
Cypress: A Scheduling Infrastructure for a Many-Core

Hypervisor

Alexandra Fedorova, Viren Kumar, Vahid Kazempour,

Suprio Ray and Pouya Alagheband

School of Computing Science

Simon Fraser University

Vancouver, Canada

ABSTRACT

In this position paper, we present our vision for the scheduling

infrastructure in a many-core hypervisor – the hypervisor targeted

for many-core platforms. The key objectives of our system are

scalability and heterogeneity-awareness. We see these as first-

order objectives, because future many-core processors will consist

of thousands of cores and those cores will be heterogeneous.

Since existing hypervisors were not designed to handle the scale

and heterogeneity of many-core hardware, our design will differ

from that of existing hypervisors in many important ways. The

design of our experimental many-core hypervisor, Cypress, is

based on three principles: partitioning, localization, and

customization. Together, these principles facilitate scalability, by

minimizing the sharing of scheduling runqueues, and manage

heterogeneity, by assigning to each VM the cores most suitable

for its workload. In this paper we motivate our design, present its

key components, discuss challenges in our research, and report on

its status.

Categories and Subject Descriptors
D.4 [Operating Systems]: Organization and Design, Process

Management

General Terms
Algorithms, Design, Experimentation, Management,

Measurement.

Keywords
Many-core processors, scheduling algorithms, hypervisor, virtual

machine monitor, heterogeneous multi-core systems, scalability,

guest operating system.

1. INTRODUCTION
Future many-core processors will consist of hundreds or

thousands of heterogeneous processing cores [7,11,25].

Schedulers in existing hypervisors were not designed to scale at

this level, and they are not heterogeneity aware. The focus of our

work is to design a scalable and heterogeneity-aware scheduling

infrastructure in a virtual machine hypervisor. In particular we

expect to address two research problems:

(1) Evaluate scalability of schedulers in existing hypervisors on

processors with hundreds or thousands of cores, and (if

necessary) investigate how to design a scheduler that scales.

(2) Design hypervisor scheduling algorithms that allocate

heterogeneous cores to VMs in the optimal manner. We

expect that this will be done in one of two ways: (1) via

explicit communication with heterogeneity-aware guest

operating systems or (2) via hints from legacy

(heterogeneity-unaware) guests. In the former case, we will

have to design the interface by which the guest will learn

about the kinds of CPU cores available on the system and by

which it will communicate to the hypervisor its resource

requirements. We expect our contribution to be new

scheduling algorithms that make optimal decisions in terms

of performance, energy consumption and fairness, and that

are, at the same time, light-weight and scalable.

Addressing scheduling in the hypervisor is an important problem,

because dependence on hypervisor technology will increase as

many-core hardware matures. Since hardware scales at a faster

rate than software [7], utilizing a many-core system by a single

workload will be challenging. Therefore, those systems will often

run multiple independent workloads. Those diverse workloads

will run on various guest operating systems and will have to be

isolated from one another for faults and performance effects.

Since hypervisor technology addresses both of these concerns1

[9,26], its use will be widespread in many-core environments.

Since our design will introduce new guest/hypervisor interfaces,

some of our work concerns with implementing a heterogeneity-

aware guest OS that works synergistically with the Cypress

hypervisor. At the same time, our hypervisor will support legacy

(heterogeneity-unaware) guests.

The rest of the paper is organized as follows. In Section 2 we

motivate our work by discussing the challenges posed by many-

core hardware. In Section 3 we present the design of Cypress. In

Section 4 we discuss the status of our project. In Section 5 we

1 While microkernels and container operating systems (such as

Linux VServer, Solaris Zones, and IBM AIX 6.1) also provide

isolation, they offer less flexibility as far as diversity of

operating systems.

This research is supported by NSERC Strategic Project Grant No.

STPSC/356815-2007 and by Sun Microsystems.

compare and contrast our approach with related work, and in

Section 6 we summarize.

2. MANY-CORE CHALLENGES
We begin with identifying our assumptions about future many-

core processors and about the software that will be running on

them. We then discuss the challenges that scale and heterogeneity

of many-core processors pose for system software.

