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Evaluation of the Intel® Core™ i7
Turbo Boost feature

James Charles, Preet Jassi, Ananth Narayan S, Abbas Sadat and Alexandra Fedorova

Abstract—The Intel® Core™ i7 processor code named Ne-
halem has a novel feature called Turbo Boost which dynamically
varies the frequencies of the processor’s cores. The frequency
of a core is determined by core temperature, the number of
active cores, the estimated power and the estimated current
consumption. We perform an extensive analysis of the Turbo
Boost technology to characterize its behavior in varying workload
conditions. In particular, we analyze how the activation of Turbo
Boost is affected by inherent properties of applications (i.e., their
rate of memory accesses) and by the overall load imposed on
the processor. Furthermore, we analyze the capability of Turbo
Boost to mitigate Amdahl’s law by accelerating sequential phases
of parallel applications. Finally, we estimate the impact of the
Turbo Boost technology on the overall energy consumption. We
found that Turbo Boost can provide (on average) up to a 6%
reduction in execution time but can result in an increase in energy
consumption up to 16%. Our results also indicate that Turbo
Boost sets the processor to operate at maximum frequency (where
it has the potential to provide the maximum gain in performance)
when the mapping of threads to hardware contexts is sub-optimal.

I. INTRODUCTION

The latest multi-core processor from Intel code named
Nehalem [9] has a unique feature called Turbo Boost Tech-
nology [10]. With Turbo Boost, the processor opportunis-
tically increases the frequency of the cores based on the
core temperature, the number of active cores, the estimated
current consumption, and the estimated power consumption.
Normally, the Core i7 processor can operate at frequencies
between 1.5 GHz and 3.2 GHz (the maximum non-Turbo
Boost frequency or the base frequency) in frequency steps
of 133.33 MHz. With Turbo Boost enabled, the processor can
increase the frequency of cores two further levels to 3.3 GHz
and then 3.4 GHz. We refer to the first frequency above the
base frequency as the lower Turbo Boost frequency (3.3 GHz)
and to the maximum frequency as the higher Turbo Boost
frequency (3.4 GHz). If multiple physical cores are active,
only the lower Turbo Boost frequency is available.

Turbo Boost is made possible by a processor feature named
power gating. Traditionally, an idle processor core consumes
zero active power while still dissipating static power due to
leakage current. Power gating aims to cut the leakage current
as well, thereby further reducing the power consumption of the
idle core. The extra power headroom available can be diverted
to the active cores to increase their voltage and frequency
without violating the power, voltage, and thermal envelope.
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Turbo Boost Technology essentially makes the Nehalem a
dynamically asymmetric multi-core processor (AMP); cores
use the same instruction set but their frequency can vary
independently and dynamically at runtime.

We perform a detailed evaluation of the Turbo Boost feature
with the following goals:

1) To understand how Turbo Boost behaves depending on
the properties of the application such as its degree of
CPU or memory intensity,

2) To find how system load, specifically the number of
threads running concurrently, affects when and how
often Turbo Boost gets engaged, and finally,

3) To determine how scheduling decisions that distribute
load in a processor affect the potential performance
improvements offered by Turbo Boost.

To this end, we select benchmark applications from the
SPEC CPU2006 benchmark suite with diverse qualities (inte-
ger versus floating point applications, memory-intensive versus
computationally-intensive applications). We run benchmarks
individually and in groups while monitoring system perfor-
mance with and without the Turbo Boost feature. The results
of our study will be useful to both CPU designers as they
demonstrate the benefits and costs of Turbo Boost technology,
and to software designers as they will provide insight into the
benefits of this technology for applications.

Prior work has shown that such a processor configuration
offers higher performance per watt in most situations when
compared with symmetric multi-core processors [12], and
a great deal of other work has analyzed the performance,
versatility, and energy-efficiency of AMP systems either the-
oretically or through simulation [2], [8], [12], [15], [18].

Prior work from Intel [2] has shown that such a processor
can be leveraged to mitigate Amdahl’s law for parallel appli-
cations with sequential phases. Amdahl’s law states that the
speedup of a parallel application is limited by its sequential
component. A typical parallel application might divide a
computational task into many threads of execution executing
in parallel, and then aggregate the results using only a single
thread. This division of work results in an execution pat-
tern where parallel phases of execution are interspersed with
sequential “bottleneck” phases. A dynamically asymmetric
processor can accelerate such bottleneck phases while staying
within its energy budget.

