
Operating System Scheduling On Heterogeneous Core Systems

Alexandra Fedorova

Simon Fraser University

fedorova@cs.sfu.ca

David Vengerov

Sun Microsystems

David.Vengerov@sun.com

Daniel Doucette

Simon Fraser University

ddoucett@cs.sfu.ca

Abstract
We make a case that thread schedulers for

heterogeneous multicore systems should balance

between three objectives: optimal performance, fair

CPU sharing, and balanced core assignment.

Thread-to-core assignment algorithms that optimize

performance have been proposed in the past; in this

paper we argue that they may conflict with the

enforcement of fair CPU sharing. We also

demonstrate the need for balanced core assignment:

an unbalanced core assignment results in

completion time jitter and inconsistent priority

enforcement. We present a blueprint for a

scheduling framework that balances between these

three objectives. The framework consists of three

components: performance-optimizing component,

fairness component, and core balance component.

While the performance-optimizing component could

implement any previously proposed performance-

optimizing algorithm, we propose a new algorithm

based on reinforcement learning (RL). Our RL

algorithm takes into account cache affinity, unlike

previously proposed algorithms. Implementing and

evaluating this framework and the RL algorithm is

the subject of future work.

1. Introduction

A key objective pursued by thread schedulers in

modern operating systems is to enforce fair CPU

sharing. Although fairness policies vary from one

scheduler to another, in general these policies

minimize context switching, ensure that tasks are not

starved for CPU time, and provide consistent

response to users [4,7]. The advent of heterogeneous

multicore (HMC) processors motivates new

objectives and designs for scheduling algorithms. On

a HMC system, optimal performance is achieved

only by assigning a thread to run on the core that is

best suited for it – i.e., the thread’s preferred core

[3,6]. Therefore, a scheduler must employ a core

assignment policy that leads to optimal performance.

Unfortunately, the core assignment policy leading to

optimal performance will conflict with the core

assignment policy leading to fair CPU sharing.

Consider the following example: Suppose that at the

time when the scheduler dispatches thread A on

CPU, A’s preferred core is occupied by another

running thread. The scheduler faces a dilemma:

should it schedule A to run on its non-preferred core

(that is available right away) or have it wait until its

preferred core becomes available? Making A wait

will potentially increase A’s response time and

reduce its allocated fraction of CPU cycles

(compared to a conventional, homogeneous system).

On the other hand, scheduling A on a non-preferred

core will produce sub-optimal instruction rate for A.

Making the right decision requires carefully

weighing performance/fairness tradeoffs of a given

core assignment and making the choice that meets

system’s goals with respect to both objectives.

In some scenarios, the scheduler must also consider

core assignment balance. Modern thread schedulers

are pre-emptive, and so a thread’s execution time

will be usually spread among the system’s cores, but

not necessarily in a balanced fashion. That is, a

thread may execute a larger fraction of time on one

core than on another. On a HMC system, such

unbalanced core assignment will result in jittery

performance (as was shown in the past [2] and

validated again in this paper), and inconsistent

priority enforcement, as demonstrated for the first

time in this paper. To eliminate performance jitter, a

scheduler must periodically rotate threads among

cores, thereby enforcing balanced core assignment.

Clearly, such core assignment policy will not always

result in threads running on their preferred cores and

will thus conflict with the objective of optimizing

performance.

All in all, the three objectives crucial to achieving

good system performance and robustness, namely

(1) optimal performance, (2) fair CPU sharing, and

(3) balanced core assignment, conflict with each

other. To resolve this conflict, the scheduler must

ensure that the core assignment algorithms used to

achieve these objectives take into consideration each

other’s core assignment decisions. This requires

reconsidering the design of the operating system

scheduler. In this paper we describe how we plan to

address this problem.

The contributions of this paper are as follows:

(1) We show that unbalanced core assignment leads

to completion time jitter and inconsistent

priority enforcement;

(2) We describe and evaluate a fix to the Linux

scheduler that eliminates jitter by enforcing

balanced core assignment;

(3) We present a formal definition of a HMC

scheduling problem in terms of balancing three

objectives: optimal performance, fair CPU

sharing, and balanced core assignment;

(4) We present a new scheduling framework that

balances between the three objectives. The

framework consists of three components:

performance-optimizing component, fairness

component, and core balance component. We

also present a new algorithm for the

performance-optimizing component based on

reinforcement learning. Implementing and

evaluating the framework and the algorithm is

the subject of future work.