2.1 System model
We envision that future many-core systems will consists of three

kinds of CPU cores: (1) low-power simple in-order cores, i.e.,

slow cores, (2) powerful complex, i.e., fast, cores, and, finally, (3)

accelerator cores, such as vector processors (as in IBM Cell

engine) or general-purpose GPUs. Slow cores will be abundant.

Fast cores will be less plentiful. They will expose the same ISA as

slow cores but offer better performance for high-ILP programs.

Finally, accelerator cores will expose distinct ISA and there will

be only a handful of them on the chip. It is projected that the total

number of cores per chip will be on the order of hundreds or

thousands, as early as a decade from the time of this writing

[7,11].

We expect that on many-core processors the prevalent execution

environment will be based on a hypervisor. The workload

consolidation enabled by the hypervisor will allow keeping the

many-core machine busy. Despite ongoing parallelization of many

applications, there will still be algorithms that are fundamentally

serial, so workload consolidation will be an important means of

achieving full utilization of many-core hardware. Aggressive

workload consolidation will create very diverse VM workloads

running on the same processor, e.g., servers, desktop applications,

scientific applications and soft real-time workloads, and thus we

expect to see diverse guest operating systems. There will be

operating systems that are customized for heterogeneous

hardware. Those guests will be able to give the hypervisor hints

with respect to the kind of cores that are needed by their

workloads. There will also be legacy operating systems that will

provide no such information. The hypervisor must be designed to

provide efficient allocation of resources in both of these scenarios.

2.2 Scale
The first goal of our research is to evaluate scalability of existing

hypervisors on many-core processors. While hypervisor

scalability was evaluated on small-scale multiprocessor systems

[2,3,22], scalability on systems with more than four cores has not

been measured. If we find that scalability has limitations, we will

investigate how the hypervisor must be designed so that it scales.

While scalability of operating systems is a well-studied area

[6,12,16], it is not clear whether hypervisor will be subject to

same issues. Furthermore, existing research on OS scalability

addressed this problem in the context of multi-processor

hardware. Understanding the nature of scalability limitations on

many-core hardware is still an open question.

Nevertheless, existing research on OS scalability allows us to

speculate about potential scalability bottlenecks and project how

the hypervisor might be designed to avoid them. Earlier research

showed that scalability of system software is usually limited by

(1) synchronized access to shared data structures [16,17] and (2)

reduced cache affinity due to interrupt processing [2,3]. We now

elaborate on these problems.

2.2.1 Shared data structures
When several cores simultaneously read and write shared data

they must synchronize their access and transfer modified data

from one core to another. This limits concurrency and increases

access latency.

In schedulers, most frequently shared data structures are per-CPU

(or per-core) runqueues. Most commercial schedulers (e.g., in

Linux, Solaris, Xen) access shared runqueues during context

switches and during load balancing [5,17,21]. A recent study of

the Linux kernel [17] revealed that the majority of scalability

bottlenecks came from accessing those shared runqueues, with

roughly 22% of highest-latency cache misses coming from that

code. Although the Linux study was done on a multi-chip

multicore system and thus observed higher inter-core

communication latencies than those that would be seen on a

single-chip multicore processor, it showed that sharing of

runqueues can be a barrier to scalability2. While the impact of

runqueue sharing in many-core systems is yet to be understood, in

our design we minimize access to shared runqueues. As Section

3.1.1 explains, we partition the cores among VMs rather than

time-share them, when possible.

2.2.2 Interrupts
Many scalability problems in existing hypervisors and operating

systems stem from the fact that interrupts are delivered to a

different processor than that which last ran the thread expecting

the interrupt [2,17]. As a result, the thread is awaken on a

different processor and loses its cache affinity. We are interested

in experimenting with the hardware that supports targeted

interrupt delivery, i.e., message signalled interrupts, and in

evaluating its implications for the scalability of many-core

hypervisors.