When a program enters a sequential phase, the processor
would automatically turn off idle cores and boost the frequency
on the active core. When the program returns to the parallel
phase, all the cores would be activated, but the frequency
of each core would be reduced. The benefits of such an
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architecture are demonstrated by Annavaram et al. [2]. They
observe performance improvements of as much as 50% relative
to symmetric systems using a comparable energy budget.
Nehalem, with its Turbo Boost feature has the potential to
mitigate Amdahl’s law for parallel applications with sequential
phases, therefore we evaluated this capability using several
parallel applications from the PARSEC [5] and BLAST [1]
benchmark suites.

Our results demonstrate that Turbo Boost increases perfor-
mance of applications by up to 6%, but the benefit depends on
the type of application and on the processor load. Memory-
intensive applications (i.e., those with a high rate of requests
to main memory) in general experience smaller performance
improvements than CPU-intensive applications. Turbo Boost
is engaged less often when a large number of cores is busy
as opposed to when the number of busy cores is small.
Interestingly, Turbo Boost engages more frequently when the
mapping of threads to cores is not optimal with respect to
resource contention: that is, given two thread mappings, the
assignment with greater contention for shared resources is
also the one where the Turbo Boost feature will be activated
more frequently. As to mitigating Amdahl’s law, we found that
while Turbo Boost does respond to transitions into sequential
phases by boosting the processor frequency, the frequency
increase is not large enough to deliver benefits similar to those
demonstrated in previous work.

The rest of the paper is organized as follows. We discuss
our experimental methodology in Section II. We discuss our
experimental configuration and results in Section III. We
evaluate energy consumption in Section IV, and summarize
our conclusions in Section VI.

II. METHODOLOGY

We run four sets of experiments for this study: the Isolation
Tests, the Paired Benchmark Tests, the Saturation Tests, and
the Multi-Threaded Tests.

A. Isolation Tests

In this set of experiments we run individual applications
from the SPEC CPU2006 suite with Turbo enabled and with
Turbo disabled, and measure the performance improvements
from Turbo Boost. According to prior work, applications differ
in their sensitivity to the changes in frequency (i.e., how
much their performance improves as the processor frequency
is increased) [15]. The sensitivity is determined by the ap-
plication’s CPU-intensity or memory-intensity. CPU-intensive
applications are those that spend most of their time executing
instructions on the CPU and have a low last level cache
(LLC) miss rate. Conversely, memory-intensive applications
experience a high LLC miss rate and thus spend more time
waiting for data to be fetched from memory. As a result of
spending more time on the CPU, CPU-intensive applications
are more sensitive to changes in CPU frequency than memory-
intensive applications.

Applications can be categorized as CPU-intensive or
memory-intensive by examining their LLC miss rate. We
characterized all the applications in the SPEC CPU2006

benchmark suite by running each in isolation on a Nehalem
processor and measuring the LLC miss rate (in this case,
the L3 cache miss rate). From this, we were able to classify
applications according to the categories given in Table I. In
the isolation tests we analyze whether there is a relationship
between the speedup derived from the Turbo Boost feature
and the application’s LLC miss rate.

TABLE I
APPLICATION CATEGORIES

Identifier Memory performance Calculation Type
MF Memory-intensive Floating point
MI Memory-intensive Integer
CF CPU-intensive Floating point
CI CPU-intensive Integer

B. Paired Benchmark Tests

We run pairs of benchmarks to determine if the processor
could still make effective use of the Turbo Boost feature
with more than one application running in the system. This
provides insight into the effects of running different types
of applications with each other, and also into the interplay
between Turbo Boost and contention for shared resources
when multiple applications are running concurrently.

From the SPEC CPU2006 suite, we choose two groups pf
applications, with four applications each. We then run pairs
of benchmarks within each set on the hardware contexts of
the same physical core and on different physical cores, with
and without Turbo Boost enabled. Our goal is to analyze how
Turbo Boost engages in these different configurations.

C. Saturation Tests

The Nehalem processor has four cores, each with two thread
contexts (see Section III). The saturation tests are designed
to identify whether Turbo Boost activates while all threads
contexts are busy. To do this, we saturate all of the cores
with applications of various types and execute them with and
without Turbo Boost enabled.

We saturate the system using three different loads: (1) a
CPU-intensive load where an instance of a CPU-intensive
application is bound to each logical processor, (2) a corre-
sponding memory-intensive load, (3) a mixed load, with four
CPU-intensive and four memory-intensive applications.

