This raw data
may be obtained online via performance counters, embedded into
an application’s binary as a signature, or furnished by the compiler.
Where this data comes from has a lot to do with what kind of
data is required by the classification scheme. The SDC algorithm
proposed by Chandra et al. [5] is one of the most well known
methods for determining how threads will interact with each other
when sharing the same cache. The SDC algorithm requires the
memory reuse patterns of applications, known as stack distance
profiles, as input. Likewise all but one of our classification schemes
require stack distance profiles. The one exception is the Miss Rate
classification scheme which requires only miss rates as input. The
simplicity of the Miss Rate Scheme allowed us to adapt it to
gather the miss rates dynamically online making it a far more
attractive option than the other classification schemes. However,
in order to understand why such a simple classification scheme
is so effective as well as to evaluate it against more complex and
better established classification schemes we need to explore a wide
variety of classification schemes and we need to use stack distance
profiles to do so.

A stack distance profile is a compact summary of the applica-
tion’s cache-line reuse patterns. It is obtained by monitoring (or
simulating) cache accesses on a system with an LRU cache. A stack
distance profile is a histogram with a “bucket” or a position corre-
sponding to each LRU stack position (the total number of posi-
tions is equal to the number of cache ways) plus an additional posi-
tion for recording cache misses. Each position in the stack-distance
profile counts the number of hits to the lines in the corresponding
LRU stack position. For example, whenever an application reuses a
cache line that is at the top of the LRU stack, the number of “hits”
in the first position of the stack-distance profile is incremented. If
an application experiences a cache miss, the number of items in
the miss position is incremented. The shape of the stack-distance
profile captures the nature of the application’s cache behavior: an
application with a large number of hits in top LRU positions has
a good locality of reference. An application with a low number of
hits in top positions and/or a large number of misses has a poor
locality of reference. For our study we obtained the stack-distance
profiles using the Pin binary instrumentation tool [16]; an initial
profiling run of an application under Pin was required for that. If
stack-distance profiles were to be used online in a live scheduler,
they could be approximated online using hardware performance
counters [24].

We now discuss four classification schemes which are based on
the information provided in the stack distance profiles.

2.2.1 SDC

The SDC! classification scheme was the first that we evaluated,
since this is a well known method for predicting the effects of

! Chandra suggested three algorithms for calculating the extra miss rates.
However, only two of them (FOA and SDC) are computationally fast
enough to be used in the robust scheduling algorithm. We chose SDC as
it is slightly more efficient than FOA.

cache contention among threads [5]. The idea behind the SDC
method is to model how two applications compete for the LRU
stack positions in the shared cache and estimate the extra misses
incurred by each application as a result of this competition. The
sum of the extra misses from the co-runners is the proxy for the
performance degradation of this co-schedule.

The main idea of the SDC algorithm is in constructing a new
stack distance profile that merges individual stack distance profiles
of threads that run together. On initialization, each individual pro-
file is assigned a current pointer that is initialized to point to the
first stack distance position. Then the algorithm iterates over each
position in the profile, determining which of the co-runners will be
the “winner” for this stack-distance position. The co-runner with
the highest number of hits in the current position is selected as the
winner. The winner’s counter is copied into the merged profile, and
its current pointer is advanced. After the Ath iteration (A is the as-
sociativity of the LLC), the effective cache space for each thread is
computed proportionally to the number of its stack distance coun-
ters that are included in the merged profile. Then, the cache miss
rate with the new effective cache space is estimated for each co-
runner, and the degradation of these miss rates relative to solo miss
rates is used as a proxy for the co-run degradation. Note that miss
rate degradations do not approximate absolute performance degra-
dations, but they provide an approximation of relative performance
in different schedules.

2.2.2 Animal Classes

This classification scheme is based on the animalistic classification
of applications introduced by Xie et al. [26]. It allows classifying
applications in terms of their influence on each other when co-
scheduled in the same shared cache. Each application can belong
to one of the four different classes: turtle (low use of the shared
cache), sheep (low miss rate, insensitive to the number of cache
ways allocated to it), rabbit (low miss rate, sensitive to the number
of allocated cache ways) and devil (high miss rate, tends to thrash
the cache thus hurting co-scheduled applications).

We attempted to use this classification scheme to predict con-
tention among applications of different classes, but found an im-
portant shortcoming of the original animalistic model. The authors
of the animalistic classification proposed that devils (applications
with a high miss rate but a low rate of reuse of cached data) must be
insensitive to contention for shared resources. On the contrary, we
found this not to be the case. According to our experiments, devils
were some of the most sensitive applications — i.e., their perfor-
mance degraded the most when they shared the on-chip resources
with other applications. Since devils have a high miss rate they is-
sue a large number of memory and prefetch requests. Therefore,
they compete for shared resources other than cache: memory con-
troller, memory bus, and prefetching hardware. As will be shown in
Section 3, contention for these resources dominates performance,
and that is why devils turn out to be sensitive.

To use the animalistic classification scheme for finding the op-
timal schedule as well as to account for our findings about “sen-
sitive” devils we use a symbiosis table to approximate relative per-
formance degradations for applications that fall within different an-
imal classes. The symbiosis table provides estimates of how well
various classes co-exist with each other on the same shared cache.
For example, the highest estimated degradation (with the experi-
mentally chosen value of 8) will be for two sensitive devils co-
scheduled in the same shared cache, because the high miss rate of
one of them will hurt the performance of the other one. Two turtles,
on the other hand, will not suffer at all. Hence, their mutual degra-
dation is estimated as 0. All other class combinations have their
estimates in the interval between 0 and 8.



