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Abstract one at a time, with no interleaving between their steps. By allowing
programmers to expresgatshould be executed atomically, rather
than requiring them to specifyowto achieve such atomicity using
locks or other explicit synchronization constructs, TM significantly
_reduces the difficulty of writing correct concurrent programs. A
good TM implementation avoids synchronization between concur-
rently executed transactional sections unless they actually conflict,
whereas the more traditional use of locks defensively serializes sec-
tions thatmay conflict, even if they rarely or never do. Thus, TM

it can significantly improve the performance and scalability of con-
current programs, as well as making them easier to write, under-
stand, and maintain.

Despite significant progress in recent years towards practical
and efficient software transactional memory (STM) [1, 5, 8, 9, 10,
29], there is a growing consensus that at least some hardware sup-
port for TM is desirable. Herlihy and Moss [11] introducledrd-
ware transactional memorfHTM) and showed that bounded-size
atomic transactions that are short enough to be completed with-
out context switching could be supported using simple additions
to the cache mechanisms of existing processors. Although studies
(e.g., [3, 7, 23]) suggest that a modest amount of on-chip ressu
should be sufficient for all but a tiny fraction of transactions, re-
quiring programmers to be aware of and to avoid the architecture-
specific limitations of HTM largely eliminates the software engi-
neering benefits promised by TM. This is a key reason why HTM
has not been widely adopted by commercial processor designers.

Transactional memory (TM) promises to substantially reduce the
difficulty of writing correct, efficient, and scalable concurrent pro-
grams. But “bounded” and “best-effort” hardware TM proposals
impose unreasonable constraints on programmers, while more flex
ible software TM implementations are considered too slow. Pro-
posals for supporting “unbounded” transactions in hardware entail
significantly higher complexity and risk than best-effort designs.

We introduceHybrid Transactional MemoryHyTM), an ap-
proach to implementing TM in software so that it can use best-effo
hardware TM (HTM) to boost performance but doesadependon
HTM. Thus programmers can develop and test transactional pro-
grams in existing systems today, and can enjoy the performance
benefits of HTM support when it becomes available.

We describe our prototype HyTM system, comprising a com-
piler and a library. The compiler allows a transaction to be at-
tempted using best-effort HTM, and retried using the software li-
brary if it fails. We have used our prototype to “transactify” part
of the Berkeley DB system, as well as several benchmarks. By dis-
abling the optional use of HTM, we can run all of these tests on
existing systems. Furthermore, by using a simulated multiproces-
sor with HTM support, we demonstrate the viability of the HyTM
approach: it can provide performance and scalability approaching
that of an unbounded HTM implementation, without the need to
support all transactions with complicated HTM support.

Cat(_ago_ries and Subject Des_,criptorsc.l [Computer Systems Or- Recent proposals for “unbounded” HTM [3, 7, 22, 23, 27] aim
ganizatior}: Processor Architectures; D.1.B¢ftwarg: Concur- to overcome the disadvantages of simple bounded HTM designs
rent programming by allowing transactions to commit even if they exceed on-chip re-

sources and/or run for longer than a thread’s scheduling quantum.

General Terms Algorithms, Design ; - : .
9 ' 9 However, such proposals entail sufficient complexity and risk that

Keywords Transactional memory we believe they are unlikely to be adopted in mainstream commer-
cial processors in the near future.
1. Introduction We introduceHybrid Transactional MemorgHyTM), a new ap-

proach to supporting TM so that it works in existing systems, but
can boost performance and scalability using future hardware sup-
port. The HyTM approach exploits HTM suppdfit is availableto
achieve hardware performance for transactions that do not exceed
the HTM's limitations, and transparently (except for performance)
executes transactions that do in software. Because any transaction
can be executed in software using this approach, the HTM need not
be able to execute every transaction, regardless of its size and du-
ration, nor support all functionality. HyTM thus allows hardware
Copyright is held by Sun Microsystems, Inc. designers to buildest-effortHTM, rather than having to take on
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Transactional memory (TM) [11, 29] supports code sections that
are executechtomically, i.e., so that they appear to be executed



To demonstrate the feasibility of the HyTM approach, we built cache geometry. In addition, it is convenient in many cases to avoid
a prototype compiler and STM library. The compiler produces code complexity by simply failing the current transaction in response to
for executing transactions using HTM, or using the library; which an event such as a page fault, context switch, etc.
approach to use for trying and retrying a transaction is under soft-  Because suchest-effortmechanisms do not guarantee to han-
ware control. A key challenge in designing HyTM is ensuring that dle every transaction, regardless of its size and duration, they must
conflicts between transactions run using HTM and those that usebe used in a way that works even if some transactions fail determin-
the software library are detected and resolved properly. Our proto- istically. Some proposals [18, 26] address this by falling back to the
type achieves this by augmenting hardware transactions with codestandard synchronization in the original program, so it is merely
to look up structures maintained by software transactions. Somea performance issue. Our work brings the same convenience to
recent proposals for unbounded HTM maintain similar structures transactional programs: hardware designers can provide besgt-eff
in hardware for transactions that exceed on-chip resources, addingHTM, but programmers need not be aware of its limitations.
significant hardware machinery to achieve the same goal. In con-
trast, our HyTM prototype makes minimal assumptions aboutHTM 22  Unbounded STM
support, allowing processor designers maximal freedom to design

best-effort HTM within their constraints. .
; _Large TM (LTM) and Unbounded TM (UTM). LTM extends sim-
The HyTM approach we propose enables the programming rev ple cache-based HTM designs by providing additional hardware

olution that TM has been promising to begin, even beéorgHTM * for allowing t tional inf tion to be f e
support is available, and to progressively improve the performance support for aflowing transactional information to be overiowe

of transactional programs as incremental improvements to best-"Mt© mem?ry. While IBT'\Q eficatpﬁ_f_l\;hg limitations ofloln-c;ip re-
effort HTM support become available. In this way, we can develop sfourcis 0 pre;nous I'es't-ed %r the i esmf;nsh(e:g.,l[ ), mans q
experience and evidence to motivate processor designers to includd!onS It supports are limited by the size of physical memory, an
HTM support in their plans and to guide HTM improvements. With more importantly, cannot survive context switches. UTM supports

the HyTM approach, processor designers are free to exploit use-fransactions that can survive context switches, and whose size is
ful and clever ideas emerging in recent proposals for unbounded 'Imited only by the amount of virtual memory available. However,

HTM without having to shoulder the responsibility of supporting Y TM requires additional hardware support that seems too compli-

all transactions in hardware. Furthermore, they do not need to fore-cr‘;jltecj to fbe considered for inclusion in commercial processors in
. : ‘ iy the near future.

see and support all functionality that that may be required in the : .