The saturation tests show if there is a relationship between
the type of the load and the corresponding performance
improvements from Turbo Boost. We expect that Turbo Boost
will activate less frequently under the CPU-intensive load,
because this load will cause the chip to operate at a higher
temperature compared to a memory-intensive workload.

D. Multi-Threaded Tests

As described in Section I, dynamic AMP processors such
as Nehalem have the potential to mitigate Amdahl’s law for
parallel applications with sequential phases. To test if Turbo
Boost is responsive to phase changes in applications and,
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more significantly, if it can engage to accelerate the sequential
phases of parallel code, we perform multi-threaded tests.

We execute multi-threaded applications drawn from the
PARSEC [5] and BLAST [1] benchmark suites with and
without Turbo Boost enabled. We monitor the frequency and
utilization of each core during the execution. If all but one
cores have 0% utilization, the application is deemed to be
in a sequential phase. Likewise, parallel phases can be clearly
seen when several (potentially all) cores are active. The multi-
threaded applications are executed such that they use up to
eight threads to match the number of thread contexts available.
From the time series of history data, we can determine whether
a particular core is operating at one of the Turbo Boost
frequencies. Over the course of a benchmark, this data reveals
how Turbo Boost responds to changes in CPU utilization as
well as how Turbo Boost augments the performance of multi-
threaded workloads.

III. EXPERIMENTAL SETUP AND RESULTS

The experiments are executed on an Intel Core i7 965
(Extreme Edition) with 3GB DDR3 RAM, running the Linux
2.6.27 kernel (Gentoo distribution). The Core i7 965 is a quad
core processor with 2 simultaneous multi-threading (SMT)
contexts per core. This provides for 8 logical cores. Figure
1 shows the physical layout of the cores on the Nehalem
processor. The highest non-Turbo frequency of the Core i7
is 3.2 GHz. The two supported Turbo Boost frequencies are
3.3 GHz and 3.4 GHz. Core frequency was obtained by
implementing the frequency calculation algorithm described
in [10]. This algorithm can be summarized with these steps:

1) The base operating ratio is obtained by reading the
PLATFORM_INFO Model Specific Register (MSR). This
is multiplied by the bus clock frequency (133.33 MHz)
to obtain the base operating frequency.

2) The Fixed Architectural Performance Monitor counters
are enabled. Fixed Counter 1 counts the number of
core cycles while the core is not in a halted state
(CPU_CLK_UNHALTED.CORE). Fixed Counter 2 counts the
number of reference cycles when the core is not in a
halted state (CPU_CLK_UNHALTED.REF).

3) The two counters are read at regular intervals and the
number of unhalted core cycles and unhalted reference
cycles that have expired since the last iteration are
obtained. The core frequency is calculated as Fcurrent =
Base Operating Frequency * ( Unhalted Core cycles /
Unhalted Reference Cycles). This is repeated for each
core.

Core temperature is obtained by reading the
IA32_THERM_STATUS MSR. Both temperature and frequency
are measured on a per-physical-core basis. For all the
experiments, applications are executed four times: the first
run is discarded and results from the remaining runs are
averaged. The standard deviation of the measurements was
negligible.

A. Isolation tests
We run all SPEC CPU2006 benchmarks on a single core

in isolation with and without Turbo Boost. The Turbo Boost
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Fig. 1. Nehalem Layout

frequency scaling algorithm takes into account the number of
active cores when determining the frequency of a core. Thus,
we expect that the active core will spend the majority of its
time at the higher Turbo frequency as only one core is active.
Furthermore, we expect that CPU-intensive applications will
obtain a greater speedup compared to the memory-intensive
applications as changes in clock frequency alter the per-
formance of CPU-intensive applications more than memory-
intensive applications—that is, CPU-intensive applications are
more sensitive to changes in the clock frequency compared to
memory-intensive applications.

Figure 2 captures the percentage reduction in execution
time seen per benchmark against the last level cache (LLC)
miss rate, which, as explained earlier, determines the memory
intensity of applications. The figure shows that, as expected,
applications with a higher cache miss rate receive a smaller
speedup due to the increase in frequency. The only outlier to
this trend is MCF which exhibited close to 4% speedup despite
having a high LLC miss rate.

