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Abstract 
We make a case that thread schedulers for 

heterogeneous multicore systems should balance 

between three objectives: optimal performance, fair 

CPU sharing, and balanced core assignment. 

Thread-to-core assignment algorithms that optimize 

performance have been proposed in the past; in this 

paper we argue that they may conflict with the 

enforcement of fair CPU sharing. We also 

demonstrate the need for balanced core assignment: 

an unbalanced core assignment results in 

completion time jitter and inconsistent priority 

enforcement. We present a blueprint for a 

scheduling framework that balances between these 

three objectives. The framework consists of three 

components: performance-optimizing component, 

fairness component, and core balance component. 

While the performance-optimizing component could 

implement any previously proposed performance-

optimizing algorithm, we propose a new algorithm 

based on reinforcement learning (RL). Our RL 

algorithm takes into account cache affinity, unlike 

previously proposed algorithms. Implementing and 

evaluating this framework and the RL algorithm is 

the subject of future work. 

1. Introduction 

A key objective pursued by thread schedulers in 

modern operating systems is to enforce fair CPU 

sharing. Although fairness policies vary from one 

scheduler to another, in general these policies 

minimize context switching, ensure that tasks are not 

starved for CPU time, and provide consistent 

response to users [4,7]. The advent of heterogeneous 

multicore (HMC) processors motivates new 

objectives and designs for scheduling algorithms. On 

a HMC system, optimal performance is achieved 

only by assigning a thread to run on the core that is 

best suited for it – i.e., the thread’s preferred core 

[3,6]. Therefore, a scheduler must employ a core 

assignment policy that leads to optimal performance.  

Unfortunately, the core assignment policy leading to 

optimal performance will conflict with the core 

assignment policy leading to fair CPU sharing. 

Consider the following example: Suppose that at the 

time when the scheduler dispatches thread A on 

CPU, A’s preferred core is occupied by another 

running thread. The scheduler faces a dilemma: 

should it schedule A to run on its non-preferred core 

(that is available right away) or have it wait until its 

preferred core becomes available? Making A wait 

will potentially increase A’s response time and 

reduce its allocated fraction of CPU cycles 

(compared to a conventional, homogeneous system). 

On the other hand, scheduling A on a non-preferred 

core will produce sub-optimal instruction rate for A. 

Making the right decision requires carefully 

weighing performance/fairness tradeoffs of a given 

core assignment and making the choice that meets 

system’s goals with respect to both objectives.  

In some scenarios, the scheduler must also consider 

core assignment balance. Modern thread schedulers 

are pre-emptive, and so a thread’s execution time 

will be usually spread among the system’s cores, but 

not necessarily in a balanced fashion. That is, a 

thread may execute a larger fraction of time on one 

core than on another. On a HMC system, such 

unbalanced core assignment will result in jittery 

performance (as was shown in the past [2] and 

validated again in this paper), and inconsistent 

priority enforcement, as demonstrated for the first 

time in this paper. To eliminate performance jitter, a 

scheduler must periodically rotate threads among 

cores, thereby enforcing balanced core assignment. 

Clearly, such core assignment policy will not always 

result in threads running on their preferred cores and 

will thus conflict with the objective of optimizing 

performance. 

All in all, the three objectives crucial to achieving 

good system performance and robustness, namely 

(1) optimal performance, (2) fair CPU sharing, and 

(3) balanced core assignment, conflict with each 



other. To resolve this conflict, the scheduler must 

ensure that the core assignment algorithms used to 

achieve these objectives take into consideration each 

other’s core assignment decisions. This requires 

reconsidering the design of the operating system 

scheduler. In this paper we describe how we plan to 

address this problem.   