2.3 Heterogeneity
Heterogeneous architectures are expected to be in wide use in

future many-core processors [7,11]. The reason is that

heterogeneous architectures can potentially achieve a higher

performance per watt than homogeneous architectures [19,20]. To

realize this potential, however, applications must be scheduled to

run on the cores that best fit to their architectural properties

[10,20]. Existing hypervisors are agnostic of heterogeneous

hardware and thus they do not reap the energy-saving potential of

heterogeneous processors. Our research will address the design of

heterogeneity-aware scheduling algorithms in a hypervisor that

will allow realizing this potential. This will be the main

contribution of our work.

We now provide an example demonstrating why heterogeneity-

aware scheduling is crucial. Consider, a single-ISA heterogeneous

system. On this system, a scientific application with high

instruction-level parallelism (ILP) would run much faster on a

“fast” core, as opposed to a “slow” core. On the other hand, a

memory-bound database application would experience

comparable performance on slow and fast cores. The best

performance/energy trade off is achieved by assigning the

2 We are not aware of any recent studies examining scalability of

schedulers in other operating systems and in VM hypervisors.

Existing scalability of Xen and VMWare focused mostly on

scalability of I/O and were done on hardware with at most four

cores

scientific application to the fast core and the database application

to the slow core. As another example, an application with high

thread-level parallelism (TLP) could perform well on many slow

cores, while a low-TLP application that cannot take advantage of

hardware parallelism must be run on a few fast cores.

These examples demonstrate that the hypervisor (and the guest

OS) must be heterogeneity aware. That is, the hypervisor must

expose heterogeneous properties of the hardware to the guest, and

the guest must schedule tasks to cores in the most efficient

manner. While heterogeneity-awareness in the guest was partially

addressed in the research community [10,15,19,20], OS-level

solutions are not directly applicable to the hypervisor and design

heterogeneity-aware algorithms for the hypervisor remains an

open question.

In addition to building a heterogeneity-aware hypervisor we are

also exploring heterogeneous aware designs of the guest OS.

Although several heterogeneity-aware scheduling algorithms for

OS were proposed in the past [10,19,20], they were not meant to

scale to many cores and assumed long-lived threads. In particular,

the two most prominent algorithms by Becchi [10] and Kumar

[20] relied on continuous monitoring of performance of each

thread (or thread co-schedules) on each heterogeneous core to

determine the best core for each thread. When the number of

different core types is large (as may be the case on many-core

systems), this task becomes infeasible. Furthermore, these

algorithms (while not implemented in a real OS) implied frequent

examination of scheduler’s runqueues, which, as we know [17],

may limit scalability. Finally, these algorithms assumed that

threads were long-lived, since short-lived threads may terminate

before the scheduler learns the optimal core placement for them.

Our goal is to experiment with new scheduling algorithms that

address these shortcomings.

Studies of heterogeneous multicore systems showed that they

achieve superior performance/watt in comparison to homogeneous

systems, but only when CPU cores are assigned to match the

properties of applications [10,19,20]. This means that system

software must be heterogeneity-aware in order to leverage the

power-efficiency of those systems. This also means that if

heterogeneity-aware system software is not designed before

heterogeneous hardware enters the mainstream, hardware

designers will have little incentive to build heterogeneous

systems, a so-called chicken-and-egg problem. By developing

heterogeneity-aware system software early on, before

heterogeneous processor designs are finalized, we have a unique

opportunity to influence future hardware trends by facilitating the

adoption of heterogeneous processors, and to enable systems that

are both energy efficient and fast.

3. OUR DESIGN
In this section, we present the design of Cypress (Section 3.1),

discuss our research on heterogeneity-aware operating systems

(Section 3.2), and present some experimental results showing the

benefits of heterogeneity-aware system software.

Cypress is novel in two respects:

(1) It will be the first hypervisor designed for heterogeneous

hardware

(2) Its will be designed, from the start, to scale to

hundreds/thousands of cores.

While implementation of this vision will, in some cases, require

application of existing techniques in the new domain (e.g., ideas

from research on scalable OS), it will also necessitate completely

new design ideas and new algorithms, in particular related to

implementing support for heterogeneous cores.