When the benchmarks run in isolation, they spend at least
80% of execution time at the higher Turbo frequency but
execute almost entirely at the Turbo frequencies. Once again,
this behavior is expected. Figure 3 shows the distribution of
the time spent at the different frequencies for all the SPEC
CPU2006 benchmarks.
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Fig. 3. The distribution of time spent at various frequencies for all SPEC CPU2006 benchmarks running in isolation

Finally, we analyze the speedup from the Turbo feature
according to the application type. We classify all these applica-
tions according to the categories given in Table I. Applications
with an LLC miss rate below the median miss rate are
considered CPU-intensive. Those above and including the
median are considered memory-intensive. Table II shows the
average speedup for each class resulting from Turbo Boost.
The CPU-intensive benchmarks receive a greater speedup in
comparison to the memory-intensive benchmarks.

TABLE II
ISOLATION RESULTS

Benchmark Class Speedup
MF 4.5%
MI 4.3%
CF 6.9%
CI 6.5%

B. Paired Benchmarks Tests

For this set of experiments, we select a subset of the SPEC
CPU2006 benchmarks and construct two sets. We restrict
ourselves to a subset of SPEC CPU2006 applications to keep
the number of experiments feasible. We pick two sets of
applications with each set containing four applications, one
of each category MF, MI, CF, and CI (Table I). Within each
category, applications were selected randomly. The two sets
of application are shown in Table III.

For each application set, we run all possible pairs of the
four applications using one pair per experiment. First, the
applications in a pair are executed affinitized on the same
physical core; then the applications in the pair are affinitized to
different physical cores. We repeat each experiment with and
without Turbo Boost enabled. For each test, one application
is identified as the principal application and the second as the
interfering application. The interfering application is restarted

if it completes prior to the principal application. Between suc-
cessive executions of the principal application, a two minute
idle time is introduced. The idle time allows for the processor
to cool and reach a steady temperature.

TABLE III
BENCHMARK SETS FOR PAIRED BENCHMARK TESTS

Classification Set 1 Set 2
MF Leslie3D Namd
MI Omnetpp Astar
CF Povray Bwaves
CI H264 Hmmer

Figure 4 and Figure 5 show the percentage speedup due to
enabling Turbo Boost for Set 1 and Set 2 respectively. The
principal application is on the abcissa of the graph while the
interfering application is denoted by the shading of the bars.
Thus, each bar shows the percent speedup of the principal ap-
plication when paired with an interfering application. Figures
4(a) and 5(a) shows the percent speedup due to Turbo Boost
when the application are assigned to the same core. Figures
4(b) and 5(b) capture the percent speedup due to Turbo Boost
when the application are assigned to the different cores.

To analyze how the effect of Turbo is determined by the
type of application, we average the speedups resulting from
Turbo Boost across the different categories of benchmarks
namely CPU-intensive (C) and memory-intensive (M). Table
IV shows the average increase in performance for the various
combinations of benchmark classes as well as the average
degradation of performance resulting from scheduling the
benchmark in the respective configuration. The degradation is
calculated by normalizing the execution time of the principal
application by the execution time of the principal application
when it is run in isolation (with Turbo Boost enabled in
both cases). A degradation of 1.0 implies that the application
completed in the same time when executed standalone and
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(a) Speedup for Set 1 due to Turbo (Same Core)
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(b) Speedup for Set 1 due to Turbo (Different Cores)

Fig. 4. Speedup due to Turbo - Set 1

with interference.
Table IV shows that the greatest speedup from Turbo Boost

is seen when two CPU-intensive benchmarks are bound to
the same core while the smallest speedup from Turbo Boost
is when two memory-intensive benchmarks are bound to
different cores. Additionally, Table IV shows that Turbo Boost
provides a greater performance gain when the applications
are run on the same core compared to when they are run on
different cores. However, the degradation is significantly larger
when the benchmarks are bound to the same core compared
to when they are bound to different cores. Therefore, in the
case of executing two benchmarks, Turbo Boost provides the
maximum gains in performance when the degradation resulting
from scheduling is the largest. In other words, in the case of
executing two benchmarks, Turbo Boost provides higher gains
in performance when the mapping of threads to cores is sub-
optimal in terms of contention.