future: additional functionality can be supported in software if its . Reiwar et al. [27] have recently proposed Virtualized T™M

expected use does not justify complicating hardware designs for (VTM), which is similar to UTM in that it can store transactional
it. We believe it would be a mistake to forgo the advantages of state information in the executing thread’s virtual address space,

TM, as well as other important uses for best-effort HTM (see Sec- and thus support unbounded transactions that can survive context
tion 5), until an unbounded design can be found that supports all SWitches. Rajwar et al. make an analogy to virtual memory, rec-

needed functionality and is sufficiently robust to be included in new ©91izing that the hopefully rare transactions that need to be over-
commercial processors. We therefore hope our work will enceurag flowed into data structures in memory can be handled at least in part

hardware designers to begin the journey towards effective support!" Software, Wr:jiCh canhr%duceorhe added comy:l)\llexitygolr hard(;"’are
for high-performance transactional programming, rather than delayto maintain and search these data structures. Nonetheless, designs

until they can commit to a full unbounded solution. {Ja?ed (:n the k:/Tl\]/cltvipproach reilqwr(? maﬁhlrll(.ery ;0 suppﬂqri an {E
In Section 2, we briefly discuss some relevant related work. '©f1ace to such soitware, as well as for checking for contlicts wi

: ; flowed transactions, and are thus still considerably more com-
In Section 3, we describe the HyTM approach and our prototype. over ; ! .
Section 4 reports our experience using our prototype to “transac- Plicated than simple cache-based best-effort HTM designs. The
tify” part of the Berkeley DB system [25] and some benchmarks way VTM ensures that transactions interact correctly with other

We present preliminary performance experiments in which we use transactions that exceed on-chip resources is very similar to the
an existing multiprocessor to evaluate our prototype in “software- way HyTM ensures that transactions executgd by best-effort HTM
only” mode, and a simulated multiprocessor to evaluate its ability interact correctly with transactions executed in software. However,

to exploit HTM if it is available. We conclude in Section 5. HyTM does not ”?ed. any spec_lal hardware support for this purpose
and thus allows significantly simpler HTM support.
Moore et al. [23] have proposed Thread-level TM (TTM). They
2. Related work propose an interface for supporting TM, and suggest that the re-
We briefly discuss some relevant related research below; an exhausguired functionality can be implemented in a variety of ways, in-
tive survey is beyond the scope of this paper. cluding by software, hardware, or a judicious combination of the
two. They too make the analogy with virtual memory. They de-

21 Bounded and best-effort HTM scribe some novel ways of detecting conflicts based on modifica-
The first HTM proposal, due to Herlihy and Moss [11], uses a sim- tions to either broadcast-based or directory-based cache coherence
ple, fixed-size, fully-associative transactional cache and exploits schemes. More recently, Moore et al. [22] have proposed LogTM,
existing cache coherence protocols to enforce atomicity of transac-which stores tentative new values “in place”, while maintaining logs
tions up to the size of the transactional cache. Larger transactionsto facilitate undoing changes made by a transaction in case it aborts.
and transactions that are interrupted by context switches fail. Like the other proposals mentioned above, these approaches to sup-

HTM can also be supported by augmenting existing caches, al- porting unbounded transactions require additional hardware sup-
lowing locations that are read transactionally to be monitored for port that is significantly more complicated than simple cache-based
modifications, and delaying transactional stores until the transac- best-effort HTM designs. Furthermore, as presented, LogTM does
tion is complete [32]. Related techniques have been proposed fornot allow transactions to survive context switches; modifying it to
ensuring atomicity of critical sections without acquiring their locks do so would entail further complexity.
[26], and for speculating past other synchronization constructs [18] Hammond et al. [7] recently proposed Transactional Coherence
In these approaches, a transaction can succeed only if it fits inand Consistency (TCC) for supporting a form of unbounded HTM.
cache. This limitation means that a transaction’s ability to commit TCC is a more radical approach than those described above, as it
depends not only on its size, but also on its layout with respect to fundamentally changes how memory consistency is defined and

Ananian et al. [3] describe two HTM designs, which they call



implemented, and is thus even less likely to be adopted in the  The HyTM approach is to provide an STM implementation that
commercial processors of the near future. does not depend on hardware support beyond what is widely avail-

All of the proposals discussed above acknowledge various sys- able today, and also to provide the ability to execute transactions
tem issues that remain to be resolved. While these issues may nousing whatever HTM support is availabie such a way that the
be intractable, they certainly require careful attention and their so- two types of transactions can coexist correctly. This approach al-
lutions will only increase the complexity and therefore the risk of lows us to develop and test programs using systems today, and then
supporting unbounded transactions in hardware. exploit successively better best-effort HTM implementations to im-

. . prove performance in the future.

2.3 Hybrid transactional memory The key idea to achieving correct interaction between software
Kumar et al. [12] recently proposed using HTM to optimize the transactions (i.e., those executed using the STM library) and hard-
Dynamic Software Transactional Memory (DSTM) of Herlihy et ware transactions (i.e., those executed using HTM support) is to
al. [10], and described a specific HTM design to support it. Like augment hardware transactions with additional code that ensures
us, they recognize that it is not necessary to support unboundedthat the transaction does not commit if it conflicts with an ongo-
HTM to get the benefits of HTM in the common case. Their mo- ing software transaction. If a conflict with a software transaction is
tivation is similar to ours, but our work differs in a number of detected, the hardware transaction is aborted, and may be retried,
ways. First, our prototype implements a low-leweird-basedlM either in software or in hardware.
that can be used in the implementation of system software such
as Java”Virtual Machines, while they aim to optimize an object- 3.1 Overview of our HyTM prototype

based DSTM which requires an existing object infrastructure that o, prototype implementation consists of a compiler and a library:

is supported by such system software. Our approach therefore hagpe compiler produces two code paths for each transaction, one that
the potential to benefit a much wider range of applications. Fur- 4itempts the transaction using HTM, and another that attempts the
thermore, the approach of Kumar et al. [12] depends on severalyyansaction in software by invoking calls to the library.

specific properties of the HTM. For example, it crucially depends The compiler for our prototype is a modified version of the
on support for nontransactional loads and stores within a transac-g, M sydip C/C++ compiler. We chose this compiler because we
tion. These requirements constrain and complicate HTM designs 4¢ nterested in using transactional memory in future implemen-
that can support their approach. Unlike our HyTM prototype, their tations of system software such as operating systems™atia
approactrequiresnew hardware support, and therefore cannot be o' machines, garbage collectors, etc. Our proof-of-concept com
applied in today’s systems. Finally, even given HTM support built piler work has been done in the back end of the compiler. As
to their specification, their system cannot commit a long-running 5 ‘reqit it does not support special syntax for transactions. In-
transaction because their HTM provides no support for preserving e - nrogrammers delimit transactional sections using calls to

trarfac“ml‘s. acéosls Cor;]teXt S‘é"(')tcgels' mole soft rechni specialHYTM_SECTION_BEGIN andHYTM_SECTION_END functions.
s explained elsewhere [20, 21], simple software techniques 1o ¢ompiler intercepts these apparent function calls and translates

c?n overﬁor?e a|” of lthes% dt:sad\éagta_trgﬁs, deliverik?%the _s;rgehbenfhe code between them to allow it to be executed transactionally,
efits as the low-level word-based HyTM approach described here g aither HTM or STM.

to object-based systems such as DSTM [10]. Lie [15] investigated
a similar object-based approach using best-effort HTM as an alter-
native to using UTM, and concluded from his performance studies
that UTM is preferable because it is “not overly complicated”. But
we believe that UTMs too complicated to be included in the com-
mercial multiprocessor designs of the near future, and that Lie’s re-
sults lend weight to our argument that we can use best-effort HTM
to provide better performance and scalability than software-only
approaches allow, without committing to a full unbounded HTM
implementation.

