
Exploring Practical Benefits of Asymmetric
Multicore Processors

Jon Hourd, Chaofei Fan, Jiasi Zeng, Qiang(Scott) Zhang
Micah J Best, Alexandra Fedorova, Craig Mustard

{jlh4, cfa18, jza48, qsz, mbest, fedorova, cam14}@sfu.ca
Simon Fraser University

Vancouver Canada

Abstract—Asymmetric multicore processors (AMP) are
built of cores that expose the same ISA but differ in per-
formance, complexity, and power consumption. A typical
AMP might consist of a plenty of slow, small and simple
cores and a handful of fast, large and complex cores. AMPs
have been proposed as a more energy efficient alternative
to symmetric multicore processors. They are particularly
interesting in their potential to mitigate Amdahl’s law for
parallel program with sequential phases. While a parallel
phase of the code runs on plentiful slow cores enjoying
low energy per instruction, the sequential phase can run
on the fast core, enjoying high single-thread performance
of that core. As a result, performance per unit of energy
is maximized. In this paper we evaluate the effects of
accelerating sequential phases of parallel applications on
an AMP. Using a synthetic workload generator and an
efficient asymmetry-aware user-level scheduler, we explore
how the workload’s properties determine the speedup that
the workload will experience on an AMP system. Such an
evaluation has been performed before only analytically;
experimental studies have been limited to a small number
of workloads. Our study is the first to experimentally
explore benefits on AMP systems for a wide range of
workloads.

I. INTRODUCTION

Asymmetric multicore processors consist of several
cores exposing a single ISA but varying in performance
[1], [4], [5], [6], [10], [11]. AMP systems are envisioned
to be built of many simple slow cores and a few fast
and powerful cores. Faster cores are more expensive
in terms of power and chip area than slow cores, but
at the same time they can offer better performance to
sequential workloads that cannot take advantage of many
slow cores. AMP systems have been proposed as a
more energy-efficient alternative to symmetric multicore
processors (SMP) for workloads with mixed parallelism.
Workloads that consist of both sequential and parallel
code can benefit from AMPs. Parallel code can be
assigned to run on plentiful slow cores, enjoying low

energy per instruction, while sequential code can be
assigned to run on fast cores, using more energy per
instruction but enjoying much better performance than
if they were assigned to slow cores.

In fact, recent work from Intel demonstrated per-
formance gains of up to 50% on AMPs relative to
SMPs that used the same amount of power [1]. Recent
work by Hill and Marty [3] concluded that AMPs
can offer performance significantly better than SMPs
for applications whose sequential region is as small as
5%. Unfortunately, prior work evaluating the potential of
AMP processors focused either on a small set of applica-
tions [1] or performed a purely analytical evaluation [3].
The question of how performance improvements derived
from AMP architectures are determined by the properties
of the workloads in real experimental conditions has not
been fully addressed. Our work addresses this question.

We have created a synthetic workload generator that
produces workloads with varying degrees of parallelism
and varying patterns and durations of sequential phases.
We also developed a user-level scheduler inside Cascade
that is aware of the underlying system’s asymmetry and
the parallel-to-sequential phase changes in the applica-
tion. The scheduler assigns the sequential phases to the
fast core while letting the parallel phases run on slow
cores. As an experimental platform we use a 16-core
AMD Opteron system where the cores can be configured
to run at varying speeds using Dynamic Voltage and
Frequency Scaling (DVFS).

While theoretical analysis of AMP systems indicated
their promising potential, these benefits may not neces-
sarily translate to real workloads due to the overhead
of thread migrations. A thread must be migrated from
the slow to the fast core when the workload enters
a sequential phase. The migration overhead has two
components: the overhead of rescheduling the thread on
a new core and the overhead associated with the loss of
cache state accumulated on the core where the thread
ran before the migration. In our experiments we attempt



to capture both effects. We use the actual user-level
scheduler that migrates the application’s thread to the fast
core upon detecting a sequential phase, and we vary the
frequency of parallel/sequential phase changes to gauge
the effect of migration frequency on performance. We
use workloads with various memory working set sizes
and access patterns to capture the effects on caching.
Although the caching effect has not been evaluated com-
prehensively (this is a goal for future work), our chosen
workloads were constructed to resemble the properties
of real applications. For the workloads used in our ex-
periments, our results indicate that AMP systems deliver
the expected theoretical potential, with the exception of
workloads that exhibit very frequent switches between
sequential and parallel phases.