Figures 4(a)-5(b) show that applications experience varying
amounts of speedup when executed with different co-runners.
For example, the speedup obtained by omnetpp, which has the
highest LLC miss rate in Set 1 is much lower compared to
the rest of the applications in its set. However, we do not see
such a clear behaviour exhibited by astar which exhibits the
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(a) Speedup for Set 2 due to Turbo (Same Core)
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(b) Speedup for Set 2 due to Turbo (Different Cores)

Fig. 5. Speedup due to Turbo - Set 2

TABLE IV
AVERAGE DEGRADATION AND AVERAGE SPEEDUP

Same Core Different Core
Set 1

Degradation Speedup Degradation Speedup
CC 1.6 5.4% 1.0 3.8%
CM 1.4 5.3% 1.0 2.8%
MM 1.4 4.2% 1.1 2.2%

Set 2
Degradation Speedup Degradation Speedup

CC 1.3 6.6% 1.0 5.3%
CM 1.3 4.4% 1.0 5.3%
MM 1.3 5.4% 1.0 4.2%

highest LLC miss rate in Set 2.
Our initial classification of applications (Table I) does not

provide sufficient information to analyze these results. To
explain this data, we use a more fine-grained classification
(based on LLC miss rate) and group the applications into
three clusters: CPU-intensive, moderately memory-intensive
and highly memory-intensive. We visually determine the clus-
ter to which an application belongs using the clustering seen in
Figure 2. We plot the average speedup and effective frequency
seen by the applications in Figures 6 and 7 respectively.

Figures 6(a) and 6(b) show the percentage speedup expe-
rienced by individual applications when executed with the
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Fig. 6. Average application speedup

interfering application on the same core (henceforth referred to
as same-core config) and different cores (henceforth referred
to as different-core config). The speedup shown in the figure
is calculated by averaging the speedup seen across all co-run
pairs. As expected, the highly memory-intensive applications
experience the least speedup. Figures 7(a) and 7(b) show the
effective frequency that the applications execute at. We calcu-
late the effective frequency using the percentage of execution
time spent by the application at each frequency. These figures
show that the frequencies are 2-3% lower in the different-core
configs. When only one core is active (as in the same-core
config) the processor is able to run at a higher frequency than
when two cores are active (as in the different-core config).

In the different-core config, the moderately memory-
intensive applications experience roughly the same average
speedup as the CPU-intensive applications. This is due to the
fact that the moderately memory-intensive applications run
at a relatively higher frequency in the different-core config
than the CPU-intensive applications. Looking at the relative
change in the effective frequency between the same-core
config and different-core config, we see that the moderately
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Fig. 7. Effective frequency

memory-intensive applications experience a smaller frequency
degradation than the CPU-intensive applications. For the mod-
erately memory-intensive applications, the frequency drops
by 2.4% between the same-core and different-core config.
For the CPU-intensive applications, the drop is 3.4%. The
CPU-intensive applications experience a lower Turbo speedup
relative to moderately memory-intensive applications because
they execute at lower frequencies.

We undertake a regression analysis to identify the corre-
lation between application properties and the speedup they
exhibit in the various configurations. Speedup is the depen-
dent variable; application type (Floating Point vs. Integer),
LLC miss rate, temperature, and effective frequency are the
independent variables. When the differences in the degree
of memory-intensity are large, the LLC largely determines
the speedup from Turbo. However, when these differences
are smaller (as between the CPU-intensive and moderately
memory-intensive applications), the frequency at which the
applications run is the main determinant. We also analyzed
whether the properties of the application determine the fre-
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quency at which the processor runs. We found low corre-
lation between the application characteristics that we mea-
sured (LLC, Floating Point or Integer type) and the effective
frequency. However, we believe that further investigation is
required to understand the effect of application properties on
frequency.

C. Saturation Tests
We saturate all of the cores so that there is a benchmark

application bound to each SMT context on the processor. There
are four configurations, each used with and without Turbo
Boost. In the first configuration, all eight cores are loaded with
the same CPU-intensive benchmark (denoted by CC CC CC
CC). In the second configuration, the eight cores are loaded
with the same memory-intensive benchmark (denoted by MM
MM MM MM). Finally, in the last two configurations, we load
the SMT contexts with four CPU-intensive (C) benchmarks
and four memory-intensive (M) benchmarks in MM MM CC
CC and CM CM CM CM assignments. In the MM MM CC CC
assignment, each memory-intensive application shares a core
with another memory-intensive application, while in the CM
CM CM CM assignment, memory-intensive applications share
cores with CPU-intensive applications. We run the saturation
tests on two different sets of benchmarks where Set 1 is
composed of the CPU-intensive povray and the memory-
intensive leslie3d benchmarks while Set 2 is composed of
the CPU-intensive h264 and the memory-intensive omnetpp
applications. We need to note here that the Set 1 and Set 2
are different from the ones used for the paired benchmark tests
described in Section III-B.