The information for classification of applications, as described
by Xie et al. [26], is obtained from stack-distance profiles.

2.2.3 Miss Rate

Our findings about “sensitive” devils caused us to consider the
miss rate as the heuristic for contention. Although another group
of researchers previously proposed a contention-aware scheduling
algorithm based on miss rates [12], the hypothesis that the miss rate
should explain contention contradicted the models based on stack-
distance profiles, which emphasized cache reuse patterns, and thus
it needed a thorough validation.

We hypothesized that identifying applications with high miss
rates is very beneficial for the scheduler, because these applications
exacerbate the performance degradation due to memory controller
contention, memory bus contention, and prefetching hardware con-
tention. To attempt an approximation of the “best” schedule using
the miss rate heuristic, the scheduler will identify high miss rate
applications and separate them into different caches, such that no
one cache will have a much higher total miss rate than any other
cache. Since no cache will experience a significantly higher miss
rate than any other cache the performance degradation factors will
be stressed evenly throughout the system.

In addition to evaluating a metric based on miss rates, we also
experimented with other metrics, which can be obtained online
using hardware counters, such as cache access rate and IPC. Miss
rate, however, turned out to perform the best among them.

2.2.4 Pain

The Pain Classification Scheme is based on two new concepts that
we introduce in this work: cache sensitivity and cache intensity.
Sensitivity is a measure of how much an application will suffer
when cache space is taken away from it due to contention. Inten-
sity is a measure of how much an application will hurt others by
taking away their space in a shared cache. By combining the sen-
sitivity and intensity of two applications, we estimate the “pain” of
the given co-schedule. Combining a sensitive application with an
intensive co-runner should result in a high level of pain, and com-
bining an insensitive application with any type of co-runner should
result in a low level of pain. We obtain sensitivity and intensity
from stack distance profiles and we then combine them to measure
the resulting pain.

To calculate sensitivity .S, we examine the number of cache hits
that will most likely turn into misses when the cache is shared. To
that end, we assign to the positions in the stack-distance profile
loss probabilities describing the likelihood that the hits will be
lost from each position. Intuitively hits to the Most Recently Used
(MRU) position are less likely to become misses than hits to the
LRU position when the cache is shared. Entries that are accessed
less frequently are more likely to be evicted as the other thread
brings its data into the cache; thus we scale the number of hits
in each position by the corresponding probability and add them
up to obtain the likely extra misses. The resulting measure is the
sensitivity value which is shown in equation (Eq. 1). Here k(%) is
the number of hits to the i-th position in the stack, where ¢ = 1 is
the MRU and 7 = n is the LRU for an n-way set associative cache.
We use a linear loss probability distribution. As such the probability

of a hit in the i-th position becoming a miss is 5.

1 n
S = 1% h(s 1
) ; ) M

Intensity Z is a measure of how aggressively an application uses
cache. As such, it approximates how much space the application
will take away from its co-runner(s). Our approach to measuring
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Figure 3. Degradation relative to optimal experienced by each
classification scheme on systems with different numbers of cores.

intensity is to use the number of last-level cache accesses per one
million instructions.

We combine sensitivity S and intensity Z into the Pain met-
ric, which is then used to approximate the co-run degradations re-
quired by our evaluation methodology. Suppose we have applica-
tions A and B sharing the same cache. Then the Pain of A due
to B approximates the relative performance degradation that A is
expected to experience due to B and is calculated as the intensity
of B multiplied by the sensitivity of A (Eq. 2). The degradation of
co-scheduling A and B together is the sum of the Pain of A due to
B and the Pain of B due to A (Eq. 3).

Pain(Ap) = S(A) * Z(B) 2)

Pain(A, B) = Pain(Ap) + Pain(Ba) 3)

2.2.5 Classification Schemes Evaluation

For the purposes of this work we collected stack distances profiles
offline using Intel’s binary instrumentation tool Pin [10], an add-on
module to Pin MICA [19], and our own module extending the func-
tionality of MICA. The stack distance profiles were converted into
the four classification schemes described above: SDC, Pain, Miss
rates, and Animal. We estimate the extra degradation above the
optimal schedule that each classification scheme produces for the
four-core, six-core, eight-core and ten-core systems.Additionally,
we present the degradations for the worst and random schedules. A
random schedule picks each of the possible assignment for a work-
load with equal probability.

Figure 3 shows the results of the evaluation. Lower numbers are
better. The Pain, Miss Rate and Animal schemes performed rela-
tively well, but SDC surprisingly did only slightly better than ran-
dom. Pain performed the best, delivering only 1% worse perfor-
mance than the optimal classification scheme for all the systems.
Interestingly we see that all classification schemes except Pain and
Animal do worse as the number of cores in the system grows. In
systems with more cores the number of possible schedules grows,
and so imperfect classification schemes are less able to make a
lucky choice.

The Animal scheme did worse than Pain. Animal classes are
a rather rough estimation of relative co-run degradations (a lot of
programs will fall to the same class), and so the Animal scheme
simply cannot achieve the same precision as Pain which takes into
account absolute values. The Miss Rate scheme performs almost
as well as Pain and Animal scheme and yet is by far the easiest to
compute either online or offline.