The rest of this paper is organized as follows: Section
2 introduces the synthetic workload generator. Section
3 discusses theoretical analysis. Section 4 describes the
experiment setup. Section 5 presents the experiment
results.

II. THE SYNTHETIC WORKLOAD GENERATOR

To generate the workloads for our study, we used the
Cascade parallel programming framework [2]. Cascade
is a new parallel programming framework for complex
systems. With Cascade, the programmer explicitly struc-
tures her C++ program as a collection of independent
units of computation, or tasks. Cascade allows users
to create graphs of computation tasks that are then
scheduled and executed on a CPU by the Cascade
runtime system. Figure 1 depicts a structure typical of the
Cascade program we created for our experiments. The
boxes represent the tasks (computational kernels), arrows
represent dependencies. For instance, arrows going from
tasks B, C, and D to task E indicate that task E may
not run until tasks B, C, and D have completed. We use
the graph structure depicted in Figure 1 to generate the
workloads for our study. In particular, we focus on two
aspects of the program: the structure of the graph and the
type of computation performed by the tasks. All graphs
start with a single task (A) to simulate a sequential phase.
Once A finishes, several tasks start simultaneously (B, C
and D) to simulate a parallel phase. B, C and D perform
the same work so that they start and end at roughly the
same time. Once B, C and D finish, the next sequential
phase (E) is executed. The last phase of all graphs is a
sequential phase (I).

While the structures of our generated graphs are
similar to the graph shown in Figure 1, they vary as
follows:

1. The number of sequential phases can be varied
according to the desired phase change frequency. The

Fig. 1. Task Graph

number of parallel phases is one fewer than the number
of sequential phases.

2. The number of parallel tasks in each parallel phase
can also be varied. For our purpose all parallel phases
have the same number of parallel tasks.

3. The total computational workload of the entire
graph can be precisely specified.

4. We can also specify the percentage of code executed
in sequential phases.

Once a percentage of code executed by sequential
phases is specified, the corresponding amount of the total
workload is distributed equally to each sequential task
so that the execution time for each sequential phase is
roughly the same. The same method is applied to parallel
phases so that all parallel computational tasks (e.g., B,
C, D, F, G, and H in Figure 1) have roughly the same
execution time.

In our initial experiments, all computational tasks
execute an identical C++ function that consists of four
algorithms, each taking roughly the same time to com-
plete: (1) Ic, a CPU-intensive integer based pseudo-
LZW algorithm; (2) Is, a CPU-intensive integer based
memory array shuffle algorithm; (3) Fm, a floating point
Mandelbrot fractal generating algorithm (also CPU-
intensive); (4) Fr, a memory-bound floating point matrix
row reduction algorithm.

III. THEORETICAL ANALYSIS

Amdahl’s Law states that the speedup is the original
exexution time divided by the enhanced execution time.
Following the method used by Hill and Marty [3],
we use Amdahl’s Law to obtain a formula to predict
a program’s performance speedup when its serial and
parallel portions and processor performance are known:

ExecutionTime =
f

per f (s)
+

(1− f )
per f (p)× x



Speedup =
ExecutionTime(Original)

ExecutionTime(Enhanced)

where f is the percent of code in sequential phases,
per f (s) is the performance of serial core with frequency
s, per f (p) is the performance of parallel cores with fre-
quency p, x is the number of cores used in parallel phase.
per f (x) is a function that predicts the performance of a
core with frequency x. For simplicity, we assume that it is
proportional to the frequency. This formula assumes that
parallel portions are entirely parallelizable and that there
is no switching overhead. Both of these assumptions are
to simplify the model and not necessarily expected to
hold in a practice.

Using this formula, we generate the expected speedup
of parallel applications on three systems: (1) SMP 16: a
symmetric multicore system with 16 cores, (2) SMP 4:
a symmetric multicore system with four cores, where
each core runs at 2 times the frequency of each core
in SMP 16, and (3) AMP 13: an asymmetric multicore
system consisting of one ”fast” core (of the speed similar
to cores on the AMP 4 system) and 12 ”slow” cores (of
the speed similar to cores on the SMP 16 system).