We assume the following HTM interfacdeA transaction is
started by thexn_begin instruction, and ended using then_end
instruction. Thetxn_begin instruction specifies an address to
branch to in case the transaction aborts. If the transaction executes
to thetxn_end instruction without aborting, then it appears to have
executed atomically, and execution continues pasttleend in-
struction; otherwise, the transaction has no effect, and execution
continues at the address specified by the precettiagbegin in-
struction. We also assume there isxm_abort instruction, which
explicitly causes the transaction to abort.

2.4 Additional HTM functionality Because we expect that most transactions will be able to com-
plete in hardware, and of course that transactions committed in
hardware will be considerably faster than software transactions,
our prototype first attempts each transaction in hardware. If that
fails, then it calls a method in our HyTM library that decides be-
tween retrying in hardware or in software. This method can also
implement contention control policies, such as backing off before
retrying. In some cases, it may make sense to retry the transaction
. . in hardware, perhaps after a short delay to reduce contention and
3. Hybrid transactional memory improve the chances of committing in hardware; such delays may
Transactional memory is a programming interface that allows sec- be effected by simple backoff techniques [2], or by more sophis-
tions of code to be designatedteansactional A transaction either ticated contention control techniques [10, 28]. A transaction that
commits in which case it appears to be executed atomically at a fails repeatedly should be attempted in software, where hardware
commit pointor aborts in which case it has no effect on the shared limitations become irrelevant, and more flexible contention control
state. A transactional section is attempted using a transaction and ifis possible. Of course, all this should be transparent to the pro-
the transaction attempt aborts, it is retried until it commits. grammer, who need only designate transactional sections, leaving

The HyTM prototype described in this paper providesard- the HyTM system to determine whether/when to try the transaction
basedinterface, rather thanbject-basecbne: it does not rely on  in hardware, and when to revert to trying in software.
an underlying object infrastructure or on type safety for pointers.
Thus, it is suitable for use in languages such as C or C++, where 1 The particular interface is not important; we assume this oneslsnéor
pointers can be manipulated directly. concreteness.

Several groups have recently proposed additional HTM function-
ality, such as various forms of nesting [4, 24], event handlers and
other “escape mechanisms” [19], etc. This work is mostly orthog-
onal to our own, though as we discuss in Section 5, the HyTM ap-
proach gives designers the flexibility to choose not to support such
functionality in hardware, or to support it only to a limited degree.




TRANS

An orec is a 64-bit word withidid, ver, mode andrdcnt fields.

tdid: 0 tdid: 1 To avoid interference, orecs and transaction headers are modified
ver/status: 2ACTIVE ver/status: 3%J0MMITTED using a 64-bit compare-and-swap instruction. Edéd andver
ReadSet ReadSet fields indicate the transac_tion that most recently acquired the orec
orecldx orecSnapshot orecldx orecSnapshot in WRITE mode. Theanode field may beUNOWNED, READ, or WRITE,
indicating whether the orec is owned, and if so, in what mode. If the
| 3 | (753R2) | 3 (7.53,R.1) orec is owned irREAD mode, therdcent field indicates how many
WriteSet 6 (5,27,R,1) transactions are _reading Io_ca_ti(_)ns that map to Fhis orec. This fprm
of read ownership is “semi-visible”: a transaction can determine
(0x108, 93) (0x148, 8)| | WriteSet whether any transactions are reading locations that map to this
(0x100, 24 ‘ (0x120, 2)‘ ‘ orec—and if SO, how many—but it cannot identify the specific
transactions doing so.
ADDRESS SPACE 3.3 Implementing software transactions
A transaction executed using our HyTM library begins with empty
0x100 read and write sets and its status seACTIVE. It then executes
0x108 user code, making calls to our STM library for each memory

OREC TABLE access. Before writing a location, the transaction acquires exclusive
0x110 ownership inWRITE mode of the orec for that location, and creates
0x118 tdid ver mode rdcnt an entry in its write set to record the new value written to the

000 27 W - location. To acquire an orec WRITE mode, the transaction stores
0x120| 19 110 27 w its descriptor identifier and version number in the orec. Subsequent
0x128 . writes to that location find the entry in the write set, and overwrite
0x130 | 68 2 the value in that entry with the new value to be written.

3 53 R 2 Similarly, before reading a location, a transaction acquires own-
0x138 ership of the orec for that location, this timeREAD mode. If the
0x140 41 3% W B orec is already owned iREAD mode by some other transaction(s),
0x148 5 this transaction can acquire own.ership simply by incrementing the

65 27 R 1 rdcnt field (keeping all other fields the same). Otherwise, the
0x150 transaction acquires the orec READ mode, by setting theode
ox158| 6 7 field to READ and therdcnt field to 1. In either case, the transac-

PPN tion records in its read set the index of the orec in the orec table and

a snapshot of the orec’s contents at that time.

After every read operation, a transactialidatesits read set to
ensure that the value read is consistent with values previously read
by the transaction. (This simple approach is much more conserva-
tive than necessary, so there is significant opportunity for improv-
3.2 HyTM datastructures ing performance here.) Validating its read set entails determining
As in most STMs, software transactions acquire “ownership” for that none of the locations it read have since changed. This can be
each location they intend to modify. Transactions also acquire “read @chieved by iterating over the read set, comparing each orec owned
ownership” for locations that they read but do not modify, but this " READ mode to the snapshot recorded previously, ensuring it has
kind of ownership need not be exclusive. There are two key data Nt changed (except possibly for tizécnt field). We discuss a
structures in our prototype: thinsaction descriptoand theown- way to significantly reduce this overhead in many cases below.
ership record{orec). Our prototype maintains a transaction descrip- . hen a transaction completes, it attempts to commit: It val-

tor for each thread that may execute a transaction, and a table ofidates its read set and, if this succeeds, attempts to atomically
orec€ Each location in memory maps to an orec in this table. To change its status frodCTIVE to COMMITTED. If this succeeds, then

keep the orec table a reasonable size, multiple locations map to thelN€ transaction commits successfully. The transaction subsequently
same orec. These data structures are illustrated in Figure 1. copies the values in its write set back to the appropriate memory
A transaction descriptoncludes aransaction descriptoriden-  l0cations, before releasing ownership of those locations.