The Turbo Boost frequency scaling algorithm takes into
account the number of active cores and core temperature when
determining the frequencies of the cores. For the saturation
tests we expect that the cores would spend the majority of their
execution time at non-Turbo frequencies. This is because all of
the cores are active. Additionally, we expect that the processor
temperature will be high due to all of the cores being active.
This will also cause the frequency scaling algorithm to lower
the frequencies of the cores.

Figure 8 shows the frequency distribution of the cores
when the saturation tests are executed. The results of the
saturation tests show that in all configurations, the cores spent
the majority of their time at the lower Turbo frequency. This is
against our prediction that the cores would operate mostly at
non-Turbo Boost frequencies. In all configurations, Core 2 (the
third physical core) operates at the higher Turbo frequency for
a portion of time, but all cores spend the majority of their time
(at least 90%) at the lower Turbo frequency and some time
at other non-Turbo frequencies. Additionally, the behaviour of
the cores is not affected by the types of applications that were
bound to them – cores running memory-intensive benchmarks
did not operate at higher frequencies compared to the cores
running CPU-intensive benchmarks. At the same time, we see
that a core that has two CPU-intensive applications bound to
it spends more time at non-Turbo frequencies compared to the
other configurations.

Table V shows the execution times of the benchmarks with
and without Turbo Boost and Table VI shows the resulting

speedup from enabling Turbo Boost for the different con-
figurations. The MM MM CC CC configuration yields the
largest speedup when Turbo is enabled compared to all other
configurations. The CC CC CC CC configuration also receives
a significant speedup. In addition to the execution times, the
table also captures the normalized average speedup (marked
N.Avg). We normalize the execution time of each benchmark
to its execution time in the MM MM CC CC configuration.
The resultant values are then averaged to obtain the normalized
average speedup.

The normalized average speedups shown in Table V reveal
that applications execute in lesser time in the CM CM CM CM
configuration compared to the MM MM CC CC configuration
(for both sets of applications and irrespective of Turbo Boost)
and is also the optimal assignment of the four memory-
intensive and four CPU-intensive benchmarks. Applications in
Set 1 get a 10% speedup in the CM CM CM CM configuration
(without Turbo Boost) and 6% (with Turbo Boost) compared to
the MM MM CC CC configuration. For Set 2, the speedups are
8% and 5% respectively. The second set of applications have
a lower LLC miss profile, so isolating the memory intensive
applications from each other (as in the CM CM CM CM)
configuration is less important.

TABLE V
EXECUTION TIMES (IN SECONDS)

Without Turbo With Turbo
Set 1

C M N.Avg C M N.Avg
CC CC CC CC 408.2 – – 392.3 – –
MM MM CC CC 414.2 1176.0 1 396.7 1116.0 1
CM CM CM CM 408.2 1065.5 0.9 393.7 1034.0 0.94
MM MM MM MM – 1400.0 – – 1394.7 –

Set 2
C M N.Avg C M N.Avg

CC CC CC CC 149.8 – – 142.8 – –
MM MM CC CC 154.0 662.0 1 145.4 650.3 1
CM CM CM CM 120.5 679.5 0.92 116.3 673.8 0.95
MM MM MM MM – 831.1 – – 824.8 –

Interestingly, the speedups of the configurations in Table
VI reveal that the MM MM CC CC configuration receives a
greater speedup from Turbo Boost compared to the CM CM
CM CM configuration. This difference in the speedup due to
Turbo Boost versus the speedup due to optimal thread schedul-
ing carries an important implication for designers of thread
schedulers for systems like Nehalem: attempts to maximize
the activation of the Turbo Boost feature must be carefully
weighed against the possible effects of sub-optimal scheduling.

Finally we note that the speedup for memory-intensive
applications is smaller in the MM MM MM MM configuration
relative to mixed CM configurations, because each memory-
intensive application experiences a higher contention for the
shared cache in the MM MM MM MM configuration relative
to mixed CM configurations. As a result, memory-intensive
applications become even less sensitive to changes in CPU
frequency and experience a smaller speedup from Turbo Boost.