SDC performed worse than Pain and Animal for the following
reasons. The first reason is that SDC does not take into account miss
rates in its stack distance competition model. So it only works well
in those scenarios where the co-running threads have roughly equal
miss rates (this observation is made by the authors themselves [5]).
When the miss rates of co-running threads are very different, the
thread with the higher miss rate will “win” more cache real estate —
this fact is not accounted for by the SDC model. Authors of SDC [5]
offer a more advanced (but at the same time computationally more
expensive) model for predicting extra miss rates which takes into
account different miss rates of co-running applications. We did not
consider this model in the current work, because we deemed it too
computationally expensive to use in an online scheduler.

The second reason has to do with the fact that SDC models the
performance effects of cache contention, but as the next section
shows, this is not the dominant cause for performance degradation
and so other factors must be considered as well. We were initially
surprised to find that SDC, a model extensively validated in the
past, failed to outperform even such a coarse classification heuris-
tic as the miss rate. In addition to SDC, many other studies of cache
contention used stack-distance or reuse-distance profiles for man-
aging contention [5, 17, 22, 24]. The theory behind stack-distance
based models seems to suggest that the miss rate should be a poor
heuristic for predicting contention, since applications with a high
cache miss rate may actually have a very poor reuse of their cached
data, and so they would be indifferent to contention. Our analysis,
however, showed the opposite: miss rate turned out to be an excel-
lent heuristic for contention.

We discovered that the reason for these seemingly unintuitive
results had to do with the causes of performance degradation on
multicore systems. SDC, and other solutions relying on stack dis-
tance profiles such as cache partitioning [17, 22, 26], assumed that
the dominant cause of performance degradation is contention for
the space in the shared cache, i.e., when co-scheduled threads evict
each other data from the shared cache. We found, however, that
cache contention is by far not the dominant cause of performance
degradation. Other factors, such as contention for memory con-
trollers, memory bus, and resources involved in prefetching, dom-
inate performance degradation for most applications. A high miss
rate exacerbates the contention for all of these resources, since a
high-miss-rate application will issue a large number of requests to
a memory controller and the memory bus, and will also be typically
characterized by a large number of prefetch requests.

In the next section we attempt to quantify the causes for per-
formance degradation resulting from multiple factors, showing that
contention for cache space is not dominant; these results provide
the explanation why a simple heuristic such as the miss rate turns
out to be such a good predictor for contention.

3. Factors Causing Performance Degradation

Recent work on the topic of performance degradation in multicore
systems focused on contention for cache space and the resulting
data evictions when applications share the LLC. However, it is
well known that cache contention is far from being the only factor
that contributes to performance degradation when threads share an
LLC. Sharing of other resources, such as the memory bus, mem-
ory controllers and prefetching hardware also plays an important
role. Through extensive analysis of data collected on real hardware
we have determined that contention for space in the shared cache
explains only a part of the performance degradation when appli-
cations share an LLC. In this section we attempt to quantify how
much performance degradation can be attributed to contention for
each shared resource.

Estimating the contribution that each factor has on the over-
all performance degradation is difficult, since all the degradation

factors work in conjunction with each other in complicated and
practically inseparable ways. Nevertheless, we desired a rough esti-
mate of the degree to which each factor affects overall performance
degradation to identify if any factor in particular should be the focus
of our attention since mitigating it will yield the greatest improve-
ments.

We now describe the process we used to estimate the contribu-
tions of each factor to the overall degradation. Our experimental
system is a two-sockets server with two Intel X5365 “Clovertown”
quad-core processors. The two sockets share the memory controller
hub, which includes the DRAM controller. On each socket there are
four cores sharing a front-side bus (FSB). There are two L2 caches
on each socket, one per pair of cores. Each pair of cores also shares
prefetching hardware, as described below. So when two threads run
on different sockets, they compete for the DRAM controller. When
they run on the same socket, but on different caches, they compete
for the FSB, in addition to the DRAM controller. Finally, when they
run on cores sharing the same cache, they also compete for the L2
cache and the prefetching hardware, in addition to the FSB and the
DRAM controller. To estimate how contention for each of these
resources contributes to the total degradation, we measured the ex-
ecution times of several benchmarks under the following eight con-
ditions:

Solo_PF_ON: Running SOLO and prefetching is ENABLED

Solo_PF_OFF: Running SOLO and prefetching is DISABLED

SameCache_PF_ON: Sharing the LLC with an interfering
benchmark and prefetching is ENABLED

SameCache_PF_OFF: Sharing the LLC with an interfering
benchmark and prefetching is DISABLED

DiffCache_PF_ON: An interfering benchmark runs on a
different LLC but on the same socket and prefetching is ENABLED

DiffCache_PF_OFF: An interfering benchmark runs on a
different LLC but on the same socket and prefetching is DIS-
ABLED

DiffSocket_PF_ON: An interfering benchmark runs on a
different socket and prefetching is ENABLED

DiffSocket_PF_OFF: An interfering benchmark runs on a
different socket and prefetching is DISABLED

As an interfering benchmark for this experiment we used MILC.
MILC was chosen for several reasons. First, it has a very high
solo miss rate which allows us to estimate one of the worst-case
contention scenarios. Second, MILC suffers a negligible increase in
its own miss rate due to cache contention (we determined this via
experiments and also by tracing MILC’s memory reuse patterns,
which showed that MILC hardly ever reuses its cached data) and
hence will not introduce extra misses of its own when co-run with
other applications. We refer to MILC as the interfering benchmark
and we refer to the test application simply as the application. In the
experiment where MILC is the test application, SPHINX is used as
the interfering benchmark.