The system configurations were constructed to have
roughly the same power budget. The power requirements
of a processing unit are generally accepted to be a func-
tion of the frequency of operation [1]. For a doubling
of clock speed, a corresponding quadrupling in power
consumption is expected [3]. Thus, a processor running
at frequency x will consume four times less power than
the processor running at frequency 2x. Therefore, one
core running at speed 2x is power-equivalent to four
cores running at speed x. As such, the three systems
shown above will consume roughly the same power.

Figure 2 shows that using our execution time formula,
we determine that the AMP system will outperform
the SMP 4 system for all but completely sequential
programs and it will outperform the SMP 16 system for
programs with sequential region greater than 4%.

The results presented in Figure 2 are theoretical and
they mimic those reported earlier by Hill and Marty [3].
In the following sections we present the experimental
results to evaluate how close they are to these theoretical
predictions.

IV. EXPERIMENTAL SETUP

A. Experiment Platform

We used a Dell-Poweredge-R905 as our experimental
system. The machine has 4 chips (AMD Opteron 8356
Barcelona) with 4 cores per chip. Each core has a private
256KB L2 cache and 2MB L3 victim cache that is shared

Fig. 2. Theoretical Speedup Normalized Baseline SMP 4

among cores on the same chip. Our system is equipped
with 64GB of 667MHz DDR, and it runs Linux 2.6.25
kernel with the Gentoo distribution.

This system supports DVFS for frequency scaling on a
per core basis. The available frequency of AMD Opteron
8356 is from 1.15GHz to 2.3GHz. By varying the core
frequency and turning off unused cores, we created three
configurations with the same power budget as shown in
Table 1.

Number of Cores Frequencies
SMP 4 4 4×2.3GHz
SMP 16 16 16×1.15GHz
AMP 13 13 1×2.3GHz

+ 12×1.15GHz

TABLE I
EXPERIMENTAL CONFIGURATION

Our user-level scheduler assigns tasks (recall Figure 1)
to threads at runtime. Upon initialization, the scheduler
creates as many threads as there are cores and binds
each thread to a core. When the task graph begins
to run, tasks are assigned to threads. On symmetric
configurations, scheduling is purely demand-driven: a
newly available task is assigned to any free thread.
On an AMP configuration, one thread is bound to the
fast core and is called the fast thread; other threads
are bound to slow cores and are called slow threads.
When there is only one runnable task, Cascade assigns
it to the fast thread. When there are multiple runnable
tasks, they are assigned to slow threads. Although this
scheduling policy does not utilize the fast core during
the parallel phase, it is a reasonable approximation of
a realistic AMP-aware scheduler. Figure 3 demonstrates
one example of workload assignment during runtime:
each thread is assigned to one core; sequential parts are
always executed on thread 0, which is a fast thread,



while parallel parts are executed in parallel on other slow
threads.

B. Workloads

We varied several parameters in our graph generator
to generate a task graph that could capture major char-
acterizations of real applications.
Iterations: This parameter represents the number of com-
putational tasks of the whole graph, in other words, the
execution time of the program. By setting iterations = 1,
there will be 107 computational tasks, each consisting of
four C++ algorithms.
Phase change: This parameter defines how many se-
quential and parallel phases there are in the graph repre-
senting the computation. A graph always starts and ends
with a sequential phase. By setting phase change = 2,
there will be two sequential phases and one parallel
phase.
Parallel width: This parameter defines how many par-
allel tasks are there in the parallel phase. By setting
parallel width = 4, there will be four parallel tasks in
the parallel phase.
Sequential percentage: This parameter defines the
portion of code that is sequential. By setting
sequential percentage = 50, 50% of the graph will be
executed in sequential phases and 50% will be in the
remaining parallel phases.

Setting iterations = 10, phase change = 4,
parallel width = 3, sequential percentage = 20
will produce the same graph as in Figure 1. Each
sequential task will have 10×107×20%

3 algorithmic
iterations, while each parallel task will have 10×107×80%

2×3
algorithmic iterations.