The contributions of this paper are as follows:  

(1) We show that unbalanced core assignment leads 

to completion time jitter and inconsistent 

priority enforcement;  

(2) We describe and evaluate a fix to the Linux 

scheduler that eliminates jitter by enforcing 

balanced core assignment;  

(3) We present a formal definition of a HMC 

scheduling problem in terms of balancing three 

objectives: optimal performance, fair CPU 

sharing, and balanced core assignment;  

(4) We present a new scheduling framework that 

balances between the three objectives. The 

framework consists of three components: 

performance-optimizing component, fairness 

component, and core balance component. We 

also present a new algorithm for the 

performance-optimizing component based on 

reinforcement learning. Implementing and 

evaluating the framework and the algorithm is 

the subject of future work. 

The rest of the paper is organized as follows: We 

present the four contributions outlined above in 

sections 2-5 respectively. In Section 6 we present 

related work, and in Section 7 we summarize. 

2. Effects of Unbalanced Core Assignment  

In this section we present results of experiments 

demonstrating that unbalanced core assignment on a 

HMC system results in completion time jitter 

(Section 2.2) and inconsistent priority enforcement 

(Section 2.3). The jitter phenomenon has been 

demonstrated before for multithreaded workloads 

[2], and here we re-validate these results for multi-

program workloads. Results on inconsistent priority 

enforcement are new.   

2.1. Experimental setup 

We run our experiments on a system equipped with 

two 2.8 GHz Intel® Xeon™ hyper-threaded 

processors (Northwood series), running the ubuntu 

distribution of Linux with 2.6.15 version of the 

kernel. We disabled hyper-threading. To create a 

heterogeneous system, we scaled down the clock 

speed on one of the CPUs using the mechanism 

available in Xeon processors (intended for thermal 

management). The same method was used in an 

earlier study to create a heterogeneous system [2]. In 

our heterogeneous setup, one processor is running at 

2.8 GHz, and the other one at 1.05 GHz. In the 

homogeneous setup, both processors are running at 

2.8 GHz. 

2.2. Completion time jitter 

We selected eight benchmarks from the SPEC 

CPU2000 suite [1] representing a variety of 

architectural characteristics: gzip, mcf, twolf, parser, 

vortex, art, mesa, and equake. We run these 

benchmarks simultaneously; we restart each 

benchmark once it is finished until each benchmark 

completes at least five times. For each benchmark, 

 
Figure 1. SPEC benchmark runtimes in the 

homogeneous setup.   

 
Figure 2. SPEC benchmark runtimes in the 

heterogeneous setup.   



we measure the minimum and maximum running 

time (i.e., completion time), and the standard 

deviation from the average running time.  

Figure 1 shows these measurements, normalized 

against the mean, for the homogeneous setup, and 

Figure 2 for the heterogeneous setup. The mean 

running time corresponds to “1” on the Y-axis. The 

box boundaries indicate the standard deviation. The 

whiskers correspond to the minimum and maximum 

running times.  

The results indicate that in the heterogeneous setup 

the running times are less predictable, more jittery, 

than in the homogeneous setup. In the homogeneous 

setup, the minimum and maximum running times are 

much closer to the mean than in the heterogeneous 

setup. Standard deviations in the homogeneous setup 

are also smaller. (The exception is art, which 

experiences less jittery performance in the 

heterogeneous setup than in the homogeneous setup; 

we do not yet understand this phenomenon and are 

investigating it.) 

Applications suffer from jittery completion times on 

heterogeneous multicore systems, because the 

application’s instruction rate varies from one core to 

another, and when the core assignment is unbalanced 

the overall running time depends on the particular 

core assignment during the run.  

 

The earlier study that demonstrated performance 

jitter [2] explained its presence by the fact that the 

OS was inconsistent as to which of the cores was left 

idle whenever the system load decreased such that 

not all cores were used to run application threads. 

This explanation does not apply to our experimental 

environment, because the cores were never left idle 

during the experiments. In our case, jitter was caused 

by unbalanced core assignment, and we confirm this 

(in Section 3) by showing that a simple scheduler fix 

that enforces balanced core assignment eliminates 

jitter.  

2.3. Inconsistent priority enforcement 

In this section we demonstrate a new result with 

respect to performance on HMC systems. We show 

that unbalanced core assignment results in 

inconsistent priority enforcement. 