Estimating Performance Degradation due to DRAM Con-
troller Contention We look at the difference between the solo run
and the run when the interfering benchmark is on a different socket.
When the interfering benchmark is on a different socket any perfor-
mance degradation it causes can only be due to DRAM controller
contention since no other resources are shared. Equation 4 shows
how we estimate the performance degradation due to DRAM con-
troller contention.

DRAM _contention =
DiffSocket_ PF_OFF — Solo.PF_OFF (C))
Solo_.PF_OFF




There are several complications with this approach, which make
it a rough estimate as opposed to an accurate measure of DRAM
controller contention. First, when the LLC is shared by two appli-
cations, extra evictions from cache cause the total number of misses
to go up. These extra misses contribute to the DRAM controller
contention. In our experimental technique the two applications are
in different LLCs and hence there are no extra misses. As a result,
we are underestimating the DRAM controller contention. Second,
we chose to disable prefetching for this experiment. If we enabled
prefetching and put two applications into different LLC then they
would each have access to a complete set of prefetching hardware.
This would have greatly increased the total number of requests is-
sued to the memory system from the prefetching hardware as com-
pared to the number of requests that can be issued from only one
LLC. By disabling the prefetching we are once again underestimat-
ing the DRAM controller contention. As such the values that we
measure should be considered a lower bound on DRAM controller
contention.

Estimating Performance Degradation due to FSB Contention
Next, we estimate the degree of performance degradation due to
contention for the FSB. To that end, we run the application and the
interfering benchmark on the same socket, but on different LLCs.
This is done with prefetching disabled, so as not to increase the bus
traffic. Equation 5 shows how we estimate the degradation due to
FSB contention.

FSB_Contention =
DiffCache_.PF_OFF — Dif fSocket_.PF_OFF (5)
Solo_.PF_OFF

Estimating Performance Degradation due to Cache Con-
tention To estimate the performance degradation due to cache
contention we take the execution time when an application is run
with an interfering co-runner in the same LLC and subtract from
it the execution time of the application running with the interfer-
ing benchmark in a different LLC of the same socket. This is done
with prefetching disabled so as not to increase bus traffic or contend
for prefetching hardware. The difference in the execution times be-
tween the two runs can be attributed to the extra misses that resulted
due to cache contention. Equation 6 demonstrates how we estimate
performance degradation due to cache contention.

Cache_Contention =
SameCache_PF_OFF — Dif fCache_.PF_OFF (6)
Solo_.PF_OFF

Estimating Performance Degradation due to Contention for
Resources Involved in Prefetching Contention for resources in-
volved in prefetching has received less attention in literature than
contention for other resources. We were compelled to investigate
this type of contention when we observed that some applications
experienced a decreased prefetching rate (up to 30%) when shar-
ing an LLC with a memory-intensive co-runner. Broadly speaking,
prefetching resources include all the hardware that might contribute
to the speed and quality of prefetching. For example, our exper-
imental processor has two types of hardware that prefetches into
the L2 cache. The first is the Data Prefetching Logic (DPL) which
is activated when an application has two consecutive misses in the
LLC and a stride pattern is detected. In this case, the rest of the
addresses up to the page boundary are prefetched. The second is
the adjacent cache line prefetcher, or the streaming prefetcher. The
L2 prefetching hardware is dynamically shared by the two cores
using the LLC. The memory controller and the FSB are also in-
volved in prefetching, since they determine how aggressively these
requests can be issued to memory. It is difficult to tease apart the
latencies attributable to contention for each resource, so our esti-
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Figure 4. Percent contribution that each of the factors have on the
total degradation.

mation of contention for prefetching resources includes contention
for prefetching hardware as well as additional contention for these
two other resources. This is an upper bound on the contention for
the prefetching hardware itself.

We can measure the performance degradation due to prefetching-
related resources as the difference between the total degradation
and the degradation caused by cache contention, FSB, and DRAM
controller contention. Equation 7 calculates the total degradation
of an application when the LLC is shared by looking at the dif-
ference when the interfering benchmark shares the LLC and when
the application runs alone. Equation 8 shows the calculation of the
prefetching degradation.

Total_Degradation =
SameCache_PF_ON — Solo_.PF_ON @)
Solo_.PF_ON

Prefetching_Contention =

Eq.(7) = Eq.(6) — Eq.(5) — Eq.(4)

Finally, we calculate the degradation contribution of each factor

as the ratio of its degradation compared to the total degradation.

Figure 4 shows the percent contribution of each factor (DRAM

controller contention, FSB contention, L2 cache contention, and

prefetching resource contention) to the total degradation for six
SPEC2006 benchmarks.

The six applications shown in Figure 4 are the applications that
experience a performance degradation of at least 45% chosen from
the ten representative benchmarks. We see from Figure 4 that for all
applications except SPHINX contention for resources other than
shared cache is the dominant factor in performance degradation,
accounting for more than 50% of the total degradation.

While cache contention does have an effect on performance
degradation, any strategy that caters to reducing cache contention
exclusively cannot and will not have a major impact on perfor-
mance. The fact that contention for resources other than cache is
dominant, explains why the miss rate turns out to be such a good
heuristic for predicting contention. The miss rate highly correlates
with the amount of DRAM controller, FSB, and prefetch requests,
and thus is indicative of both the sensitivity of an application as
well as its intensity.