The rest of the paper is organized as follows: We

present the four contributions outlined above in

sections 2-5 respectively. In Section 6 we present

related work, and in Section 7 we summarize.

2. Effects of Unbalanced Core Assignment

In this section we present results of experiments

demonstrating that unbalanced core assignment on a

HMC system results in completion time jitter

(Section 2.2) and inconsistent priority enforcement

(Section 2.3). The jitter phenomenon has been

demonstrated before for multithreaded workloads

[2], and here we re-validate these results for multi-

program workloads. Results on inconsistent priority

enforcement are new.

2.1. Experimental setup

We run our experiments on a system equipped with

two 2.8 GHz Intel® Xeon™ hyper-threaded

processors (Northwood series), running the ubuntu

distribution of Linux with 2.6.15 version of the

kernel. We disabled hyper-threading. To create a

heterogeneous system, we scaled down the clock

speed on one of the CPUs using the mechanism

available in Xeon processors (intended for thermal

management). The same method was used in an

earlier study to create a heterogeneous system [2]. In

our heterogeneous setup, one processor is running at

2.8 GHz, and the other one at 1.05 GHz. In the

homogeneous setup, both processors are running at

2.8 GHz.

2.2. Completion time jitter

We selected eight benchmarks from the SPEC

CPU2000 suite [1] representing a variety of

architectural characteristics: gzip, mcf, twolf, parser,

vortex, art, mesa, and equake. We run these

benchmarks simultaneously; we restart each

benchmark once it is finished until each benchmark

completes at least five times. For each benchmark,

Figure 1. SPEC benchmark runtimes in the

homogeneous setup.

Figure 2. SPEC benchmark runtimes in the

heterogeneous setup.

we measure the minimum and maximum running

time (i.e., completion time), and the standard

deviation from the average running time.

Figure 1 shows these measurements, normalized

against the mean, for the homogeneous setup, and

Figure 2 for the heterogeneous setup. The mean

running time corresponds to “1” on the Y-axis. The

box boundaries indicate the standard deviation. The

whiskers correspond to the minimum and maximum

running times.

The results indicate that in the heterogeneous setup

the running times are less predictable, more jittery,

than in the homogeneous setup. In the homogeneous

setup, the minimum and maximum running times are

much closer to the mean than in the heterogeneous

setup. Standard deviations in the homogeneous setup

are also smaller. (The exception is art, which

experiences less jittery performance in the

heterogeneous setup than in the homogeneous setup;

we do not yet understand this phenomenon and are

investigating it.)

Applications suffer from jittery completion times on

heterogeneous multicore systems, because the

application’s instruction rate varies from one core to

another, and when the core assignment is unbalanced

the overall running time depends on the particular

core assignment during the run.

The earlier study that demonstrated performance

jitter [2] explained its presence by the fact that the

OS was inconsistent as to which of the cores was left

idle whenever the system load decreased such that

not all cores were used to run application threads.

This explanation does not apply to our experimental

environment, because the cores were never left idle

during the experiments. In our case, jitter was caused

by unbalanced core assignment, and we confirm this

(in Section 3) by showing that a simple scheduler fix

that enforces balanced core assignment eliminates

jitter.

2.3. Inconsistent priority enforcement

In this section we demonstrate a new result with

respect to performance on HMC systems. We show

that unbalanced core assignment results in

inconsistent priority enforcement.

We present results for the first four of our eight

benchmarks: gzip, mcf, twolf, and parser. We could

not gather data for all eight benchmarks due to lack

of time.

The experiments were run as follows: we ran each

benchmark with four different nice settings: 0, 4, 8,

and 12. This resulted in four different priority levels

for the benchmark, level 0 corresponded to the

highest priority. Each benchmark was run five times

with each priority level. For each priority level, we

measured the mean, maximum and minimum

running time and the standard deviation from the

mean. Along with the measured benchmark, we ran

the remaining three benchmarks at the default

priority level.