tifier tdid, atransaction headera read setand awrite set The The commit point of the transaction is at the beginning of
transaction header is a single 64-bit word containingegsion the read validation. The subsequent validation of the reads and

numberand astatus (which may beFREE, ACTIVE, ABORTED the fact that the transaction maintains exclusive ownership of the
or COMMITTED). The version number distinguishes different (soft- locations it writes throughout the successful commit implies that

ware) transactions by the same thread: a transaction is uniquelythe. transaction can be viewed as taking effect atomically at this
point, even though the values in the write set may not yet have

identified by its descriptor’s identifier and its version number. The b ied back h iate | . : - oth
read set contains a snapshot of each orec corresponding to a loca?€€n copied back to the appropriate locations in memory: other

tion the transaction has read but not written. The write set contains Lrafnsactki‘ons are pr_evenf‘ed fr%m observing “out of date” values
an entry for each location that the transaction intends to modify, P€T0re the copying is performed.

storing the address of the location and the most recent value writ- __Fi9ure 1 illustrates a state of a HyTM system in which there are
ten to that location by the transaction. 8 orecs and two executing transactions: an active transagtion

using transaction descriptor 0 with version number 27; and a com-
mitted transactiorf;, using transaction descriptor 1 with version
number 357} has read 6 from address 0x158 (and therefore has a
snapshot of orec 3), and has written 93 to 0x108, 8 to 0x148, and
24 to 0x100 (with corresponding entries in its write s&t).has

Figure 1. Key data structures for STM component of HyTM.

2Independently, Harris and Fraser also developed an STMitfest a table
of ownership records [8]. Their approach bears some sinyilariours, but
the details are quite different. In particular, as far as wevk transactions
executed in hardware cannot interoperate correctly wir 8TM.



read 6 from 0x158 and 68 from 0x130 (and therefore has snapshotsDynamic memory allocation To ensure that memory allocated

of orecs 3 and 6), and has written 2 to 0x120. Becdliskas al- during an aborted transaction does not leak, and that memory freed
ready committed, its writes are considered to have already takeninside a transaction is not recycled until the transaction commits
effect. Thus, the logical value of location 0x120 is 2, even though (in case the transaction aborts), we provide spégiah malloc

T has not yet copied its write set back (so 0x120 still contains the andhytm_free functions. To support this mechanism, we augment
pre-transaction value of 19). Note that althoughis the only ex- transaction descriptors with fields to record objects allocated during
ecuting transaction that has read a location corresponding to orecthe transaction (to be freed if it aborts), and objects freed during the
6, the transaction descriptor identifier for orec 6 is 5, not 1, be- transaction (to be freed if it commits).

cause that was the descriptor identifier of the transaction that most

recently acquirearite ownership of that orec. Contention management Following Herlihy et al. [10], our pro-

Resolving conflicts If a transactionT; requires ownership of a  totype provides an interface for separable contention managers.
location that is already owned WRITE mode by another transac-  The library uses this interface to inform the contention manager of

tion 71, andT’s status iSABORTED, thenT; cannot successfully various events, and to ask its advice when faced with decisions such
commit, so it is safe fofly to “steal” ownership of the location as whether to abort a competing transaction or to wait or abort it-

from T1. If Ty is ACTIVE, this is not safe, as the atomicity @}’s self. We have implemented the Polka contention manager [28], and
transaction would be jeopardized if it lost ownership of the loca- @ variant of the Greedy manager [6] that times out to overcome the
tion and then committed successfully. In this caBecan choose  blocking nature of this manager as originally proposed. We have

to abortT} (by changingli’s status fromACTIVE to ABORTED), not experimented extensively with different contention managers

thereby making it safe to steal ownership of the location. Alterna- Or with tuning parameters of those we have implemented.

tively, it may be preferable fofp to simply wait a while, giving

T: a chance to complete. Such decisions are made by a separatg , Augmenting har dware tr ansactions
contention managediscussed below. '

If T1's status iSCOMMITTED, however, it isnot safe to steal We now discuss how our prototype augments hardware transactions

the orec (becaus®; may not have finished copying back its new to ensure correct interaction with transactions executed using the

values). In this case, in our prototypE, simply waits forT; to software library. The key observation is that a location’s logical

release ownership of the location. value differs from its physical contents only if a current software
If To needs to write a location whose orec iREAD mode, then transaction has modified that location. Thus, if no such software

Ty can simply acquire the orec WRITE mode; this will cause the transaction is in progress, we can apply a transaction directly to the
read validation of any other active transactions that have read loca-desired locations using HTM. The challenge is in ensuring that we
tions associated with this orec to fail, so there is no risk of violating do so only if no conflicting software transaction is in progress.

their atomicity. Again, the transaction consults its contention man- ~ Our prototype augments HTM transactions to detect conflicts

ager before stealing the orec: it may be preferable to wait briefly, With software transactions at the granularity of orecs. Specifically,
allowing reading transactions to complete. the code for a hardware transaction is modified to look up the orec

) . ) ) associated with each location accessed to detect conflicting soft-
Read after write If a transaction already has write ownership of \\5re transactions. The key to the simplicity of the HyTM approach
an orec it requires for a read, it searches its write set to see if it js that the HTM ensures that if this orec changes before the hard-
has already stored to the location being read. If not, the value is \yare transaction commits, then the hardware transaction will abort.
read directly from memory and no entry is added to the read set, e jllustrate this transformation using pseudocode below. On
because the logical value of this location can change only if another e |eft s the “straightforward” translation of a HyTM transactional
transaction acquires write ownership of the orec, which it will do - section, wherdandler-addris the address of the handler for failed
only after aborting the owning transaction. Thus, validation of this hargware transactions, amdp is a local variable). On the right is
read is unnecessary. the augmented code produced by the HyTM compiler:
Write after read If a transaction writes to a location that maps
to an orec that it owns iREAD mode, then the transaction uses
the snapshot previously recorded for this orec to “upgrade” its

txn_begin handler-addr txn_begin handler-addr
if (!canHardwareRead (&X))

ownership toWRITE mode, while ensuring that it is not owned in omo = X tmtxz’?:ort;
WRITE mode by any other transaction, and thus that locations that P ’ ifp( . caleardwareWrite(&Y))
map to this orec are not modified, in the meantime. After successful txn_abort :
upgrading, the entry in the read set is discarded, as the orec is no - ’
. Y = tmp + 5; Y = tmp + 5;
longer owned irREAD mode.
txn_end txn_end