(®)

4. Scheduling Algorithms

A scheduling algorithm is the combination of a classification
scheme and a scheduling policy. We considered and evaluated sev-
eral scheduling algorithms that combined different classification
schemes and policies, and in this section we present those that



showed the best performance and were also the simplest to imple-
ment. In particular, we evaluate two algorithms based on the Miss
Rate classification schemes, because the miss rate is very easy to
obtain online via hardware performance counters. The schedul-
ing policy we used was the Centralized Sort. It examines the list
of applications, sorted by their miss rates, and distributes them
across cores, such that the total miss rate of all threads sharing a
cache is equalized across all caches. For the evaluation results of
other heuristics and policies, we refer the reader to our technical
report [3].

While the Pain classification scheme gave the best performance,
we chose not to use it in an online algorithm, instead opting to
implement one using the miss rate heuristic. This was done to
make the scheduler simpler, thus making more likely that it will be
adopted in general-purpose operating systems. Using Pain would
require more changes to the operating system than using the miss
rate for the following reason. Pain requires stack distance profiles.
Obtaining a stack distance profile online requires periodic sampling
of data addresses associated with last-level cache accesses using ad-
vanced capabilities of hardware performance monitoring counters,
as in RapidMRC [24]. Although RapidMRC can generate accurate
stack-distance profiles online with low overhead, there is certain
complexity associated with its implementation. If a scheduler uses
the miss rate heuristic, all it has to do is periodically measure the
miss rates of the running threads, which is simpler than collect-
ing stack-distance profiles. Given that the miss rate heuristic had a
much lower implementation complexity but almost the same per-
formance as Pain, we thought it would be the preferred choice in
future OS schedulers.

In the rest of this section we describe two algorithms based
on the Miss Rate classification scheme: Distributed Intensity (DI)
and Distributed Intensity Online (DIO). DIO does not rely on
stack-distance profiles, but on the miss rates measured online. DI
estimates the miss rate based on the stack-distance profiles; it was
evaluated in order to determine if any accuracy is lost when the
miss rates are measured online as opposed to estimated from the
profiles.

4.1 Distributed Intensity (DI)

In the Distributed Intensity (DI) algorithm all threads are assigned
a value which is their solo miss rate (misses per one million in-
structions) as determined from the stack distance profile. The goal
is then to distribute the threads across caches such that the miss
rates are distributed as evenly as possible. The idea is that the per-
formance degradation factors identified in Section 3 are all exacer-
bated by a high miss rate and so we avoid the situation where any
cache has a much higher cumulative miss rate than any other cache
such that performance bottlenecks are not created in that cache.

To further justify the validity of this method we performed a
study on all possible 4-thread workloads that can be constructed
from the 10 representative SPEC2006 benchmarks. We computed
the percent difference between average co-run degradations for
each workload achieved with the optimal solution relative to the
worst solution (we refer to this value as the speedup). The highest
average speedup relative to the worst schedule was 25%, and the
lowest was less than 1%. We broke up the workloads based on the
speedup range into which they fit: (25%-15%), (15%-10%), (10%-
5%), and (5%-0%), and studied which types of applications are
present in each range. For simplicity we define two categories of
applications: intensive (above average miss rate), and non-intensive
(below average miss rate).

We note that according to the ideas of DI, workloads consisting
of two intensive and two non-intensive applications should achieve
the highest speedups. This is because in the worst case these work-
loads can be scheduled in such a way as to put both intensive appli-

cations in the same cache, creating a cache with a large miss rate,
and a performance bottleneck. Alternatively, in the best case these
workloads can be scheduled to spread the two intensive applica-
tions across caches thus minimizing the miss rate from each cache
and avoiding bottlenecks. The difference in performance between
these two cases (the one with a bottleneck and the one without)
should account for the significant speedup of the workload. We fur-
ther note that workloads consisting of more than two or fewer than
two intensive applications can also benefit from distribution of miss
rates but the speedup will be smaller, since the various scheduling
solutions do not offer such a stark contrast between creating a ma-
jor bottleneck and almost entirely eliminating it.

Figure 5 shows the makeup of workloads (intensive vs. non-
intensive) applications and the range of speedups they offer. The
(unlabeled) x-axis identifies all the workloads falling into the given
speedup range. We see that the distribution of applications validates
the claims of DI. The other claim that we make to justify why DI
should work is that miss rates of applications are relatively stable.
What we mean by stability is that when an application shares the
LLC with a co-runner its miss rate will not increase so dramatically
as to make the solution found by DI invalid.

DI assigns threads to caches to even out the miss rate across
all the caches. This assignment is done based on the solo miss rates
of applications. The real miss rate of applications will change when
they share a cache with a co-runner, but we claim that these changes
will be relatively small such that the miss rates are still rather even
across caches. Consider Figure 6 which shows the solo miss rates
of the 10 SPEC2006 benchmarks as well as the largest miss rate
observed for each application as it was co-scheduled to share a
cache with all other applications in the set.