3.1 Design of Cypress
Our experimental design is based on three principles: partitioning,

localization and customization (PLC). Partitioning and

localization address scalability (although partitioning must be

heterogeneity-aware). Customization addresses heterogeneity.

3.1.1 Partitioning
Partitioning is a decentralized framework for scheduling of VMs

that minimizes the overhead of runqueue management in the

hypervisor. With partitioning, cores are partitioned among VMs

(VMs are pinned to subsets of cores), and so cores are not time-

shared among VMs. This reduces the overhead of runqueue

management in the hypervisor. Although the idea of partitioning

is not new (as far as we know it is often used in existing

hypervisors to avoid the overhead), in existing systems

partitioning does not take into account the fact that cores are

heterogeneous. In Cypress, partitioning is heterogeneity-aware.

We now describe how it works.

As we mentioned, on many-core systems small, simple and low-

power cores will be abundant. Because of abundance, there will

be no need to time-share those cores among VMs, so the cores can

be simply partitioned among them. Therefore, Cypress maps a

group of cores to each virtual machine and lets the guest OS

assign those cores to applications, performing no load-balancing

or queue management itself.

Fast cores will be less numerous, and so it may be necessary to

time-share them among VMs. In Cypress, fast cores are assigned

to a special anonymous partition. They are given to VMs on short-

term leases. Short-term leases are similar to time-sharing, but the

scheduling quantum is longer (on the order of seconds), so there

should be less overhead due to runqueue management. When a

VM’s lease for a fast core expires, the virtual CPU that was

mapped to the fast core is re-mapped to a slow core. So while

some of the VM’s applications run slower in-between leases, they

still make progress.

Accelerator cores cannot be substituted with other (abundant)

cores, because they expose a distinct ISA. In Cypress, those cores

are time-shared among VMs in a traditional fashion. Since the

number of these cores will be small, the overhead of runqueue

maintenance should be low.

Partitions will be created, modified and destroyed by a Global

Partition Manager (GPM). Since partition changes will be rare,

the GPM should not be a bottleneck.

Partitioning should reduce the sharing of runqueues and thus

promote scalability. In addition, partitioning will give the guest a

better control over CPU resources, since most of the virtual CPUs

will be mapped directly to physical CPUs. As a result, partitioning

may offer better support for real-time guest domains. (In this case,

it may be necessary to notify the guest if the core being is mapped

to a dedicated physical core or if it is being time-shared.)

While partitioning in itself is already used in existing VM

installations to reduce hypervisor overhead, it is configured

manually by the system administrator. In Cypress, partitioning

will be built into the hypervisor itself and, most importantly, it

will support heterogeneous CPU cores.

3.1.2 Localization
Each VM partition will be managed by a Local Partition Manager

(LPM). LPM will perform virtualization-related housekeeping

tasks for its VM, such as page table updates and processing of

interrupts – those housekeeping tasks are usually done globally

for all VMs in existing hypervisors. LPM will also notify the

GPM if the partition size must be changed due to a change in the

CPU utilization inside the VM.

LPM will run on a dedicated core (or cores) within the partition.

This will prevent CPU bottlenecks related to interrupt processing

reported in previous work [2,3]. LPM will access only the

memory objects belonging to the VM running in that partition,

hence we have localization. Localization will reduce memory

latency and avoid synchronization bottlenecks. Localization is

inspired by Tornado and K42 operating systems [6,16].

3.1.3 Customization
Customization is about making sure that each VM schedules its

applications on the “right” kinds of heterogeneous cores, so as to

maximize the system’s performance per watt. This, in contrast to

partitioning and localization, is an entirely new concept in the

realm of hypervisor design.

There are three things that the hypervisor must do to offer good

support for processors with heterogeneous cores: (1) it must

export the cores’ features to heterogeneity-aware guests, (2) it

must optimally allocate heterogeneous cores to heterogeneity-

unaware (legacy) guests, and (3) it must properly account for

utilization of the cores of different types.