Fast read validation Our prototype includes an optimization, due

to Lev and Moir [13], that avoids iterating over a transaction’s read wherecanHardwareRead and canHardwareWrite are functions

set in order to validate it. The idea is to maintain a counter of provided by the HyTM library. They check for conflicting owner-
the number of times an orec ownedRBEAD mode is stolen by a ship of the relevant orec, and are implemented as follows, where
transaction that acquires it WRITE mode. If this counter has not  h is the hash function used to map locations’ addresses to indices
changed since the last validation, then the transaction can concludento the orec tabl@REC_TABLE:

that all snapshots in its read set are still valid, so it does not need to

check them individually. Otherwise, the transaction resorts to the =~ Pool canHardwareRead(a) {

“slow” validation method described previously. ) return (OREC.TABLE[h(a)].omode != WRITE);

Nesting Our prototype supportattening a simple form of nest-

ing in which nested transactions are subsumed by the outermost  poo1 canHardwareWrite {

transaction: it records the nesting depth in the transaction descriptor return (OREC_TABLE[h(a)].o.mode == UNOWNED) ;
and ignoresIYTM_SECTION_BEGIN andHYTM_SECTION_END calls }

for inner transactions so that only outermost transaction commits.



Alternative conflict detection If there are almost never any soft-  all experiments not involving HTM, i.e., HyTM in software-only
ware transactions, then it may be better to detect conflicts using mode, and all conventional lock-based codes.
a single global counte8w_CNT of the number of software trans- To experiment with HyTM with HTM support, we also created a
actions in progress. Hardware transactions can then just checkvariant of the simulator that branches (without delay) tmadler-
whether this counter is zero, in which case there are no software addr, specified with thexn_begin instruction, in case the transac-
transactions with which they might conflict. However, if software tion fails. This way, a failed transaction attempt can be retried using
transactions are more common, reading this counter will add more a software transaction. This is the simulator used for HTM-assisted
overhead (especially because it is less likely to be cached) and will HyTM configurations.
increase the likelihood of hardware transactions aborting duetoun-  Because LogTM is an “unbounded” HTM implementation,
related software transactions, possibly inhibiting scalability in an transactions fail only due to conflicts with other transactions. To
otherwise scalable program. test our claim that the HyTM approach can be effective with “best-
An advantage of the HyTM approach is that the conflict de- effort” HTM, we created another variant of the simulator that aborts
tection mechanism can be changed, even dynamically, accordingHTM transactions when either (a) the number of distinct cache
to different expectations or observed behavior for different appli- lines stored by the transaction exceeds 16, or (b) a transactional
cations, loads, etc. Thus, for example, a HyTM implementation cache line is “spilled” from the cache. This emulates a best-effort
can support both conflict detection mechanisms described above.HTM design that uses only on-chip caches and store buffers, and
Fixing conflict detection methods in hardware does not provide fails transactions that do not fit within these resources. We call this
this kind of flexibility. Of course, hardware could provide several the “neutered” HyTM simulator.
“modes”, but this would further complicate the designs. Because  The systems we simulated share the same multiprocessor
conflicts involving software transactions are detected in software in architecture described in [22], except that our simulated pro-
HyTM, improvements to the HyTM-compatible STM and methods cessors were run at 1.2GHz, not 1GHz, and we used the sim-
for checking for conflicts between hardware and software trans- pler MESI_SMP_LogTM cache coherence protocol, instead of the
actions can continue long after the HTM is designed and imple- MOESI_SMP_LogTM protocol.

mented. In all experiments, both in real systems and in simulations, we
bound each thread to a separate processor to eliminate potential
4. Experience and evaluation scheduler interactions.

In this section, we describe our experience using our prototype
to transactify part of the Berkeley DB system, three SPLASH- 42 Berkeley DB lock subsystem
2 [33] benchmarksHarnes, radiosity, andraytrace), and a Berkeley DB [25] is a database engine implemented as a library
microbenchmarlkand-array we developed to evaluate HyTM. that is linked directly into a user application. Berkeley DB uses
Because HyTM does nafependon HTM support, we can locks in its implementation and also exposes an interface for client
execute all of the benchmarks in existing systems today; we reportapplications to use these locks. The locks are managed bydke
on some of these experiments in Sections 4.2 and 4.3, and insubsystemwhich provideslock_get andlock_put methods. A
Section 4.4 we report results of simulations we conducted using client callinglock_get provides a pointer to the object it wishes to
therand-array benchmark to evaluate HyTM'’s ability to exploit  lock. If no client is currently locking the object, the lock subsystem
HTM support, if available, to boost performance. First, we describe allocates a lock and grants it to the client. Otherwise, a lock already
the platforms used for our experiments. exists for the object, and the lock subsystem either grants the lock
or puts the client into the waiting list for the lock, depending on
whether the requested lock mode conflicts with the current lock
The software-only experiments reported in Sections 4.2 and 4.3 mode.
were conducted on a Sun File 6800 server [31] containing 24 In the Berkeley DB implementation of the lock subsystem, all
1350MHz UltraSPAR®@) IV chips [30]. Each UltraSPAR®) IV data structures are protected by a single low-level lock. The Berke-
chip has two processor cores, each of which has a 32KB L1 instruc- ley DB documentation indicates that the implementors attempted
tion cache and a 64KB L1 data cache on chip. For each processora more fine-grained approach for better scalability, but abandoned
chip, there is a 16MB L2 cache off chip (8MB per core). The sys- it because it was too complicated to be worthwhile. We decided to
tem has 197GB of shared memory, and a 150MHz system clock. test the claim that TM enables fine-grained synchronization with
To compare performance of our HyTM prototype with and the programming complexity of coarse-grained synchronization by
without various levels of hardware support to an unbounded HTM “transactifying” the Berkeley DB lock subsystem.
implementation, as well as to conventional locking techniques, We replaced each critical section protected by the lock with a
we used several variants of the Wisconsin LogTM transactional transactional section. In some cases, a small amount of code re-
memory simulator. This is a multiprocessor simulator based on structuring was required to conform with our compiler’s require-
Virtutech Simics [16], extended with customized memory models ment that eacliYTM_SECTION_END lexically matches the corre-
by Wisconsin GEMS [17], and further extended to simulate the spondingiYTM_SECTION_BEGIN. We also replaced calls t;alloc

4.1 Experimental platforms, real and simulated

unbounded LogTM architecture of Moore et al. [22]. and free with calls tohytm malloc and htym free (see Sec-

Our first variant simply adds instruction decoders and handlers tion 3.3).
for thetxn begin, txn_end andtxn_abort instructions produced We designed an experiment to test the newly transactified sec-
by our compiler, mapping these to LogTMegin_transaction, tions of Berkeley DB. In this experiment, each/éfthreads repeat-
commit_transaction andabort_transaction instructions. In edly requests and releases a lock for a different object. Because they