Figure 3 shows the results for the homogeneous

setup, Figure 4 for the heterogeneous setup.

Priorities are enforced less consistently in the

heterogeneous setup. For all benchmarks except mcf,

the distinction between running times for different

Figure 3. SPEC benchmark runtimes for varying

priorities in the homogeneous setup.

Figure 4. SPEC benchmark runtimes for varying

priorities in the heterogeneous setup.

priority levels of the same benchmark is not as clear

in the heterogeneous setup as in the homogeneous

setup.

Examining gzip in the homogeneous setup, we can

see that its running time steadily increases as its nice

level increases. In the heterogeneous setup, this is

not always the case. For example, the minimum

running time for nice level 12 is the same as the

average running time for nice level 8. The scheduler

does not consistently enforce the user-assigned

priority.

Looking at twolf and parser, in the homogeneous

setup the difference in running times for nice levels

8 and 12 is obvious; in the heterogeneous setup it is

not possible to distinguish between the running times

at these two different priority levels.

Such inconsistent priority enforcement is the direct

consequence of jittery running times caused by

unbalanced core assignment.

3. Enforcing Core Assignment Balance

In this section we describe our enhancement to the

Linux scheduler that enforces balanced core

assignment. The new core balancing algroithm

ensures that each thread’s execution time is divided

evenly across all system’s cores. This reduces

variation in the job’s instruction throughput from run

to run, and as a result reduces running time jitter.

The new core balancing algorithm works as follows.

On each scheduler tick, the CPU inspects the run

queue of the CPU one number higher than the

current CPU to see if there are any jobs that have

completed their timeslice on that CPU. (The highest

numbered CPU examines the lowest numbered

CPU.) If such jobs are found, they are moved from

the inspected CPU to the inspecting CPU. That is,

CPU 0 inspects CPU 1, CPU 1 inspects CPU 2, ... ,

CPU N inspects CPU 0. The CPU detects the job

that should be moved by examining the

'hcs_last_cpu' variable of each job: that variable is

set to be equal to the CPU where the thread ran

during its last timeslice.

To dynamically enable and disable this core

balancing feature we added a new global variable

'hcs_balance_enabled', and an entry to

procfs that is used to control that variable.

Figure 5 shows the normalized running times in the

heterogeneous setup with the new scheduler. This is

the same experiment that we described in Section

2.2. Figure 5 should be compared with Figure 2,

which shows the same data collected with the old

scheduler. We can see that the new scheduler

significantly reduces completion time jitter.

Comparing Figure 5 with Figure 1, we can see that

running time jitter in the heterogeneous setup with

the new scheduler is comparable to the

homogeneous setup. (This applies to all benchmarks

except art – we are still investigating the cause for

the unexpected behavior in art.)

Balakrishnan et al. presented another fix to the Linux

scheduler aimed at reducing performance jitter [2];

however it only worked in scenarios when the

number of threads was smaller than the number of

cores. Our core balancing algorithm works

regardless ratio of threads to cores.

Our core balancing algorithm could be improved by

considering cache affinity. In the current design, the

scheduler moves the task to a new core after each

timeslice. This could decrease performance if the

task has some relevant data left in the old core’s

cache: scheduling the task on the old core, rather

than the new one, would have allowed the task to re-

use that data.

Although our new algorithm fixed runtime jitter, it

did not consider how balancing threads’ core

Fig

ure 5. SPEC benchmark runtimes for varying priorities on

the heterogeneous setup with the new scheduler.

assignments would affect performance. Our

algorithm frequently migrates threads among cores,

which would interfere with performance-maximizing

core assignment algorithms that attempt to run

threads on cores that are best suited for them [3,6].

Our scheduling framework is meant to resolve this

conflict.

4. The Scheduling Problem

A scheduler for HMC systems must balance between

three objectives:

(1) Optimal performance

(2) Fair CPU sharing

(3) Balanced core assignment.

We recognize that how to balance between these

objectives, i.e., the relative importance given to each

objective, depends on particular circumstances. Our

balancing framework presented in Section 5 gives

the system administrator a flexibility to specify the

importance of each objective, by setting the

configuration parameters in the framework.