A heterogeneity-aware guest (as in [10,20]) must be able to

discover the features of heterogeneous cores present on the

physical machine, so it can map its heterogeneous virtual cores to

the heterogeneous physical cores and then assign threads to run on

the “right” cores. To enable this, Cypress will provide support for

dynamic hardware discovery. In existing systems, an operating

system may discover features of the processor by reading its

model-specific registers (MSR). Cypress will provide support for

reading MSR registers of heterogeneous processors. The key

challenge is to provide the guest enough information about the

features of the hardware without overwhelming it with

microarchitectural details.

If the guest is not heterogeneity aware, Cypress will take hints

from the guest in order to map the guest’s virtual cores to the

machine’s physical heterogeneous cores in the optimal way.

Those hints may come, for example, from power management

policies used in existing (heterogeneity-unaware) operating

systems [14,23,24]. According to these policies, the OS brings

cores into lower power states (via DVFS) when applications

running on them do not benefit from high clock frequencies. In

Cypress, when the legacy guest lowers the power state of the core,

the hypervisor maps that virtual core to a slow physical core, and

vice versa.

Some mechanism must be used in the hypervisor to encourage the

use of power-efficient scheduling policies in the guest. One

solution is to “price” the processing time on each core in

accordance with the core’s power consumption. As a result, a VM

that uses power-intensive cores will be charged more per unit of

processing time than a VM that uses low-power cores.

Another solution is to give each VM a certain power budget.

Initially, each VM would be allocated a certain number of

“cheap” low-power cores that fit within its budget. (The budget is

decided by a system administrator.) Then, as the guest OS learns

about the properties of its workload, it may “exchange” low-

power cores for higher-power cores. Exchange can be driven by

DVFS hints from heterogeneity-unaware guests or by explicit

communication with heterogeneity-aware guests. The hypervisor

ensures fair sharing of cores. For example, a core drawing 80

watts can be exchanged for two cores drawing 40 watts each, etc.

As a result, a VM with a high thread-level parallelism (TLP) will

probably get many low-power cores, while a VM with a low TLP

will get few high-power cores. (This method of trading the

number of cores and their complexity in known to maximize

performance per watt [19,20].)

3.2 Heterogeneity awareness in the guest
In this section we outline our research on heterogeneity-aware

scheduling algorithms in the guest OS. As we explained above,

existing heterogeneity-aware OS schedulers assume long-lived

threads and are not meant to scale to hundreds of cores. The

reason for these drawbacks is reliance on dynamic performance

monitoring to determine the suitability of each heterogeneous core

for each thread [10,20]. The goal of our work is to eliminate

reliance on dynamic monitoring from the scheduling algorithms.

Our main idea is that the application itself should provide

information that helps the scheduler determine the best suitable

core for it. This information is encoded in an architectural

signature, a set of microarchitecture-independent characteristics

of the application [18]. These characteristics may describe the

memory access patterns of the application, its available ILP, the

properties of its instruction mix, etc., thus helping predict its

sensitivity to the variation in certain processor features, such as

cache size, issue width, instruction scheduling architecture, clock

frequency, etc. An architectural signature is generated offline, via

profiling or binary analysis, and embedded in the application

binary.

Use of architectural signatures eliminates the need to perform

online profiling in the scheduler and facilitates efficiency and

scalability in the scheduling algorithm.

Our early results indicate that it is possible to construct

architectural signatures that help effectively determine allocation

of CPU cores that differ in terms of clock frequency. We are still

evaluating whether signatures can be constructed for other kinds

of heterogeneous cores.

3.3 Benefits of heterogeneity awareness
We now present experiments demonstrating the benefits of

heterogeneity-awareness in the hypervisor and in the guest. Since

our hypervisor implementation is not complete, we illustrate its

future potential via an emulated environment.

We use UNIX tasksets to represent a virtual machine, a user-level

taskset manager to emulate a guest OS, and a user-level CPU-

affinity manager to emulate the hypervisor. The taskset manager

launches the applications belonging to its taskset and tells the

CPU-affinity manager what types of cores it needs for its

applications. (We assume that optimal core assignments are

known to the taskset manager a priori.) The CPU-affinity

manager then assigns cores to tasksets (emulating the partitioning

done in the hypervisor), and the taskset manager assigns tasks to

cores (emulating the scheduling done in the guest).