We see that if the applications were sorted based on their miss
rates their order would be nearly identical if we used solo miss
rates, maximum miss rates, or anything in between. Only the ap-
plications MILC and SOPLEX may exchange positions with each
other or GCC and SPHINX may exchange positions depending on
the miss rate used. The DI algorithm makes scheduling decisions
based on the sorted order of applications. If the order of the sorted
applications remains nearly unchanged as the miss rates changes
then the solutions found by DI would also be very similar. Hence
the solution found by DI with solo miss rates should also be very
good if the miss rates change slightly. Through an extensive search
of all the SPEC2006 benchmark suite and the PARSEC benchmark
suite we have not found any applications whose miss rate change
due to LLC contention would violate the claim made above.

The DI scheduler is implemented as a user level scheduler
running on top of Linux. It enforces all scheduling decisions via
system calls which allow it to bind threads to cores. The scheduler
also has access to files containing the solo miss rates. For all the
applications it uses solo miss rate estimated using stack distance
profiles as the input to the classification scheme.

4.2 Distributed Intensity Online (DIO)

DIO is based on the same classification scheme and scheduling
policies as DI except that it obtains the miss rates of applications
dynamically online via performance counters. This makes DIO
more attractive since the stack distance profiles, which require extra
work to obtain online, are not required. The miss rate of applica-
tions can be obtained dynamically online on almost any machine
with minimal effort. Furthermore, the dynamic nature of the ob-
tained miss rates makes DIO more resilient to applications that have
a change in the miss rate due to LLC contention. DIO continuously
monitors the miss rates of applications and thus accounts for phase
changes. To minimize migrations due to phase changes of applica-
tions we collect miss rate data not more frequently than once every
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Figure 6. The solo and maximum miss rate recorded for each of
the 10 SPEC2006 benchmarks.

billion cycles and we use a running average for scheduling deci-
sions.

The DIO scheduler, like DI, manages the assignment of threads
to cores using affinity interfaces provided in Linux. As such, it mir-
rors the actions that would be performed by a kernel scheduler. The
key difference is that the kernel scheduler would directly manipu-
late the runqueues in order to place a thread on a particular core,
but a user-level prototype of the scheduler uses affinity-related sys-
tem calls for that purpose. For example, to swap thread A on core
1 with thread B on core j we set affinity of A to j and affinity B
to <. Linux does the actual swapping. In the future, when DIO will
become part of the kernel swapping will be done by manipulating
the run-queues.

5. Evaluation on Real Systems
5.1 Evaluation Platform

We performed the experiments on two systems:

Dell-Poweredge-2950 (Intel Xeon X5365) has eight cores
placed on four chips. Each chip has a 4MB 16-way L2 cache shared
by its two cores. Each core also has private L1 instruction and data
caches. In our first series of experiments we used only two chips
out of four. This enabled us to verify our analytical results for the
4 thread workloads directly. After that, all eight cores with eight-
thread workloads were used.

Dell-Poweredge-R805 (AMD Opteron 2350 Barcelona) has
eight cores placed on two chips. Each chip has a 2MB 32-way L3
cache shared by its four cores. Each core also has a private unified
L2 cache and private L1 instruction and data caches. All eight cores
with eight thread workloads were used.

The experimental workloads were comprised of the 14 bench-
marks from SPEC CPU 2006 suite chosen using the clustering
technique as described in Section 2. See Table 2. For the eight-
core experiments we created eight-thread workloads by doubling
the corresponding four-thread workloads. For example, for the
four-thread workload (SOPLEX, SPHINX, GAMESS, NAMD)
the corresponding eight-thread workload is (SOPLEX, SPHINX,
GAMESS, NAMD, SOPLEX, SPHINX, GAMESS, NAMD). The
user-level scheduler starts the applications and binds them to cores
as directed by the scheduling algorithm.

Since we are focused on CPU-bound workloads, which are not
likely to run with more threads than cores [1, 25], we only evaluate
the scenarios where the number of threads does not exceed the
number of cores. If the opposite were the case, the scheduler would
simply re-evaluate the mapping of threads to cores every time the
set of running threads changes. The decision of which thread is
selected to run would be made in the same way as it is done by the
default scheduler. While in this case there are also opportunities to
separate competing threads in time as opposed to in space, we do
not investigate these strategies in this work.

Both systems were running Linux Gentoo 2.6.27 release 8. We
compare performance under DI and DIO to the default contention-
unaware scheduler in Linux, referring to the latter as DEFAULT.
The prefetching hardware is fully enabled during these experi-
ments. To account for the varied execution times of benchmark we
restart an application as soon as it terminates (to ensure that the
same workload is running at all times). An experiment terminates
when the longest application executed three times.

Workloads

2 memory-bound 2 CPU-bound
1 | SOPLEX | SPHINX GAMESS | NAMD
2 | SOPLEX | MCF GAMESS | GOBMK
3 | MCF LIBQUANTUM | POVRAY | GAMESS
4 | MCF OMNETPP H264 NAMD
5 | MILC LIBQUANTUM | POVRAY | PERL

1 memory-bound 3 CPU-bound
6 | SPHINX [ GCC NAMD [ GAMESS

3 memory-bound 1 CPU-bound
7 | LBM MILC SPHINX | GOBMK
8 | LBM MILC MCF NAMD

Table 2. The workloads used for experiments.