In this section we define the metrics for these

objectives and formally define the scheduling

problem on HMC systems.

4.1. Optimal performance
We measure performance in terms of the aggregate

normalized instruction per cycle rate (IPC) achieved

by all running threads. Normalized IPC (nIPC) for a

thread is computed as weighted speed-up over the

worst-suited core:

)IPC(min

IPC
nIPC

k,J

i,J
i,J =

, (1)

where IPCJ,i and nIPCJ,i is the IPC and nIPC of

thread J on core i, and min(IPCJ,k) is the smallest

IPC achieved by J across all system cores.

So the aggregate normalized IPC is the sum of all

threads’ performance improvements over the worst-

suited core for each thread. Using the normalized

IPC, as opposed to the raw IPC, eliminates the

tendency to favour high-IPC threads [6].

4.2. Fair CPU sharing
As a metric for fairness when sharing the CPU, we

use Response Time Fairness (RTF). A similar metric

has been used in the previous work that evaluated

fairness of scheduling algorithms [12]. The RTF

metric is based on a job’s slowdown. We define job

as the portion of the thread run during a particular

CPU timeslice. (The entire program can be thought

of as a collection of jobs.) The job’s size is simply

the length of its CPU timeslice. Slowdown of a job

of size x, S(x), is defined as the job’s response time

T(x) divided by its size:

x

xT
xS

)(
)(=

.
 (2)

T(x) is the sum of the job’s size and its queuing

delay (i.e., the time spent waiting for CPU from the

point of being placed on the scheduling queue).

DEFINITION 1: A job is treated fairly if its expected

slowdown is within a pre-defined constraint F:

FxSE ≤)]([.

This definition of fairness agrees with the time-

sharing fairness policy used in Solaris™ and Linux

[4,7]: larger jobs (i.e., threads with longer timeslices)

will experience longer queuing delays than smaller

jobs (i.e., threads with shorter timeslices).

Constraint F should be proportional to system load.

We will determine a good setting for F

experimentally. Since our goal is to design a

scheduler that accomplishes the level of fairness

similar to existing schedulers, we will measure

typical bounds on slowdown achieved by existing

schedulers, and will derive F based on that data.

DEFINITION 2: System-wide response-time fairness

(RTF) is the percent of jobs satisfying the fairness

constraint in Definition 1.

4.3. Core assignment balance

The metric for core assignment balance must capture

the distribution of a thread’s running time across the

cores. For a thread J, we measure the fraction of

time that J spent running on each core; then we

measure the standard deviation from the average

fraction. This standard deviation, CABJ, is our metric

for core assignment balance.

DEFINITION 3: Core assignment for a thread J is

considered balanced if: ε≤JCAB . (A setting for ε

is determined experimentally.)

DEFINITION 4: System-wide core assignment balance

(CAB) is the percent of tasks satisfying the balance

constraint in Definition 3.

A scheduler configured with a tight CAB constraint

ε would tend to rotate jobs among the system’s cores

(like our simple scheduler presented in Section 3). A

potential concern is that this would violate cache

affinity. To prevent this problem, we consider cache

affinity in our new algorithm presented in the next

section.

PROBLEM FORMULATION:

The goal of the scheduler on HMC systems is to

maximize the aggregate normalized IPC over some

time period t given constraints F for response time

fairness and ε for core assignment balance, set a

priori by the system administrator.

5. Scheduling Framework and Algorithm

We propose a scheduling framework that balances

between the three objectives presented in the

previous section. The framework consists of three

components: performance-optimizing component,

fairness component and core balance component. In

addition, there is a master that co-ordinates these

components.

Each component implements a core assignment

algorithm that pursues that component’s objective.

For example, a performance-optimizing component

could implement one of the algorithms proposed in

previous work [3,6]. Or it could implement a new

algorithm; we present a new algorithm for the

performance-optimizing component in this section.

The fairness component implements a core

assignment algorithm employed by existing

schedulers to achieve fair distribution of CPU time:

for example, a time-sharing algorithm used by

default in Solaris and Linux.

The core balance component implements the

balancing algorithm presented in Section 3.