For each experimental configuration, we configure the
graph such that the parallel width is equal to the number
of cores available in the parallel phase, which corre-
sponds to the way users often configure the threading
level in their applications.

V. EXPERIMENTAL RESULTS

In the first experiment we set the number of iterations
to 100 and the phase changes parameter to 5. Figure
4 shows the speedup for workloads with sequential
percentage ranging from 0%˜100% (with 5% increment)
on SMP 16 and AMP 13 relative to SMP 4. Comparing
these results to the theoretical results in Figure 2 we see
that the actual experimental results closely follow the
theoretical results with all data on average within 1%
range of the analytically derived values. When the work-
load is purely parallel, SMP 16 outperforms SMP 4 by
a factor of 2 approximately, as seen in the theoretical

graph. With the increase of sequential code fraction, the
fast core in SMP 4 begins to show its power: SMP 4
outperforms SMP 16 beyond the sequential fraction of
15%. Most importantly, AMP 13 almost always outper-
forms SMP 4 and SMP 16. This is simply because the
single fast core speeds up the sequential phases while the
remaining slow cores are able to efficiently execute the
parallel phases. Only when the sequential code fraction
is below 5% does SMP 16 outperform AMP 13 since
SMP 16 is better able to utilize a large number of cores
for highly parallel workloads.

To experiment with shorter tasks (and thus more
frequent phase changes), we reduced the number of total
iterations by setting iterations = 10 and left the number
of phase changes set to five. In this case, the pattern of
task graph is the same as in the previous test and the
only difference is the length of each task (1/10 of that
in previous task graph). The results shown in Figure 5
demonstrate that when the tasks are shorter, the effect of
the overhead comes into play. The speedup of AMP 13
is on average 3.5% within the range of theoretical results,
and the speedup for SMP 16 is on average within 1.9%
of theoretical results.

0 20 40 60 80 100

0.
5

1.
0

1.
5

2.
0

Percentage of Sequential Part

S
pe

ed
up

SMP 4
SMP 16
AMP 13

Fig. 4. Speedup. (iterations = 100, phase change = 5)

0 20 40 60 80 100

0.
5

1.
0

1.
5

2.
0

2.
5

Percentage of Sequential Part

S
pe

ed
up

SMP 4
SMP 16
AMP 13

Fig. 5. Speedup. (iterations = 10, phase change = 5)



Fig. 3. Scheduling on AMP. (iterations = 10, phase change = 8)

To investigate the performance under very frequent
phase changes, we increased the number of phase
changes to 15 and kept number of iterations equal to
ten. In this experiment, each parallel task takes roughly 3
milliseconds when the width of the graph is 12, and each
sequential task takes roughly 30 milliseconds. Therefore,
the average frequency of phase changes is about 16
milliseconds. Figure 6 shows that the speedup for this
set of workloads is by no means similar to the theoretical
results. SMP 4 outperforms both SMP 16 and AMP 13
for all workloads.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Percentage of Sequential Part

S
pe

ed
up

SMP 4
SMP 16
AMP 13

Fig. 6. Speedup. (iterations = 10, phase change = 15)

To further investigate the effect of phase changes,
we measured the slowdown for each configuration when
phase change increased from five to fifteen while keeping
the number of iterations equal to ten (Figure 7). SMP 16
and AMP 13 suffered more performance degradation
than SMP 4 and the slowdown appeared to decrease
as sequential percentage increased. This indicates that
scheduling overhead was the reason behind poor perfor-

mance. When switching between parallel and sequential
phases, there is scheduling overhead associated with
updating the scheduler’s internal queues, handling inter-
processor interrupts as well as migrating the thread’s
state architectural state to the fast core. Since the syn-
thetic workloads on SMP 16 and AMP 13 have a greater
parallel width than SMP 4, the overhead of task assign-
ment was larger and this caused a greater slowdown. As
the sequential code fraction increases, the size of each
sequential task becomes larger, and so the overhead of
scheduling is relatively small. In prior work we evaluated
the efficiency of the Cascade scheduler [2] and found that
it was rather efficient, so we conjecture that the overhead
is not due to the implementation of the scheduler, but is
inherent to any system that would be required to switch
threads at such a high frequency.