We run experiments on an Intel system with two X5365 quad-core

processors. There are a total of four chips, and there is a pair of

cores on each chip. Each pair of cores shares the L2 cache and

each core has a private L1 cache. We use only one core per chip

in our experiments to eliminate L2 cache interference and the

associated performance effects.

We configure the system to be heterogeneous via dynamic

voltage/frequency scaling (DVFS). DVFS allows us to selectively

set frequencies on different cores, creating cores with different

performance. We run one core at 3GHz, one core at 2.7GHz, one

core at 2.3GHz, and one core at 2GHz. The operating system used

in our experiments is OpenSolaris 11.

We picked two benchmarks from the SPEC CPU2000 suite [1],

sixtrack and mcf. Sixtrack is a CPU-bound benchmark, so it

achieves a significantly better performance when it runs on a

high-frequency core vs. a low-frequency core (see Figure 1). Mcf

is a memory-bound benchmark, so its performance is virtually

insensitive to the changes in processor frequency. Therefore, if

sixtrack and mcf are running together on our heterogeneous

system, sixtrack should be assigned to higher-frequency cores,

and mcf to lower-frequency cores.

We experiment with the following tasksets:

Taskset 1: sixtrack, sixtrack

Taskset 2: mcf, mcf,

and the following scheduler configurations:

Default: All tasks are assigned to cores randomly. This is

equivalent to having a heterogeneity-unaware hypervisor and a

heterogeneity unaware guest.

Basic: We emulate a heterogeneity-aware hypervisor, but a

heterogeneity-unaware guest. The hypervisor ensures fair

sharing of the cores according to their power consumption.

(Power consumption is not measured directly but rather

estimated based on the core’s frequency). That is, the

hypervisor will give to one taskset the cores running at 3GHz

and 2GHz, and to the other taskset the cores running at 2.7 GHz

and 2.3 GHz. The hypervisor cannot ensure optimal allocation

of cores to tasks, because the guest is heterogeneity-unaware.

Het-aware: Each taskset gets the cores best suited for its

workload. That is, Taskset 1 gets the cores running at 3GHz

and 2.7GHz, and Taskset 2 gets the cores running at 2.3GHz

and 2GHz. This is equivalent to having both a heterogeneity

aware hypervisor and a heterogeneity-aware guest.

The experiment consists running the two tasksets simultaneously

with each scheduler. We run the experiment with each scheduler

five times and report the following data for each taskset: (1)

average energy per instruction (EPI) normalized to the highest

EPI observed during all experiments, and (2) average instructions

per second (IPS) normalized to the highest IPS observed during

all experiments. We expect to see better performance and lower

energy consumption when both the hypervisor and guest are

heterogeneity-aware (Het-Aware scenario).

Figures 2 and 3 show the results. The first thing to note is the

overall reduction in energy consumption in Het-Aware scenario.

Despite the increase in sixtrack’s EPI (by 39%), the dramatic

reduction in mcf’s EPI (50%) results in overall energy savings.

The second thing to note is performance. In Het-Aware scenario,

the IPS for sixtrack rises by 20%, as compared with Default and

Basic scenarios, while the IPS loss for mcf is modest (only 5%).

This experiment demonstrates that heterogeneity awareness is

essential for achieving optimal performance/energy trade-off on

heterogeneous many-core systems. Further, it demonstrates the

importance of heterogeneity-awareness in both guest and

hypervisor and of cooperation between them.

4. STATUS
We are in the process of implementing and evaluating Cypress

using Xen hypervisor [9] as base, as well as refining and

improving its design. One challenge in our research is to find a

suitable evaluation platform. Since real many-core processors are

not yet available, we have to use existing multiprocessor/multi-

core systems, software simulators, or FPGA-accelerated

simulators. Unfortunately none of these alternatives suits our

needs perfectly. Large-scale multiprocessor systems are expensive

and do not accurately reflect the architectural features of future

many-core processors. Software simulators, while extremely

flexible, are extremely slow. FPGA-accelerated simulators, such

as RAMP [4], offer the best potential, but none of the existing

RAMP systems simulating 100s or 1000s of cores supports

running a single-image OS or a hypervisor. We are currently

using multiprocessor systems and software simulators for

evaluation and are on the look-out for any new developments in

the RAMP community.