Each of these components periodically decides that a

particular thread should be migrated from the core

where it executed in the past to another core.

(Performance-optimizing components usually

migrate threads at periodic intervals on the order of

tens or hundreds of milliseconds. Fairness

component and core balance component decide

whether to migrate a thread upon expiration of the

thread’s timeslice.) In our framework, whenever any

of these components decides to migrate a thread, it

consults the master as to whether the migration is

allowed. The master makes a decision based on the

following relation:

 Bi,k-+Bj,k+ > Bi,0+Bj,0+a⋅DCAB+b⋅DRTF . (3)

In this relation, Bi,0 and Bj,0 is the estimated
normalized IPCs on cores i and j respectively if the

thread is not migrated from i to j. Bi,k- and Bj,k+ are

estimated normalized IPCs on cores i and j

respectively if the thread is migrated from core i to

core j. DRTF is the expected change in the system-

wide RTF measure (per Definition 2) and DCAB is the

expected change in the system-wide CAB measure

(per Definition 4) that will occur as a result of this

migration. a, b are coefficients that show the relative

importance of these three objectives and that are set

a priori by a system administrator. The thread is

migrated from core i to core j if the constraints in

equation (3) are satisfied.

The migration criterion (3) implies that a particular

thread migration is performed if the performance

benefit of migrating the thread to another core is

greater than not doing anything, provided that no

large negative impact on the system-wide measures

CAB and RTF will arise as a result of this migration.

By using this design for our framework we assume

that Bi, the normalized IPC on core i given the

threads assigned to that core, can be estimated. This

is a reasonable assumption: performance-optimizing

core assignment algorithms presented in the

literature already rely on such estimates [3,6]. Later

in this section we will show how such estimate is

obtained in the new performance-optimizing

algorithm proposed in this paper.

This framework gives the system administrator a

flexibility to specify the relative importance of each

performance objective. For example, a system

administrator might decide that runtime jitter and

inconsistent priority enforcement are not a concern

for the system; in that case s/he can give an arbitrary

low weight to the CAB metric (coefficient a),

including completely ignoring it (setting a to zero).

Our future work involves implementing this

framework with two different implementations of

the performance-optimizing algorithm, one

presented in previous work [3], and the new one,

presented later in this section. We also plan to

implement the framework in two different operating

systems, Solaris and Linux, to make sure that it

works with different fairness components. Another

objective will be to find good settings for

coefficients a and b, as these coefficients determine

how the system balances between the three

objectives.

5.1. A new performance-optimizing algorithm
We present a new self-tuning algorithm that assigns

threads to cores on HMC systems in a way that

maximizes normalized aggregate IPC. The algorithm

is based on reinforcement learning (RL). It allows

the system to learn the performance-optimizing core

assignment policy. Learning is required for finding

the optimal assignment policy because the system’s

state changes stochastically over time (threads get

blocked occasionally and go to sleep, the instruction

rate of a thread changes over time as the work the

thread is doing changes, etc.), and so the correlation

between states, actions and system’s performance

needs to be learned through interaction with the

system.

In our framework, each system core i learns the

function Bi that approximates the expected future

normalized IPC on that core. Recall that the function

Bi is used to make migration decisions (2).

The benefit function is based on some variables and

tunable parameters (explained below); tunable

parameters are adjusted after every thread migration

decision based on the reinforcement signal

(feedback), which is the value of the normalized IPC

on that core evaluated over the time between two

consecutive migration decisions. The objective of

parameter tuning is to make Bi a better

approximation to the expected future value of the

core IPC.

We now explain what variables are used to estimate

Bi (Section 5.1.1), and how to update tunable

parameters, so that Bi is progressively made to be a

better estimate of the core IPC (Section 5.1.2).

5.1.1. Computing Bi

The function Bi uses several variables as inputs, and

the first one is the average normalized IPC

(avgNIPC) of threads on core i.

Another variable is the average cache affinity of

threads on core i. If a thread has executed on the

core i within the last rechoose_interval (a

tunable parameter that is set by default to 0.03

seconds in Solaris), cache affinity is 1; otherwise,

cache affinity is zero. The algorithm should learn

that it is more preferable to have threads with cache

affinity 1 on a core, as it will mean that threads are

using their cache investment and are executing more

efficiently.