0 20 40 60 80 100

0.
8

1.
2

1.
6

2.
0

Percentage of Sequential Part

S
lo

w
do

w
n

SMP 4
SMP 16
AMP 13

Fig. 7. Slowdown (phase change = 15)



VI. CONCLUSIONS AND FUTURE WORK

In this paper we have evaluated the practical potential
of AMP processors by analyzing how the performance
benefits delivered by these systems are determined by
the properties of the workload. We create synthetic
workloads to simulate real applications and use DVFS
technique to model AMP processors on conventional
multicore processors. Our results demonstrate that AMP
systems can deliver their theoretically predicted perfor-
mance potential unless the changes between parallel and
sequential phases are extremely frequent.

As part of future work we would like to further inves-
tigate the overhead behind thread migrations, perhaps
deriving an analytical model for this overhead based
on the architectural parameters of the system and the
properties of the workload. The effects of migration on
cache performance in the context of AMP systems must
also be investigated further.

Our synthetic workloads aim at simulating paral-
lel behavior of applications with a fine granularity.
But assumptions about the synthetic workloads, i.e.,
computing-bound with consistent pattern, may not be
a good reflection of real applications. More diversified
workloads with various parallel width and percentage
should be tested more systematically. To improve the
reliability of our synthetic workload generator, further
investigation on the behavior of real applications will
also be needed.

Scheduling is another future area for investigation.
Since we didn’t fully utilize fast cores, migrating parallel
tasks to fast cores when they are idle may achieve
significantly better performance in parallel phases. To
further optimize the performance of parallel phase, more
sophisticated scheduling algorithms [11] may be in-
troduced. While several schedulers for AMP systems
have proposed in prior work [5], [7], [8], they have
primarily addressed the ability of these systems to ad-
dress instruction-level parallelism in the workload. Only
one work addressed the design of an asymmetry-aware
operating system scheduler that caters to the changes
in parallel/sequential phases of the applications [9].
It would be interesting to validate our results with
that scheduler, and to evaluate the difference in the
overhead resulting from the user-level and kernel-level
implementations.

REFERENCES

[1] M. Annavaram, E. Grochowski, J. Shen. Mitigating Amdahl’s
Law Through EPI Throttling, ISCA 2005

[2] M. J Best, A. Fedorova, R. Dickie et al. Searching for Concur-
rent Patterns in Video Games: Practical Lessons in Achieving
Parallelism in a Video Game Engine, submitted to EuroSys
2009

[3] M. Hill and M. Marty. Amdahl’s Law in the Multicore Era.
IEEE Computer, July 2008

[4] R. Kumar et al. Single-ISA Heterogeneous Multi-Core Archi-
tectures: The Potential for Processor Power Reduction. MICRO,
2003

[5] R. Kumar et al. Single-ISA Heterogeneous Multicore Architec-
tures for Multithreaded Workload Performance. ISCA, 2004

[6] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. An
Asymmetric Multi-core Architecture for Accelerating Critical
Sections, in ASPLOS, 2009

[7] Daniel Shelepov, Juan Carlos Saez, Stacey Jeffery, Alexandra
Fedorova, Nestor Perez, Zhi Feng Huang, Sergey Blagodurov,
Viren Kumar. HASS: A Scheduler for Heterogeneous Multi-
core Systems, in Operating Systems Review, vol. 43, issue 2,
(Special Issue on the Interaction among the OS, Compilers, and
Multicore Processors), pp. 66-75, April 2009

[8] M. Becchi and P. Crowley. Dynamic Thread Assignment on-
Heterogeneous Multiprocessor Architectures. In Proceedings of
the 3rd Conference on Computing Frontiers, 2006

[9] Juan Carlos Saez, Alexandra Fedorova, Manuel Prieto, Hugo
Vegas. Unleashing the Potential of Asymmetric Multicore Pro-
cessors Through Operating System Support, submitted to PACT
2009

[10] Engin Ipek, Meyrem Krman, Nevin Krman, and Jose F. Mar-
tinez. Core Fusion: Accommodating Software Diversity in Chip
Multiprocessors, in 34th annual international symposium on
Computer architecture

[11] Jian Li and Jose F. Martinez. Dynamic Power-Performance
Adaptation of Parallel Computation on Chip Multiprocessors,
in High-Performance Computer Architecture, 2006