LogTM, if a transaction fails due to a conflict, it is rolled back request locks for different objects, there is no inherent requiremen
and retried, transparently to the software (possibly after a short for threads to synchronize with each other. The threads do no other
delay to reduce contention). Thus, there is no need to resort towork between requesting and releasing the locks.

software transactions, and no need to check for conflicts with them,  As expected, the original Berkeley DB implementation did not
so we directed the compiler not to insert the usual library calls scale well because of the single global lock for the entire lock
for such checking in this case. We used this simulator for curves subsystem. However, in our initial experiments, the transactified
labeled “LogTM” in the graphs presented later, as well as for version had similarly poor scalability, and significantly higher cost
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Figure 2. Software-only experiments: (a) Berkeley DB lock subsystembélthes () raytrace

per iteration. We were not surprised by the higher overhead (seea thread acquiring and releasing its lock is one operation); for the
Section 4.5), but we were disappointed by the lack of scalability. = SPLASH-2 benchmarks presented later, we report completion time.
A quick investigation revealed that scalability was prevented When only one thread participated, the transactified version
by false sharing, which occurs when variables accessed by dif- performed roughly a factor of 20 worse than the lock-based version.
ferent threads happen to fall in the same cache line, and by two This is not surprising, as we have thus far avoided a number of
sources of “real” conflict. False sharing can be especially bad in a optimizations that we expect to considerably reduce overhead of
transactional context because it can introduce unnecessary aborteur HyTM implementation, and because with a single thread, the
and retries, which can be much more expensive than the unnec-disadvantages of the coarse-grained locking solution are irrelevant.
essary cache misses it causes in lock-based programs. Moore efs the number of threads increases, however, the throughput of the
al. [22] make a similar observation from their experience. Itis stan- original implementation degrades dramatically, as expected with
dard practice to “pad” variables in high-performance concurrent a single lock. In contrast, the transactified version achieves good
programs to avoid the profound impact false sharing can have onscalability at least up to 16 threads. For four or more threads, the
performance. We found that this significantly improved the perfor- transactified version beats the lock-based version, despite the high
mance and scalability of the transactified version. (Applying these overhead of our unoptimized implementation.
techniques to the original implementation did not improve its scal- Initially, the rdcnt fields in our library had four bits, allowing
ability, because of the serialization due to the global lock.) up to 15 concurrent readers per orec. With this configuration, the
In addition to the conflicts due to false sharing, we found two transactified version did not scale past 16 threads. A short investi-
significant sources of “real” conflicts. First, the Berkeley DB lock gation revealed that theicnt field on some orecs was saturating,
subsystem records various statistics in shared variables protectedcausing some readers to wait until others completed. We increased
by the global lock. As a result, each pair of transactions conflicted the number of bits to 8, allowing up to 255 concurrent readers per
on the statistics variables, eliminating any hope of scalability. It orec. As Figure 2(a) shows, this allowed the transactified version
is standard practice to collect such statistics on a per-thread basido scale well up to 32 threads. The decrease in throughput at 48
and to aggregate them afterwards. However, we simply turned threads is due to a coincidental hash collision in the Berkeley DB
off the statistics gathering (in the original code as well as in the library; changing the hash function eliminated the effect, so this
transactified version). does not indicate a lack of scalability in our HyTM prototype.
Second, Berkeley DB maintains a data structure for each object
being locked, and a “lock descriptor” for each lock it grants. Rather 43 spL ASH-2 benchmarks
than allocate and free these dynamically, it maintains a pool for
each kind of data structure. We discovered many conflicts on these
pools because each pool is implemented as a single linked list,
resulting in many conflicts at the head of the list. We reduced
contention on these pools using standard techniques: Instead ofP®
keeping a single list for all the lock descriptors, we distributed the
pool into multiple lists, and had threads choose a list by hashing on
their thread id. On initialization, we distribute the same number of h
lock descriptors as in the original single-list pool over the several {00k longer with more threads above 32 threads; aagtrace
lists implementing the pool in the revised implementation. We also (Figure 2(c)) scaled well only to 6 threads, after which adding

implemented a simple load-balancing scheme in which, if a thread threlads Oﬂly hurt pﬁrformance_.f_ d . K ab % |
finds its list empty when attempting to allocate a descriptor, it n Eaf Eabse, tde transactl r']e veLsmndtoo a ourt] 30% longer
“steals” some elements from another list. Programming this load than the lock-based version with one thread. aames, the trans-

balancer was remarkably easy using transactions actified version tracked the original version up to about 24 threads,
Figure 2(a) compares the original Berkeley DE; (with statistics albeit with noticeable overhead relative to the original version. At
disabled) to two configurations of the transactified version after Nigher levels of concurrency, performance degraded significantly.

the modifications described above. For this and other microbench- 11iS i because the number of conflicts between transactions in-

marks, we report throughput as operations per second (in this Casef:reased with more threads participating. We expect to be able to im-

prove performance in this case through improved contention man-

We took three SPLASH-2 [33] benchmark®arnes, radiosity,

and raytrace—as transactified by Moore et al. [22], converted
them to use our HyTM prototype, and compared the transactified
nchmarks to the original, lock-based implementations.

In the original lock-based versionsrnes (Figure 2(b)) scaled
well up to 48 threads;adiosity (not shown) scaled reasonably to
16 threads and thereafter failed to improve performance and even



agement: we have not yet experimented extensively with contention address of the array was stored in a global shared variable: because
management policies, or with tuning those we have implemented. the STM did not know it was a constant, every transaction acquired
The original lock-based implementations sddiosity and read ownership of the associated orec, causing poor scalability. We
raytrace both exhibited worse performance with additional fixed this problem by reading the address of the array into a local
threads at some point: above 24 threadsfatiosity and above variable before beginning the transaction. There are two points
6 threads foraytrace. The transactified versions performed qual- to take away from this. First, some simple programming tricks
itatively similarly to their lock-based counterparts, except that the can avoid potential performance pitfalls transactional programmers
lack of scalability was more pronounced in the transactional ver- might encounter. Second, the compiler should optimize STM calls
sions, especially foraytrace. Again, this is likely due to poor for reading immutable data.
contention management. But it also demonstrates the importance We used the simulators described in Section 4.1 to compare the
of structuring transactional applications to try to avoid conflicts performance of theand-array benchmark implemented using
between transactions. Fortunately, avoiding conflicts in the com- coarse-grained locking, fine-grained locking, HyTM in software-
mon case, while maintaining correctness, is substantially easieronly mode, HyTM with HTM support, and LogTM. For HyTM
with transactional programming than with traditional lock-based with HTM support, we tested two simple schemes for managing
programming, as illustrated by our experience with Berkeley DB. conflicts. In the “immediate failover” scheme, any transaction that
Our first transactified version efaytrace yielded even worse fails its first HTM attempt immediately switches to software and
scalability than shown above. The culprit turned out to be our retries in software until it completes. In the “backoff” scheme, we

mechanism for upgrading froREAD to WRITE mode: transactions
in raytrace increment a globatayID variable (therefore reading
and then writing it) to acquire unique identifiers. By modifying the
benchmark to “trick” HyTM into immediately acquiring the orec
associated with theayID counter ilWRITE mode, we were able to
improve scalability considerably. This points to opportunities for
improving the upgrade mechanism as well as compiler optimiza-
tions that foresee the need to write a location that is being read.
Even after this improvementaytrace does not scale well,
largely due to contention for the singtayID counter. Recently, a
number of research groups (e.g., [4]) have suggested tackling sim
ilar problems by incrementing counters such asR&gID counter
“outside” of the transaction, either by simply incrementing it in a

employ a simple capped exponential backoff scheme, resorting to
software only if the transaction fails using HTM 10 times.