5.2 Results

Intel Xeon 4 cores We begin with the results for the four-thread
workloads on the four-core configuration of the Intel Xeon ma-



chine. For every workload we first run the three possible unique
schedules and measure the aggregate workload completion time of
each. We then determine the schedule with the optimal (minimal)
completion time, the worst possible schedule (maximum comple-
tion time) and the expected completion time of the random schedul-
ing algorithm (it selects all schedules with equal probability). We
then compared the aggregate execution times of DI and DIO with
the completion times of OPTIMAL, WORST and RANDOM. We
do not present results for the default Linux scheduler because when
the scheduler is given a processor affinity mask to use only four
cores out of eight, the migrations of threads across cores become
more frequent than when no mask is used, leading to results with
an atypically high variance. Figure 7 shows the performance degra-
dation above the optimal for every workload with DI, DIO, RAN-
DOM and WORST. The results show that DI and DIO perform
better than RANDOM and are within 2% of OPTIMAL.
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Figure 7. Aggregate performance degradation of each workload
with DI, DIO, RANDOM and WORST relative to OPTIMAL (low
bars are good) for the Intel machine and 4 threads.

Intel Xeon 8 cores Since this setup does not require a proces-
sor affinity mask, we evaluated the results of DI and DIO against
DEFAULT as in this case DEFAULT does not experience exces-
sive migrations. Figure 8 shows the percent aggregate workload
speedup over DEFAULT.
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Figure 8. Aggregate performance improvement of each workload
with DI and DIO relative to DEFAULT (high bars are good) for
Intel 8 threads.

We note that although generally DI and DIO improve aggre-
gate performance over DEFAULT, in a few cases they performed
slightly worse. However, the biggest advantage of DI and DIO is
that they offer much more stable results from run to run and avoid
the worst-case thread assignment. This effect is especially signif-
icant if we look at performance of individual applications. Fig-

ure 10(a) shows relative performance improvement for individual
applications of the worst-case assignments of DI and DIO over the
worst case assignments under DEFAULT. The results show that
DEFAULT consistently stumbles on much worse solutions than
DIO or DIO and as such there are cases when the performance
of individual applications is unpredictably bad under DEFAULT.
What this means is that if an application were repeatedly executed
on a multicore system, running it under DEFAULT vs., for instance,
DIO may occasionally cause its performance to degrade by as much
as 100% in some cases! Figure 10(b) shows the deviation of the
execution time of consecutive runs of the same application in the
same workload with DI, DIO and DEFAULT. We note that DE-
FAULT has a much higher deviation from run to run than DI and
DIO. DIO has a slightly higher deviation than DI as it is sensitive
to phase changes of applications and as a result tends to migrate
applications more frequently.

AMD Opteron 8 cores Finally, we report the results for the
same eight-thread workloads on the AMD system. The results
for the percent aggregate workload speedup over DEFAULT (Fig-
ure 9), relative performance improvement of the worst case assign-
ments over DEFAULT (Figure 10(c)) and the deviation of the exe-
cution times (Figure 10(d)) generally repeat the patterns observed
on the Intel Xeon machine with eight threads.
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Figure 9. Aggregate performance improvement of each workload
with DI and DIO relative to DEFAULT (high bars are good) for
AMD 8 threads.

5.3 Discussion

‘We draw several conclusions from our results. First of all, the clas-
sification scheme based on miss rates effectively enables to re-
duce contention for shared resources using a purely scheduling
approach. Furthermore, an algorithm based on this classification
scheme can be effectively implemented online as demonstrated by
our DIO prototype. Using contention-aware scheduling can help
improve overall system efficiency by reducing completion time for
the entire workload as well as reduce worst-case performance for
individual applications. In the former case, DIO improves perfor-
mance by up to 13% relative to DEFAULT and in the isolated cases
where it does worse than DEFAULT, the impact on performance is
at most 4%, far smaller than the corresponding benefit. On aver-
age, if we examine performance across all the workloads we have
tried DEFAULT does rather well in terms of workload-wide per-
formance — in the worst case it does only 13% worse than DIO.
But if we consider the variance of completion times and the effect
on individual applications, the picture changes significantly. DE-
FAULT achieves a much higher variance and it is likely to stumble
into much worse worst-case performance for individual applica-
tions. This means that when the goal is to deliver QoS, achieve
performance isolation or simply prioritize individual applications,



200 -

g 150 - W DI
o
o
£5 100 - mDIO
g3
gll-
28 504
o
E
x 0 +
-50 -
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(c) The relative performance improvement of the worst case DI and DIO over the worst case DEFAULT for AMD 8 threads.
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(d) Deviation of the same application in the same workload with DI, DIO and Default (low bars are good) for AMD 8 threads.

Figure 10. The relative performance improvement and deviation

contention-aware scheduling can achieve much larger performance To understand why DEFAULT performs relatively well on aver-
impacts, speeding up individual applications by as much as a factor age let us discuss several examples. Consider a four core machine
of two. where each pair of cores shares a cache. If the workload to be exe-

cuted on this machine involves two intensive applications and two



non-intensive applications and if the threads are mapped randomly
to cores (which is a good approximation for DEFAULT) then there
is only a 1/3 probability of stumbling onto the worst solution where
the intensive applications share the same cache. If there are three
intensive applications in the workload and only one non-intensive
application then all mappings are relatively equivalent on average
since two of the intensive applications will experience performance
degradation and one will not (the one paired with a non-intensive
one). Similarly, workloads with no intensive applications, one in-
tensive applications, and all intensive applications show no real dif-
ference between solutions. As such DEFAULT is able to perform
well on average. Therefore, we believe that future research must fo-
cus on the performance of individual threads which can vary greatly
under the DEFAULT scheduler as opposed to trying to improve av-
erage performance.