We present results for the first four of our eight 

benchmarks: gzip, mcf, twolf, and parser. We could 

not gather data for all eight benchmarks due to lack 

of time. 

The experiments were run as follows: we ran each 

benchmark with four different nice settings: 0, 4, 8, 

and 12. This resulted in four different priority levels 

for the benchmark, level 0 corresponded to the 

highest priority. Each benchmark was run five times 

with each priority level. For each priority level, we 

measured the mean, maximum and minimum 

running time and the standard deviation from the 

mean. Along with the measured benchmark, we ran 

the remaining three benchmarks at the default 

priority level.  

Figure 3 shows the results for the homogeneous 

setup, Figure 4 for the heterogeneous setup. 

Priorities are enforced less consistently in the 

heterogeneous setup. For all benchmarks except mcf, 

the distinction between running times for different 

Figure 3. SPEC benchmark runtimes for varying 

priorities in the homogeneous setup.   

 
Figure 4. SPEC benchmark runtimes for varying 

priorities in the heterogeneous setup.   



priority levels of the same benchmark is not as clear 

in the heterogeneous setup as in the homogeneous 

setup. 

Examining gzip in the homogeneous setup, we can 

see that its running time steadily increases as its nice 

level increases. In the heterogeneous setup, this is 

not always the case. For example, the minimum 

running time for nice level 12 is the same as the 

average running time for nice level 8. The scheduler 

does not consistently enforce the user-assigned 

priority. 

Looking at twolf and parser, in the homogeneous 

setup the difference in running times for nice levels 

8 and 12 is obvious; in the heterogeneous setup it is 

not possible to distinguish between the running times 

at these two different priority levels.  

Such inconsistent priority enforcement is the direct 

consequence of jittery running times caused by 

unbalanced core assignment.  

3. Enforcing Core Assignment Balance 

In this section we describe our enhancement to the 

Linux scheduler that enforces balanced core 

assignment. The new core balancing algroithm 

ensures that each thread’s execution time is divided 

evenly across all system’s cores. This reduces 

variation in the job’s instruction throughput from run 

to run, and as a result reduces running time jitter.  

The new core balancing algorithm works as follows. 

On each scheduler tick, the CPU inspects the run 

queue of the CPU one number higher than the 

current CPU to see if there are any jobs that have 

completed their timeslice on that CPU. (The highest 

numbered CPU examines the lowest numbered 

CPU.) If such jobs are found, they are moved from 

the inspected CPU to the inspecting CPU. That is, 

CPU 0 inspects CPU 1, CPU 1 inspects CPU 2, ... , 

CPU N inspects CPU 0. The CPU detects the job 

that should be moved by examining the 

'hcs_last_cpu' variable of each job: that variable is 

set to be equal to the CPU where the thread ran 

during its last timeslice. 

To dynamically enable and disable this core 

balancing feature we added a new global variable 

'hcs_balance_enabled', and an entry to 

procfs that is used to control that variable. 

Figure 5 shows the normalized running times in the 

heterogeneous setup with the new scheduler. This is 

the same experiment that we described in Section 

2.2. Figure 5 should be compared with Figure 2, 

which shows the same data collected with the old 

scheduler. We can see that the new scheduler 

significantly reduces completion time jitter. 

Comparing Figure 5 with Figure 1, we can see that 

running time jitter in the heterogeneous setup with 

the new scheduler is comparable to the 

homogeneous setup. (This applies to all benchmarks 

except art – we are still investigating the cause for 

the unexpected behavior in art.) 

Balakrishnan et al. presented another fix to the Linux 

scheduler aimed at reducing performance jitter [2]; 

however it only worked in scenarios when the 

number of threads was smaller than the number of 

cores. Our core balancing algorithm works 

regardless ratio of threads to cores.  

Our core balancing algorithm could be improved by 

considering cache affinity. In the current design, the 

scheduler moves the task to a new core after each 

timeslice. This could decrease performance if the 

task has some relevant data left in the old core’s 

cache: scheduling the task on the old core, rather 

than the new one, would have allowed the task to re-

use that data. 