D. Multi-threaded Workloads

A selection of benchmarks from the PARSEC benchmark
suite [5] as well as a small set of queries (tblastx) for the
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TABLE VI
SPEEDUP FOR SATURATION TEST 1

Configuration % Speedup
Set 1

CPU-Intensive Memory-Intensive
CC CC CC CC 4.0% –
MM MM CC CC 4.4% 5.4%
CM CM CM CM 3.6% 3.0%
MM MM MM MM – 0.3%

Set 2
CPU-Intensive Memory-Intensive

CC CC CC CC 4.9% –
MM MM CC CC 5.9% 1.8%
CM CM CM CM 3.6% 0.8%
MM MM MM MM – 0.7%

BLAST bio-informatics tool [1] are executed with Turbo
enabled; each is spawned so as to have up to eight running
threads. Based on prior characterization of these benchmarks
[1], [5] we can roughly assess the extent to which these bench-
marks are parallelized. Table VII shows this classification as
well as the impact of Turbo Boost on the execution time
of these benchmarks; the applications certainly benefit from
Turbo. It is more interesting, however, to look at the CPU
utilization over time for these benchmarks to understand from
where these performance gains are coming. It is not possible
to show all the data here so instead we will highlight data
from the BLAST bio-informatics sequencing tool which show
an exemplary range of behaviours.

TABLE VII
SPEEDUP DUE TO TURBO FOR MULTI-THREADED BENCHMARKS SUITES

Benchmark Degree of Parallelization Speedup
Blast limited by serial sections 4.5%
Blackscholes highly parallel 4.8%
Ferret highly parallel 5.4%
Swaptions highly parallel 4.2%
X264 limited by serial sections 2.7%

Figure 9 shows the diverse range of behaviour during
the execution of BLAST. While all the cores start at 100%
utilization and run at the lower Turbo frequency, Core 0 drops
to 50% utilization while the other cores drop to 0% utilization.

50% utilization on a single core is actually indicative of a
sequential phase. Because there are two thread contexts on
each physical core, the maximum core utilization during a
sequential phase is 50%. Core 0 transitions to the higher
Turbo frequency during this sequential portion. We observe
that among the four physical cores, physical Core 1 spends
largest percentage of time executing sequential code portions.
Yet, the frequency on Core 1 does not reach the higher Turbo
frequency during all the sequential phases; nor does it stay at
higher Turbo frequency for the entire duration of the sequential
phase. We also observe that the other cores continue to operate
at the lower Turbo frequency despite having 0% utilization.
We expected the frequency of idle cores to reduce to 1.5 GHz
during the sequential phases but the on-demand governor on
Linux is not aggressively making this adjustment.

From these results, we can conclude that Turbo Boost is
sensitive to changes in load which enables it to accelerate
sequential phases of the code. However, software power man-
ager is not aggressive enough at reducing the frequency of idle
cores to enable frequent and extended activation of Turbo. Fur-
thermore, the speedups from acceleration of sequential phases
on fast cores are smaller than that reported by the previous
study [2] because the Turbo Boost frequency increase (relative
to the maximum non-Turbo frequency) is much smaller than
the frequency differential in that study.

IV. ENERGY CONSIDERATIONS

When Turbo Boost is enabled applications experience a
boost in performance. However, what is the cost of this
performance improvement? To answer this question, we derive
a power metric using the time spent at the different frequencies
when Turbo Boost is enabled. We derive such a metric as we
do not have the equipment to measure power consumption.
The metric is motivated by a simple power model. Note that
we call the metric the energy consumption of the processor;
however, this value is not the actual energy consumption.

Processor power consumption is given by

P = αC(V + Il)V f (1)

where α is the activity factor, C is the capacitance, V is the
supply voltage, f is the operating frequency, and Il is leakage
current.

We conservatively assume that C and Il are constant, and
we set α to 1. We define the power of the processor when
operating at the base frequency of 3.2 GHz, that is, the highest
frequency that the processor operates at when Turbo Boost is
disabled.

P( fbase) = αC(V + Il)V f = C(V + Il)V fbase (2)

Intel processors require 50mV additional voltage to operate
133.33 MHz faster [16]. Then, the power at Turbo Boost
frequencies can be obtained by the equation :

P( f ) =
(V ′+ Il)V ′ f

(V + Il)V fbase
(3)

where V ′ = V + k ∗ .05, k being number of steps above fbase.
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Fig. 9. Physical core frequency and utilization during a single execution of the BLAST bio-informatics benchmark. Clear sequential phases are seen during
execution.