6. Related Work

In the work on Utility Cache Partitioning [17], a custom hardware
solution estimates each application’s number of hits and misses
for all possible number of ways allocated to the application in the
cache (the technique is based on stack-distance profiles). The cache
is then partitioned so as to minimize the number of cache misses
for the co-running applications. UCP minimizes cache contention
given a particular set of co-runners. Our solution, on the other
hand, decides which co-runners to co-schedule so as to minimize
contention. As such, our solution can be complementary to UCP
and other solutions relying on cache partitioning [22].

Tam, Azimi, Soares and Stumm [24] similarly to several other
researchers [6, 14, 15, 27] address cache contention via software-
based cache partitioning. The cache is partitioned among appli-
cations using page coloring. Each application is reserved a por-
tion of the cache, and the physical memory is allocated such that
the application’s cache lines map only into that reserved portion.
The size of the allocated cache portion is determined based on
the marginal utility of allocating additional cache lines for that ap-
plication. Marginal utility is estimated via an application’s reuse
distance profile, which is very similar to a stack-distance profile
and is approximated online using hardware counters [24]. Software
cache partitioning, like hardware cache partitioning, is used to iso-
late workloads that hurt each other. While this solution delivers
promising results, it has two important limitations: first of all, it
requires non-trivial changes to the virtual memory system, a very
complicated component of the OS. Second, it may require copy-
ing of physical memory if the application’s cache portion must be
reduced or reallocated. Finally, it does not address contention for
resources other than shared cache, which, as we have shown, are
the dominant cause of performance degradation. Given these limi-
tations, it is desirable to explore options like scheduling, which are
not subject to these drawbacks.

Herdrich et al. suggested rate-based QoS techniques, which in-
volved throttling the speed of the core in order to limit the effects
of memory-intensive applications on its co-runners [9]. Rate-based
QoS can be used in conjunction with scheduling to provide isola-
tion from contention for high-priority applications.

Several prior studies investigated the design of cache-aware
scheduling algorithms. Symbiotic Jobscheduling [21] is a method
for co-scheduling threads on simultaneous multithreading proces-
sors (SMT) in a way that minimizes resource contention. This
method could be adapted to co-schedule threads on single-threaded
cores sharing caches. This method works by trying (or sampling) a
large number of thread assignments and picking the ones with the
best observed rate of instructions per cycle.

The drawback of this solution is that it requires a sampling
phase during which the workload is not scheduled optimally. When

the number of threads and cores is large, the number of samples
that must be taken will be large as well.

Fedorova et. al designed a cache-aware scheduler that compen-
sates threads that were hurt by cache contention by giving them
extra CPU time [8]. This algorithm accomplishes the effect of fair
cache sharing, but it was not designed to improve overall perfor-
mance.

The idea of distributing benchmarks with high miss rates across
the caches was also suggested in [7, 12]. The authors propose
to reduce cache interference by spreading the intensive applica-
tions apart and co-scheduling them with non-intensive applications.
Cache misses per cycle were used as the metric for intensity. Our
idea of DI is similar, however we provide a more rigorous analysis
of this idea and the reasons for its effectiveness and also demon-
strate that DI operates within a narrow margin of the optimal. The
other paper did not provide the same analysis, so it was difficult to
judge the quality of their algorithm comprehensively. Furthermore,
our work is broader in a sense that we propose and analyze several
new algorithms and classification schemes.

7. Conclusions and Future Work

In this work we identified factors other than cache space con-
tention which cause performance degradation in multicore systems
when threads share the same LLC. We estimated that other fac-
tors like memory controller contention, memory bus contention and
prefetching hardware contention contribute more to overall perfor-
mance degradation than cache space contention. We predicted that
in order to alleviate these factors it was necessary to minimize the
total number of misses issued from each cache. To that end we de-
veloped scheduling algorithms DI and DIO that distribute threads
such that the miss rate is evenly distributed among the caches.

The Miss Rate heuristic, which underlies the DI and DIO al-
gorithms was evaluated against the best known strategies for al-
leviating performance degradation due to cache sharing, such as
SDC, and it was found to perform near the theoretical optimum.
DIO is a user level implementation of the algorithm relying on the
Miss Rate heuristic that gathers all the needed information online
from performance counters. DIO is simple, can work both at the
user and kernel level, and it requires no modifications to hardware
or the non-scheduler parts of the operating system. DIO has been
shown to perform within 2% of the oracle optimal solution on two
different machines. It performs better than the default Linux sched-
uler both in terms of average performance (for the vast majority of
workloads) as well as in terms of execution time stability from run
to run for individual applications.

In the future we hope to make DIO more scalable by imple-
menting a purely distributed version of this algorithm, which does
not rely on centralized sort. We also hope to embed DIO directly
into the kernel. Another major focus of our research is exploring
other factors that affect performance degradation both negatively
and positively (e.g. inter-thread data sharing) and ways to exploit
these factors in scheduling solutions.

As mentioned in the discussion section, one of the clear advan-
tages of a contention aware scheduler over default is that it offers
stable execution times from run to run, which can ensure better
QoS for applications. We are working on ways to expand the DI
contention aware scheduler to allow the user to set priorities for
certain applications which would then be given a better contention
isolation than other non-prioritized applications.
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