Experiments using the neutered simulator (not shown) showed
no noticeable difference to the unneutered ones. This is not sur-
prising, as this benchmark consists of small transactions that al-
most always fit in the cache. The neutered tests will be more mean-
ingful when we experiment with more realistic application codes.
Based on studies in the literature [3, 7, 23], we expect that in many
cases almost all transactions will not overflow on-chip resources,
and thus neutered performance will closely track unneutered per-
formance, even for more realistic codes.

We present simulation data based on thed-array bench-
mark with K = 10; that is, each operation randomly chooses 10

separate transaction, or by using an open-nested transaction. Whileounters out of\/ and increments each of them. For a “low con-

this is an attractive approach to achieving scalability, it changes the

tention” experiment we chosk/=1,000,000 (Figure 3(a)), and for

semantics of the program, and thus requires global reasoning abouthigh contention” we chosé/=1,000 (Figure 3(b)). In each ex-
the program to ensure that such transformations are correct. It thusperiment, we varied the number of threads between 1 and 32, and
somewhat undermines the software engineering benefits promisedeach thread performed 1,000 operations. Results are presented in

by transactional memory.

Note that, with up to 255 concurrent readers per orec, the perfor-
mance of the transactional versionmfytrace degraded signifi-
cantly above 16 threads. This indicates that the original limitation
of 15 concurrent readers per orec was acting as a serendipitous con
tention management mechanism: it caused transactions to wait forl
a while before acquiring the orec, whereas when all readers could
acquire the orec without waiting, the cost of modifying the orec in-

terms of throughput (operations per second). The graphs on the
right show a closer look at the graphs on the left for 1 to 4 threads.
First, we observe that with one thread, coarse-grained locking
and LogTM provide the highest throughput, while the fine-grained
locking and HyTM versions incur a cost without providing any
benefit because there is no concurrency available. We explain in
Section 4.5 why we expect that HyTM with HTM support can
ultimately provide performance similar to that of coarse-grained

creased because doing so caused a larger number of transactions tocking and LogTM in this case.

abort. This points to an interesting opportunity for contention man-
agement, in which read sharing is limited by policy, rather than
by implementation constraints. Whether such a technique could be
used effectively is unclear.

4.4 rand-array benchmark

In this section, we report on our simulation studies, in which we
used the simpleand-array microbenchmark to evaluate HyTM’s
ability to mix HTM and STM transactions, and to compare its
performance in various configurations against standard lock-based
approaches. In theand-array benchmark, we have an array of
M counters. Each oV threads performs 1,000 iterations, each of
which chooses a set df counters, and increments all of them in

a single transactional section. We implemented three versions: on

that uses a single lock to protect the whole array; one that uses one

lock per counter; and one that uses a transactional section to per
form the increments. To avoid deadlock, the fine-grained locking
version sorts the chosen counters before acquiring the locks.

In our initial software-only experiments with th@end-array
benchmark, even théd( = 1 case did not scale well for the
software-only transactified version. We quickly realized that the

Next, we observe that LogTM provides good scalability in the
low-contention experiment (Figure 3(a)), as any respectable HTM
solution would in this case (low contention, small transactions).
The throughput of the coarse-grained locking implementation de-
grades with each additional thread, again as expected. Even unop-
timized, the software-only HyTM configuration scales well enough
to outperform coarse-grained locking for 4 or more threads.

The fine-grained locking approach rewards the additional pro-
gramming effort as soon as more than 1 thread is present, and
consistently improves throughput as more threads are added. The
HTM-assisted HyTM configurations provide this benefit with-
out additional programming effort, and outperform even the fine-
grained locking implementation for 8 or more threads. In this low-
contention experiment, conflicts are rare so the difference between
he immediate-failover and backoff configurations is minimal.

Next we turn to thel/=1,000 experiment (Figure 3(b)). First, all
of the implementations achieve higher throughput for the single-
threaded case than they did wifti=1,000,000. This is because
choosing from 1,000 instead of 1,000,000 counters results in better
locality in the 16KB simulated L1 cache. However, due to the
increased contention that follows from choosing from a smaller
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Figure 3. rand-array experiments: (a})/=1,000,000 (b))/=1,000 (Closeups on right.)

set of counters, all of them scale worse than they did in the low- through good contention management policies. This experiment
contention experiment. Indeed, from 8 threads onwards, addingclearly shows the benefit of a simple backoff scheme for HTM
more threads significantly degrades performance for both coarse-transactions, for example. Furthermore, in this high-contention ex-
grainedand fine-grained locking! Meanwhile, the software-only periment (//=1,000), many transactions conflict, so many trans-
HyTM configuration manages to maintain throughput—though not actions resort to software, and therefore scalability is largely de-
increasing it much—up to 32 threads. Again, we believe that the termined by that of the software transactions which, as we have
lack of scalability is due to poor contention management, and we already observed, is not yet very good under contention. Our re-
expect to be able to improve it. sults therefore demonstrate that, even when we faliceetries to
That our unoptimized STM scales better than the hand-crafted software, and the software contention management is poor, HyTM
fine-grained locking implementation demonstrates the advantageswith best-effort HTM can provide significantly better performance
of transactional programming over lock-based programming, even than existing software techniques.
without HTM support. As discussed below, we also see the perfor-  On the surface, it may be surprising that software-only HyTM
mance benefits offered by HTM support; with the HyTM approach, outperforms the hand-crafted fine-grained locking implementation,
we can use simple transactional code in existing systems today, andas it might be viewed as doing essentially the same thing “under
get the benefit of best-effort HTM support when it becomes avail- the covers” while adding overhead. However, there is an important
able, without changing application code. difference that is ignored by this simplistic view. When the fine-
LogTM provides the best performance and scalability, as ex- grained locking implementation encounters a lock that is already
pected. But we also see that the HTM-assisted HyTM configuration held by another thread, it waits, and holds all of the locks it has
with backoff tracks LogTM’s scalability well, quickly reducing the  already acquired. If another thread meanwhile attempts to acquire
performance gap exhibited in the single-threaded case. one of these locks, then it too waits. In this way, long waiting
We used the immediate-failover HyTM configuration to explore chains can form, essentially serializing the operations involved.
the consequences of the so-called “cascade effect’, in which trans-As the chains become longer, they become more likely to attract
actions that fail and resort to software then conflict with other new participants, and eventually we have a “convoy effect’, causing
transactions causing them too to resort to software, potentially se-the fine-grained implementation to perform little better than the
riously impacting performance. While we do not deny the poten- simple coarse-grained one. In contrast, when a software transaction
tial for such a scenario, we believe it can be effectively managed encounters a location that is already held by another transaction,