TABLE VIII
PERCENT INCREASE IN ENERGY IN ISOLATION TESTS FROM ENABLING

TURBO BOOST

Benchmark Cost
MF 13.9%
MI 13.7%
CF 13.9%
CI 14.6%

Energy is given as Power ∗Time. Therefore, to obtain the
energy we multiply the power at the different frequencies by
the time spent by the application at the various frequencies.
For example, the time spent at the base frequency when Turbo
Boost is disabled is 100% and the power of the processor
is 1, therefore, the total energy consumption is 100 units.
These assumptions are reasonable as we are not interested
in the exact value of the energy that is consumed but rather
in the energy consumption relative to the base frequency. We
use abstract units instead of Watts to emphasize that this is
a modeled value and not a measured value. To obtain the
total energy consumption across the processor, we sum up the
power consumption for each individual core as determined
by Equation 3 multiplied by the time spent at the various
frequencies.

TABLE IX
PERCENT INCREASE (AVERAGE) IN ENERGY IN PAIRED TESTS FROM

ENABLING TURBO BOOST

Same Core Different Core
CC 15.7% 10.6%
CM 15.9% 11.2%
MM 16.6% 11.3%

TABLE X
PERCENT INCREASE (AVERAGE) IN ENERGY IN SATURATION FROM

ENABLING TURBO BOOST

Set 1 Set 2
CC CC CC CC 5.1% 9.0%
CC CC MM MM 12.3% 11.6%
CM CM CM CM 9.0% 9.9%
MM MM MM MM 9.4% 8.9%

Tables VIII, IX, and X show the percent increase in energy
resulting from enabling Turbo Boost for isolation tests, paired
tests, and saturation tests respectively. The increase can be
attributed to the increase in the voltage which has a quadratic
effect on power consumption and is also the dominant factor
in Equation 1. In the isolation tests applications spend a large
percentage of their execution time at the higher Turbo Boost
frequency which accounts higher increase in the modeled en-
ergy. This observation can also be made in the paired execution
scenarios—the same-core configuration (where the processor
operates mostly at the higher Turbo Boost frequency) shows
a higher modeled energy value compared to the different-
core config. In the saturation tests, the CM CM CM CM
configuration completes in lesser time, and also does not spend
time in the highest Turbo Frequency (Figure 8). Consequently,
it shows a lower energy metric compared to the MM MM CC
CC configuration.

V. RELATED WORK

The release of a new processor triggers performance mea-
surement activity in the hardware hobbyist and research com-
munity. Tuck et al. [19] studied Intel Hyper Threading (HT)
technology when the first HT processors were released. Keeton
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et al. [11] characterized the performance of the quad core
Pentium processor using OLTP workload. Our work is similar
in spirit to both these works—it is an attempt to understand the
attributes of a new processor feature. More recently, Barker
et al. [3] investigated a pre-release version of the Nehalem
architecture. Their work compares the performance of this
architecture against the Intel® Tigerton and AMD® Barcelona
processors (both x86 64, quad core processors) using scientific
computing workloads. They specifically focus on measuring
and comparing the NUMA performance of Nehalem against
Barcelona and Tigerton, and highlight the excellent perfor-
mance of Nehalem’s memory architecture. In their study, they
disable the Turbo Boost feature for their workload execution.

The focus on Nehalem’s capability to accelerate sequential
phases of parallel applications is inspired by the work of
Annavaram et al. [2] as discussed in Section I. We have shown
that Nehalem certainly accelerates sequential phases of parallel
applications, but the frequency improvements delivered by
Turbo Boost are smaller than those projected from running
sequential phases on “fast” cores of AMP architectures pro-
posed in previous studies [2], [8], [18].

VI. CONCLUSION

Turbo Boost Technology opportunistically boosts the fre-
quencies of the cores on the multi-core Core i7 processor. Our
isolation, paired and saturation tests showed that Turbo Boost
can provide on average up to a 6% reduction in execution time.
Turbo Boost Technology had the most impact on performance
when the scheduling was not optimal; however, in all cases,
Turbo Boost enhanced performance. Turbo Boost also resulted
in a significant increase in energy consumption because the
processor requires a higher voltage to operate at Turbo Boost
frequencies. However, current processors also support low
power sleep states where they consume very little power.
Disks, memory and other platform components can also be big
contributors to platform power consumption. When we con-
sider the total platform power, it could be beneficial to execute
with Turbo Boost, complete work faster, and save platform
power by placing the CPU and other platform components
(DIMMs, Hard Disk Drives, NICs, etc) in low-power idle state.
Further investigation is necessary to ascertain our hypothesis
and measure the extent of power savings. Finally, Turbo Boost
exhibits the potential to accelerate sequential sections in multi-
threaded code which improves performance of many parallel
applications—an important attribute now and in the future.
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