Although our new algorithm fixed runtime jitter, it 

did not consider how balancing threads’ core 

Fig

ure 5. SPEC benchmark runtimes for varying priorities on 

the heterogeneous setup with the new scheduler.   



assignments would affect performance. Our 

algorithm frequently migrates threads among cores, 

which would interfere with performance-maximizing 

core assignment algorithms that attempt to run 

threads on cores that are best suited for them [3,6]. 

Our scheduling framework is meant to resolve this 

conflict. 

4. The Scheduling Problem  

A scheduler for HMC systems must balance between 

three objectives: 

(1) Optimal performance 

(2) Fair CPU sharing 

(3) Balanced core assignment.  

We recognize that how to balance between these 

objectives, i.e., the relative importance given to each 

objective, depends on particular circumstances. Our 

balancing framework presented in Section 5 gives 

the system administrator a flexibility to specify the 

importance of each objective, by setting the 

configuration parameters in the framework.  

In this section we define the metrics for these 

objectives and formally define the scheduling 

problem on HMC systems.  

4.1. Optimal performance 
We measure performance in terms of the aggregate 

normalized instruction per cycle rate (IPC) achieved 

by all running threads. Normalized IPC (nIPC) for a 

thread is computed as weighted speed-up over the 

worst-suited core:  

)IPC(min

IPC
nIPC

k,J

i,J
i,J =

,  (1) 

where IPCJ,i and nIPCJ,i is the IPC and nIPC of 

thread J on core i, and min(IPCJ,k) is the smallest 

IPC achieved by J across all system cores.  

So the aggregate normalized IPC is the sum of all 

threads’ performance improvements over the worst-

suited core for each thread. Using the normalized 

IPC, as opposed to the raw IPC, eliminates the 

tendency to favour high-IPC threads [6]. 

4.2. Fair CPU sharing 
As a metric for fairness when sharing the CPU, we 

use Response Time Fairness (RTF). A similar metric 

has been used in the previous work that evaluated 

fairness of scheduling algorithms [12]. The RTF 

metric is based on a job’s slowdown. We define job 

as the portion of the thread run during a particular 

CPU timeslice. (The entire program can be thought 

of as a collection of jobs.) The job’s size is simply 

the length of its CPU timeslice. Slowdown of a job 

of size x, S(x), is defined as the job’s response time 

T(x) divided by its size: 

x

xT
xS

)(
)( =

.
   (2) 

T(x) is the sum of the job’s size and its queuing 

delay (i.e., the time spent waiting for CPU from the 

point of being placed on the scheduling queue).  

DEFINITION 1: A job is treated fairly if its expected 

slowdown is within a pre-defined constraint F: 

FxSE ≤)]([ . 

This definition of fairness agrees with the time-

sharing fairness policy used in Solaris™ and Linux  

[4,7]: larger jobs (i.e., threads with longer timeslices) 

will experience longer queuing delays than smaller 

jobs (i.e., threads with shorter timeslices).  

Constraint F should be proportional to system load. 

We will determine a good setting for F 

experimentally. Since our goal is to design a 

scheduler that accomplishes the level of fairness 

similar to existing schedulers, we will measure 

typical bounds on slowdown achieved by existing 

schedulers, and will derive F based on that data.  

DEFINITION 2:  System-wide response-time fairness 

(RTF) is the percent of jobs satisfying the fairness 

constraint in Definition 1. 

4.3. Core assignment balance 

The metric for core assignment balance must capture 

the distribution of a thread’s running time across the 

cores. For a thread J, we measure the fraction of 

time that J spent running on each core; then we 

measure the standard deviation from the average 

fraction. This standard deviation, CABJ, is our metric 

for core assignment balance.  



DEFINITION 3: Core assignment for a thread J is 

considered balanced if: ε≤JCAB . (A setting for ε 

is determined experimentally.)  