Note that if K threads have executed on a core within

the last rechoose_interval seconds, it still does

not mean that all of them have their full cache

investment intact, since the last few of these K

threads could have displaced the cache investment of

the previous threads if they had a high cache miss

rate. Therefore, a third variable is needed in order to

estimate the average cache investment of threads on

a core: the average cache miss rate of threads on

that core, which can be regularly updated for each

thread using the hardware cache miss rate counter.

Let st be the value of the state vector, composed of

the three variables described above, at time t. The

function Bi will have the following form:

∑
=

=
N

n

tnnt sppsB
1

),(),(ϕ (4)

where φn(s) are pre-specified basis functions defined

on the space of possible values of s, and pn, n=1, …,

N, are the tunable parameters that are adjusted in the

course of learning. Basis functions can be specified

using the framework presented in other RL

algorithms used for resource allocation [9,10,11].

5.1.2. Updating tunable parameters

In order for the migration criterion (2) to work well,

the Bi functions of each core should accurately

approximate the expected future core IPC starting

from any given state s. The expected future IPC of

the core can be defined as the expected discounted

sum of future IPC observations. Then, one can tune

the cost function parameters pn using Reinforcement

Learning (RL) in order to improve the

approximation accuracy of functions Bi. The RL

process basically learns to correlate the states st (as

specified by different combinations of the state

variables) observed on the core with the values of

the reinforcement signal following these states. For

the form of the benefit function we use, the RL

updating process becomes:

),())](,(

))(,([)(

)1(

1

t
i

t
i

i
t

i
tt

i

i

stpsB

tpsBrtp

tp

ϕ

γα

−

++

=+

+ (5)

where pi(t) is the vector of parameters for core i at

time t, αt is a decreasing learning rate that is usually

set to αt=1/t, rt is the reinforcement signal received

at time t (observed normalized IPC between times t

and t+1), γ is a discounting factor between 0 and 1

(value of 0.9 usually works well in practice), and

φ(s) is a vector of all basis functions φn(s) used in

defining the cost function B. The above equation has

been proven to converge to the optimal parameter

vector p
∞
 such that B(s,p

∞
) provides the best

approximation to the expected discounted sum of

future reinforcement signals [8].

In order to see the intuition behind equation (5),

notice that if the parameter vector p(t) is such that

B(s,pt) < B(s,p∞), then, based on the definition of Bi

as a discounted sum of future IPC observations, on

average we will observe that rt + γ B(st+1,pt) >

B(st,pt), which will lead to p(t+1) > p(t) after

executing the update in (5), hence increasing the

value of B(st,p) and making it closer to the true value

B(st,p∞). A similar logic applies in the reverse case if

B(s,pt) > B(s,p∞).

As the accuracy of the Bi function increases in the

course of RL, the system will be able to follow more

and more accurately the core assignment policy

maximizing performance.

6. Related Work

In a recent study, Kumar et al. presented a core

assignment algorithm for maximizing performance

on HMC systems [6]. Their algorithm considered

only a performance maximization objective; it is an

algorithm that could be used in the performance

component of our scheduling framework, but by

itself it does not balance performance with other

objectives. Additionally, this algorithm was not

implemented in a real operating system: it was

evaluated via simulation. Kumar’s algorithm used

normalized IPC as a heuristic for core assignments.

The authors found that the heuristic was a better

predictor of a good core assignment if it was

computed using multiple IPC samples; we will keep

that in mind when developing our algorithm.

Although our new RL algorithm also uses

normalized IPC, it considers other factors, such as

cache affinity, and learns the nature of interactions

between the factors via reinforcement learning.

Becchi et al. presented a core assignment algorithm

that relied on relative IPCs as a heuristic for deriving

the optimal core assignment (similarly to Kumar’s

algorithm and to our RL algorithm) [3]. Like

Kumar’s algorithm, Becchi’s algorithm focused on

performance, and did not consider other objectives.

Also, Becchi’s algorithm has not been implemented

in a real operating system. We will implement

Becchi’s algorithm in the performance component of

our scheduling framework and will use it for

evaluation of our scheduling framework and for

comparison with our RL algorithm.