5. RELATED WORK
VT-ASOS [8], a hypervisor for application-specific system

customization, bears many similarities to Cypress. VT-ASOS is,

essentially, an enhanced version of Xen that gives guest domains

Figure 1. Performance of sixtrack and mcf with varying clock

frequencies. Sixtrack is CPU bound (0.002 misses per 1000

cycles), and mcf is memory bound (4.62 misses per 1000 cycles).

This explains the differences in performance sensitivities.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2.0 2.3 2.7 3.0

1
0

9

in
st

ru
ct

io
n

s/
se

co
n

d

CPU clock frequency

SIXTRACK

MCF

a higher control over CPU resources. For example, in VT-ASOS

guest domains can explicitly tell the hypervisor how many virtual

CPUs they need and whether these virtual CPUs can co-exist with

other CPUs on the same core, socket, or node. While our

hypervisor also provides enhanced control over CPU resources

(via customization), it differs in several ways.

The most important difference of our hypervisor is heterogeneity

awareness. While VT-ASOS provides no support for

heterogeneous hardware, Cypress will provide proper

virtualization of heterogeneous hardware. Cypress will also

provide heterogeneity-aware partitioning (even though VT-ASOS

also uses partitioning, no account is taken of heterogeneity) and

enforce fair sharing of cores based on their power consumption.

Another difference of our hypervisor is the way in which guest

domains communicate their preferences to the hypervisor. While

VT-ASOS explicitly targets “intelligent” guests, i.e., guests that

can specify a priori how many virtual CPUs they need, our

framework allows a greater flexibility by letting guests exchange

cores as they learn about properties of their workload.

Furthermore, our framework accommodates legacy guests by

using their power configuration as hints for optimal allocation of

CPU cores.

Finally, our hypervisor design specifically targets scalability.

Therefore, our philosophy is to minimize the amount of work

done in the hypervisor and to allow only the minimal amount of

(performance-critical) interactions between guest and hypervisor.

VT-ASOS pursues a different philosophy: it allows rather high-

volume interactions between guest and hypervisor, even

introducing some application awareness into the hypervisor. (For

instance, VT-ASOS hypervisor will monitor performance of

individual applications using hardware counters. Furthermore, it

will use a configurable scheduler that is controlled by guest

domains.) We explicitly avoid heavy-weight interactions between

guest and hypervisor, because we believe that they might limit

scalability on many-core machines.

Another area of related work is on scalable OS design [6,12,16],

with Tornado [16] and K42 [6] operating systems being some of

the most prominent contributions. We will study applicability of

those designs to our problem domain and use them as appropriate.

Finally, we discuss specialized execution environments [13]. A

specialized execution environment (SEE) is created by

configuring the features of OS/runtime uniquely for each

workload. In SEE, it is possible to turn off some features of the

OS, such as scheduling or memory management. By "getting the

OS out of the way", SEEs can improve performance. We believe

that our hypervisor will facilitate SEEs for high-performance

applications. Partitioning and heterogeneity awareness give the

guest a higher control over CPU resources than that which would

be provided by existing hypervisors. Our hypervisor, therefore,

ideally suits high-performance SEEs where such control is

needed.

6. SUMMARY
Scale and heterogeneity of future many-core processors motivate

us to reconsider the design of the scheduling infrastructure in the

hypervisor. We argued that the scheduler must be designed to

scale to thousands of cores and to provide effective utilization of

heterogeneous hardware. We presented the design of Cypress, our

experimental hypervisor, with which we hope to learn how to

achieve these goals.

Cypress is novel in two respects: It will be the first hypervisor

with explicit support for heterogeneous hardware, and it will be

explicitly designed to scale on machines with hundreds or

thousands or processing cores. Implementation, evaluation and

refinement of design ideas in Cypress are currently under way and

we hope to share our results with the community in the near

future.