 

DEFINITION 4: System-wide core assignment balance 

(CAB) is the percent of tasks satisfying the balance 

constraint in Definition 3. 

A scheduler configured with a tight CAB constraint 

ε would tend to rotate jobs among the system’s cores 

(like our simple scheduler presented in Section 3). A 

potential concern is that this would violate cache 

affinity. To prevent this problem, we consider cache 

affinity in our new algorithm presented in the next 

section.  

PROBLEM FORMULATION:  

The goal of the scheduler on HMC systems is to 

maximize the aggregate normalized IPC over some 

time period t given constraints F for response time 

fairness and ε for core assignment balance, set a 

priori by the system administrator.  

5. Scheduling Framework and Algorithm 

We propose a scheduling framework that balances 

between the three objectives presented in the 

previous section. The framework consists of three 

components: performance-optimizing component, 

fairness component and core balance component. In 

addition, there is a master that co-ordinates these 

components.  

Each component implements a core assignment 

algorithm that pursues that component’s objective. 

For example, a performance-optimizing component 

could implement one of the algorithms proposed in 

previous work [3,6]. Or it could implement a new 

algorithm; we present a new algorithm for the 

performance-optimizing component in this section.  

The fairness component implements a core 

assignment algorithm employed by existing 

schedulers to achieve fair distribution of CPU time: 

for example, a time-sharing algorithm used by 

default in Solaris and Linux.  

The core balance component implements the 

balancing algorithm presented in Section 3. 

Each of these components periodically decides that a 

particular thread should be migrated from the core 

where it executed in the past to another core. 

(Performance-optimizing components usually 

migrate threads at periodic intervals on the order of 

tens or hundreds of milliseconds. Fairness 

component and core balance component decide 

whether to migrate a thread upon expiration of the 

thread’s timeslice.)  In our framework, whenever any 

of these components decides to migrate a thread, it 

consults the master as to whether the migration is 

allowed. The master makes a decision based on the 

following relation: 

 Bi,k-+Bj,k+ > Bi,0+Bj,0+a⋅DCAB+b⋅DRTF .     (3) 

In this relation, Bi,0 and Bj,0 is the estimated 
normalized IPCs on cores i and j respectively if the 

thread is not migrated from i to j. Bi,k- and Bj,k+ are 

estimated normalized IPCs on cores i and j 

respectively if the thread is migrated from core i to 

core j. DRTF is the expected change in the system-

wide RTF measure (per Definition 2) and DCAB is the 

expected change in the system-wide CAB measure 

(per Definition 4) that will occur as a result of this 

migration. a, b are coefficients that show the relative 

importance of these three objectives and that are set 

a priori by a system administrator. The thread is 

migrated from core i to core j if the constraints in 

equation (3) are satisfied.  

The migration criterion (3) implies that a particular 

thread migration is performed if the performance 

benefit of migrating the thread to another core is 

greater than not doing anything, provided that no 

large negative impact on the system-wide measures 

CAB and RTF will arise as a result of this migration. 

By using this design for our framework we assume 

that Bi, the normalized IPC on core i given the 

threads assigned to that core, can be estimated. This 

is a reasonable assumption: performance-optimizing 

core assignment algorithms presented in the 

literature already rely on such estimates [3,6]. Later 

in this section we will show how such estimate is 

obtained in the new performance-optimizing 

algorithm proposed in this paper.  

This framework gives the system administrator a 

flexibility to specify the relative importance of each 

performance objective. For example, a system 



administrator might decide that runtime jitter and 

inconsistent priority enforcement are not a concern 

for the system; in that case s/he can give an arbitrary 

low weight to the CAB metric (coefficient a), 

including completely ignoring it (setting a to zero). 

Our future work involves implementing this 

framework with two different implementations of 

the performance-optimizing algorithm, one 

presented in previous work [3], and the new one, 

presented later in this section. We also plan to 

implement the framework in two different operating 

systems, Solaris and Linux, to make sure that it 

works with different fairness components. Another 

objective will be to find good settings for 

coefficients a and b, as these coefficients determine 

how the system balances between the three 

objectives. 