its contention manager can choose to abort the other transactiond.  Concluding remarks

and proceed, or to abort itself to avoid impeding other transactions. \ne have introduced the Hybrid Transactional Memory (HyTM)
Even our untuned default contention management policy (adaptedapproach to implementing transactional memory so that we can

from d_the E.Olkif policvy\// of [28]) ish at Ieaistbslpmewr}gtbeff_ective in \, execute transactional programs in today's systems, and can take
avoiding this effect. We expect that scalability could be improve advantage of future “best-effort” hardware transactional memory
further by better contention management, and this is an area for(HTM) support to boost performance

furt_lk]ﬁr |nv_est|gfat|on. h ft tional Kload We have demonstrated that HyTM in software-only mode can
nere 1S, Of Course, a huge space of transactional workloads, i, q\jiqe much better scalability than simple coarse-grained lock-
ranging over different mixes of transaction sizes, frequency of con ing, and is comparable with and often more scalable than even

flicts between them, mix of reads and writes, etc. We have only o0 crafted fine-grained locking code, which is considerably more
scratched the surface, but nonetheless we believe that our experygicuit to program. While our prototype would benefit from bet-

iments demonstrate the viability of the HyTM approach. They o -ontention management and from optimizations that improve

L‘\éingle-thread performance, it already performs well enough that
transactional applications can be developed and used even before
any HTM support is available. Such applications will motivate pro-
cessor designers to support transactions in hardware, and the fact
that HyTM does not require unbounded HTM makes it much eas-

) ] ier for them to commit to implementing HTM.

4.5 Discussion Our work also demonstrates that future best-effort HTM sup-

Our main focus to date has been the scalability of HyTM with best- Port will significantly boost the performance of transactional pro-
effort HTM support. This has led us to design decisions that com- grams developed using HyTM today. We hope that this expectation
promise on single-threaded performance, as well as on software-Will motivate programmers to consider transactional programming
only HyTM performance. Ideally, we would like good performance even before HTM is available. HyTM thus creates a synergistic re-
at low contention levels and good scalability, with and without lationship between transactional programs and hardware support
HTM support. Below we discuss some of the tradeoffs, and some for them, eliminating the catch-22 that has prevented widespread
of the avenues we think are promising for achieving this goal. adoption of HTM until now, and allowing performance to improve

Our use of semi-visible reads (see Section 3.2) requires eachover time with incremental improvements in best-effort HTM sup-
software transaction that reads a location to m0d|fy its orec in port. We therefore believe that the time is rlght for the revolution in
order to allow hardware transactions to detect conflicts in a read- concurrent programming that TM has been promising to begin.
only manner, and also to enable fast validation, as described in ~ To demonstrate the flexibility of the HyTM approach, we have
Section 3.3. However, if software transactions are frequent (if there made minimal assumptions about the functionality and guarantees
is no HTM support, for example), and such reads are frequent, this of HTM support it can exploit. But the HyTM approach is not con-
may impede scalability. A different policy is for HTM transactions ~ fined to such simple HTM support. In particular, HTM functional-

(if any) to modify the orecs for locations they modify and to use ity such as nesting [4, 24], event handlers [19], etc., can be used
use “invisible” reads in software transactions, which simply record in HyTM systems, and again, the ability to fall back to software

a snapshot of the orec to be validated later. The tradeoff is that may simplify designs for such features. For one example, hardware
conflicts for locations read this way cannot be detected using the Might support only a certain number of nesting levels using on-chip
fast validation optimization. These policies can be dynamically resources, and leave it to software to execute deeper nested transac-
mixed; the challenge is in deciding between them. tions. The HyTM approach gives maximal flexibility to designers

The performance difference between LogTM and HTM-assisted t0 choose which functionality to support efficiently in hardware and
HyTM in our experiments is due to several factors, some of which Up to what limits, and which cases to leave to software. .
can be eliminated by simple techniques like compiler inlining, dis- ~ Whether unbounded HTM designs will ever be able to provide
abling statistics counters, etc. However, some simple measurementglll functionality required by transactional programs, and whether
indicate that the difference is dominated by the cost of checking for they will provide sufficient benefit over HyTM implementations to
conflicts with software transactions on each memory access. WeWwarrant the significant additional complexity they entail is unclear.
see numerous obvious and not-so-obvious optimization opportuni- e encourage designers of future processors to consider whether
ties for reducing this overhead. robust support for unbounded TM is compatible with their level of

As explained in Section 3.4, at the risk of impeding scalabil- sk, resources, and other constraints. But if it is not, we hope that
ity when software transactions are frequent, HTM transactions can 0Ur work convinces them to at least provide their best effort, as
be made substantially faster by checking a global count of software this will be enormously more valuable than no HTM support at all.
transactions ongger transactior(in contrast to per-location check-  Apart from boosting the performance of HyTM, best-effort HTM
ing, or even per-access checking, as in our unoptimized prototype).also supports a number of other useful purposes, such as sefective
We p|an to try to get the best of both worlds by adaptive|y Choosing _elldlng locks, OptlleIng nOﬂb'OCklng data structures, and optimiz-
between these two conflict detection mechanisms. ing the Dynamic Software Transactional Memory (DSTM) system

To the extent that the performance gap between HTM-assisted Of Herlihy et al. [10], as explained elsewhere [20, 21].

HyTM and an unbounded HTM implementation such as LogTM  Ongoing and future work includes improving the performance
cannot be closed, the remaining difference would be the price paid @nd functionality of our prototype, and better integration with lan-
for the simplification achieved by requiring only best-effort HTM. ~ guages, debuggers (see [14]), and performance tools.

We believe that the performance and scalability of software
transactions can also be significantly improved through various op-
timizations and contention management techniques we have notACknOWIedgmemS
applied to date. Thus, even before HTM support is available, pro- We thank at least the following colleagues from Sun Microsystems
grammers can begin to realize the software engineering and scal-for valuable discussions that helped lead to the development of the
ability benefits of transactional programming, with the promise of ideas presented in this paper: Shailender Chaudhry, Bob Cypher,
substantial performance gains when HTM support appears. David Detlefs, David Dice, Steve Heller, Maurice Herlihy, Quinn

which to evaluate future improvements, and point to some direc-
tions for future research.
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