Balakrishnan et al. observed that heterogeneity of

cores’ computational power in HMC processors

causes jittery runtimes [2]. We confirmed that results

and showed that jittery runtimes lead to inconsistent

priority enforcement. Balakrishnan suggested a

simple change to the operating system scheduler to

eliminate jitter; however it only worked in scenarios

when the number of threads was smaller than the

number of cores. We presented a core balancing

algorithm that eliminates jitter even for workloads

where the number of threads equals or exceeds the

number of cores [5].

Another area of related work is self-tuning

algorithms based on reinforcement learning. These

algorithms were used to solve problems similar to

ours, such as guiding memory and CPUs allocation

on multi-processor systems [9], tuning file migration

policies in multi-tier storage system [10], and

building a soft real-time scheduler, where the goal

was to maximize the number of jobs meeting their

deadlines [11]. These algorithms were shown to

bring substantial performance improvements, both in

simulated [10,11] and real settings [9]. To

determine whether RL is applicable to our problem,

we will compare it to simpler heuristic algorithms in

terms of performance and runtime overhead.

7. Summary

We made a case that a scheduler on HMC systems

must balance between three objectives: optimal

performance, fair CPU sharing, and balanced core

assignment. We showed that unbalanced core

assignment results in performance jitter and

inconsistent priority enforcement, and presented a

simple fix to the Linux scheduler that eliminates

jitter. Finally, we presented a scheduling framework

that balances the three objectives, and proposed a

new performance-optimizing core assignment

algorithm based on reinforcement learning. The new

algorithm, unlike previous similar algorithms,

accounts for cache affinity. Implementing and

evaluating the framework and the algorithm is the

subject of future work.

8. References

 [1] SPEC CPU2000 web site.

http://www.spec.org

 [2] S. Balakrishnan, R. Rajwar, M. Upton, and

K. Lai. The Impact of Performance

Asymmetry in Emerging Multicore

Architectures. In Proceedings of the 32nd

International Symposium on Computer

Architecture (ISCA'05), 2005

 [3] M. Becchi and P. Crowley. Dynamic Thread

Assignment on Heterogeneous

Multiprocessor Architectures. In

Proceedings of the Conference on

Computing Frontiers, 2006

 [4] Bovet, D. and Cesati, M. Understanding the

Linux Kernel, Chapter 10: Process

Scheduling. O'Reilly, 2000

 [5] Alexandra Fedorova, D. Vengerov, and

Daniel Doucette. Operating System

Scheduling On Heterogeneous Multicore

Systems. In Proceedings of the the PACT'07

Workshop on Operating System Support for

Heterogeneous Multicore Architectures,

2007

 [6] R. Kumar, Dean M. Tullsen, Parthasarathy

Ranganathan, N. Jouppi, and K. Farkas.

Single-ISA Heterogeneous Multicore

Architectures for Multithreaded Workload

Performance. In Proceedings of the 31st

Annual International Symposium on

Computer Architecture, 2004

 [7] Richard McDougall and Jim Mauro.

Solaris™ Internals: Solaris 10 and

OpenSolaris Kernel Architecture. Prentice

Hall, 2006

 [8] J. N. Tsitsiklis and B. Van Roy. An Analysis

of Temporal-Difference Learning with

Function Approximation. IEEE

Transactions on Automatic Control,

45(5):674-690, May 1997

 [9] D. Vengerov. A Reinforcement Learning

Approach to Dynamic Resource Allocation.

Engineering Applications of Artificial

Intelligence, 20(3):383-390, 2007

 [10] D. Vengerov. A Reinforcement Learning

Framework for Online Data Migration in

Hierarchical Storage Systems. Journal of

Supercomputing (to appear), 2007

 [11] D. Vengerov. A Reinforcement Learning

Framework for Utility-Based Scheduling in

Resource-Constrained Systems. Sun

Microsystems TR-2005-141, 2007

 [12] A. Wierman and M. Harchol-Balter.

Classifying Scheduling Policies with

Respect to Unfairness in an M/GI/1. In

Proceedings of the SIGMETRICS, 2003