5.1. A new performance-optimizing algorithm 
We present a new self-tuning algorithm that assigns 

threads to cores on HMC systems in a way that 

maximizes normalized aggregate IPC. The algorithm 

is based on reinforcement learning (RL). It allows 

the system to learn the performance-optimizing core 

assignment policy. Learning is required for finding 

the optimal assignment policy because the system’s 

state changes stochastically over time (threads get 

blocked occasionally and go to sleep, the instruction 

rate of a thread changes over time as the work the 

thread is doing changes, etc.), and so the correlation 

between states, actions and system’s performance 

needs to be learned through interaction with the 

system.  

In our framework, each system core i learns the 

function Bi that approximates the expected future 

normalized IPC on that core. Recall that the function 

Bi is used to make migration decisions (2).  

The benefit function is based on some variables and 

tunable parameters (explained below); tunable 

parameters are adjusted after every thread migration 

decision based on the reinforcement signal 

(feedback), which is the value of the normalized IPC 

on that core evaluated over the time between two 

consecutive migration decisions. The objective of 

parameter tuning is to make Bi a better 

approximation to the expected future value of the 

core IPC. 

We now explain what variables are used to estimate 

Bi (Section 5.1.1), and how to update tunable 

parameters, so that Bi is progressively made to be a 

better estimate of the core IPC (Section 5.1.2).  

5.1.1. Computing Bi 

The function Bi uses several variables as inputs, and 

the first one is the average normalized IPC 

(avgNIPC) of threads on core i.  

Another variable is the average cache affinity of 

threads on core i. If a thread has executed on the 

core i within the last rechoose_interval (a 

tunable parameter that is set by default to 0.03 

seconds in Solaris), cache affinity is 1; otherwise, 

cache affinity is zero. The algorithm should learn 

that it is more preferable to have threads with cache 

affinity 1 on a core, as it will mean that threads are 

using their cache investment and are executing more 

efficiently. 

 

Note that if K threads have executed on a core within 

the last rechoose_interval seconds, it still does 

not mean that all of them have their full cache 

investment intact, since the last few of these K 

threads could have displaced the cache investment of 

the previous threads if they had a high cache miss 

rate. Therefore, a third variable is needed in order to 

estimate the average cache investment of threads on 

a core: the average cache miss rate of threads on 

that core, which can be regularly updated for each 

thread using the hardware cache miss rate counter.  

 

Let st be the value of the state vector, composed of 

the three variables described above, at time t. The 

function Bi will have the following form: 

∑
=

=
N

n

tnnt sppsB
1

),(),( ϕ  (4) 

where φn(s) are pre-specified basis functions defined 

on the space of possible values of s, and pn, n=1, …, 

N, are the tunable parameters that are adjusted in the 

course of learning. Basis functions can be specified 

using the framework presented in other RL 

algorithms used for resource allocation [9,10,11]. 

5.1.2. Updating tunable parameters 

In order for the migration criterion (2) to work well, 

the Bi functions of each core should accurately 



approximate the expected future core IPC starting 

from any given state s. The expected future IPC of 

the core can be defined as the expected discounted 

sum of future IPC observations. Then, one can tune 

the cost function parameters pn using Reinforcement 

Learning (RL) in order to improve the 

approximation accuracy of functions Bi. The RL 

process basically learns to correlate the states st (as 

specified by different combinations of the state 

variables) observed on the core with the values of 

the reinforcement signal following these states. For 

the form of the benefit function we use, the RL 

updating process becomes: 

),())](,(
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where pi(t) is the vector of parameters for core i at 

time t, αt is a decreasing learning rate that is usually 

set to αt=1/t, rt is the reinforcement signal received 

at time t (observed normalized IPC between times t 

and t+1), γ is a discounting factor between 0 and 1 

(value of 0.9 usually works well in practice), and 

φ(s) is a vector of all basis functions φn(s) used in 

defining the cost function B. The above equation has 

been proven to converge to the optimal parameter 

vector p
∞
 such that B(s,p

∞
) provides the best 

approximation to the expected discounted sum of 

future reinforcement signals [8]. 

In order to see the intuition behind equation (5), 

notice that if the parameter vector p(t) is such that 

B(s,pt) < B(s,p∞), then, based on the definition of Bi 

as a discounted sum of future IPC observations, on 

average we will observe that rt + γ B(st+1,pt) > 

B(st,pt), which will lead to p(t+1) > p(t) after 

executing the update in (5), hence increasing the 

value of B(st,p) and making it closer to the true value 

B(st,p∞). A similar logic applies in the reverse case if  

B(s,pt) > B(s,p∞). 

As the accuracy of the Bi function increases in the 

course of RL, the system will be able to follow more 

and more accurately the core assignment policy 

maximizing performance.  

6. Related Work 

In a recent study, Kumar et al. presented a core 

assignment algorithm for maximizing performance 

on HMC systems [6]. Their algorithm considered 

only a performance maximization objective; it is an 

algorithm that could be used in the performance 

component of our scheduling framework, but by 

itself it does not balance performance with other 

objectives. Additionally, this algorithm was not 

implemented in a real operating system: it was 

evaluated via simulation. Kumar’s algorithm used 

normalized IPC as a heuristic for core assignments. 

The authors found that the heuristic was a better 

predictor of a good core assignment if it was 

computed using multiple IPC samples; we will keep 

that in mind when developing our algorithm. 

Although our new RL algorithm also uses 

normalized IPC, it considers other factors, such as 

cache affinity, and learns the nature of interactions 

between the factors via reinforcement learning. 

Becchi et al. presented a core assignment algorithm 

that relied on relative IPCs as a heuristic for deriving 

the optimal core assignment (similarly to Kumar’s 

algorithm and to our RL algorithm) [3]. Like 

Kumar’s algorithm, Becchi’s algorithm focused on 

performance, and did not consider other objectives. 

Also, Becchi’s algorithm has not been implemented 

in a real operating system. We will implement 

Becchi’s algorithm in the performance component of 

our scheduling framework and will use it for 

evaluation of our scheduling framework and for 

comparison with our RL algorithm. 

Balakrishnan et al. observed that heterogeneity of 

cores’ computational power in HMC processors 

causes jittery runtimes [2]. We confirmed that results 

and showed that jittery runtimes lead to inconsistent 

priority enforcement. Balakrishnan suggested a 

simple change to the operating system scheduler to 

eliminate jitter; however it only worked in scenarios 

when the number of threads was smaller than the 

number of cores. We presented a core balancing 

algorithm that eliminates jitter even for workloads 

where the number of threads equals or exceeds the 

number of cores [5].  

Another area of related work is self-tuning 

algorithms based on reinforcement learning. These 

algorithms were used to solve problems similar to 



ours, such as guiding memory and CPUs allocation 

on multi-processor systems [9], tuning file migration 

policies in multi-tier storage system [10], and 

building a soft real-time scheduler, where the goal 

was to maximize the number of jobs meeting their 

deadlines [11]. These algorithms were shown to 

bring substantial performance improvements, both in 

simulated [10,11] and real settings [9].  To 

determine whether RL is applicable to our problem, 

we will compare it to simpler heuristic algorithms in 

terms of performance and runtime overhead.  

7. Summary 

We made a case that a scheduler on HMC systems 

must balance between three objectives: optimal 

performance, fair CPU sharing, and balanced core 

assignment. We showed that unbalanced core 

assignment results in performance jitter and 

inconsistent priority enforcement, and presented a 

simple fix to the Linux scheduler that eliminates 

jitter. Finally, we presented a scheduling framework 

that balances the three objectives, and proposed a 

new performance-optimizing core assignment 

algorithm based on reinforcement learning. The new 

algorithm, unlike previous similar algorithms, 

accounts for cache affinity. Implementing and 

evaluating the framework and the algorithm is the 

subject of future work.  
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