7. REFERENCES
 [1] SPEC CPU2000 web site. http://www.spec.org

 [2] Multi-NIC Networking Performance in ESX 3.0.1 and

XenEnterprise 3.2.0. VMWare Technical Note,

http://www.vmware.com/pdf/Multi-

NIC_Performance.pdf

 [3] Networking performance in multiple virtual machines.

Technical Note, VMWare,

http://www.vmware.com/pdf/Multi-

VM_Network_Performance.pdf

 [4] RAMP - Research Accelerator for Multiple Processors.

http://ramp.eecs.berkeley.edu

 [5] E. Ackaouy. The Xen Credit CPU Scheduler. Xen

Summit, http://xen.org/files/summit_3/sched.pdf

 [6] J. Appavoo, M. Auslander, M. Burtico, D. Da Silva, O.

Krieger, M. Mergen, M. Ostrowski, B. Rosenburg, R.

Wisniewski, and J. Xenidis. Experience With K42: an

Open-Source Linux-Compatible Scalable Operating

Figure 2. Normalized EPI with the three schedulers. Figure 3. Normalized IPS with the three schedulers.

Note (in Figure 2) that even though Basic scheduler assures fair power distribution, each mcf’s instruction takes much longer than sixtrack’s instruction, so
the energy (kilowatt hour) per instruction for mcf is much higher.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Default Basic Het-Aware

N
o

rm
a

li
ze

d
 E

P
I

Taskset 1 (sixtrack, sixtrack)

Taskset 2 (mcf, mcf)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Default Basic Het-Aware

N
o

rm
a

li
ze

d
 I

P
S

Taskset 1 (sixtrack, sixtrack)

Taskset 2 (mcf, mcf)

System Kernel. IBM Systems Journal, 44(2):427-440,

2005

 [7] K. Asanovic and et al. The Landscape of Parallel

Computing Research: A View From Berkeley. UC

Berkeley Technical Report UCB/EECS-2006-183, 2006

 [8] G. Back and D. Nikolopoulos. Application-Specific

System Customization on Many-Core Platforms: The

VT-ASOS Framework. In Proceedings of Second

Workshop on Software Tools for Multi-Core Systems,

2007

 [9] P. Barham, B. Dragovic, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield. Xen and the Art

of Virtualization. In Proceedings of SOSP, 2003

 [10] M. Becchi and P. Crowley. Dynamic Thread

Assignment on Heterogeneous Multiprocessor

Architectures. In Proceedings of Conference on

Computing Frontiers, 2006

 [11] S. Borkar. Thousand Core Chips—A Technology

Perspective. In Proceedings of DAC, 2007

 [12] R. Bryant, J. Hawkes, and J. Steiner. Scaling Linux to

the Extreme: From 64 to 512 Processors. In

Proceedings of Ottawa Linux Symposium, 2004

 [13] M. Burtico, D. Da Silva, O. Krieger, M. Ostrowski, B.

Rosenburg, E. Hensbergen, R. Wisniewski, and J.

Xenidis. Specialized Execution Environments. ACM

SIGOPS Operating Systems Review, 42(1):106-107,

2008

 [14] G. Dhiman and T. Rosing. Dynamic voltage frequency

scaling for multi-tasking systems using online learning.

In Proceedings of International Symposium on Low

Power Electronics and Design, 2007

 [15] Alexandra Fedorova, D. Vengerov, and Daniel

Doucette. Operating System Scheduling On

Heterogeneous Multicore Systems. In Proceedings of

the PACT'07 Workshop on Operating System Support

for Heterogeneous Multicore Architectures, 2007

 [16] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm.

Tornado: Maximizing Locality and Concurrency in a

Shared Memory Multiprocessor Operating System. In

Proceedings of USENIX Annual Technical Conference,

1999

 [17] C. Gough, S. Siddha, and K. Chen. Kernel Scalability --

Explanding the Hoizon Beyond Fine Grain Locks. In

Proceedings of Ottawa Linux Symposium, 2007

 [18] K. Hoste and L. Eechhout. Microarchitecture-

Independent Workload Characterization. IEEE Micro

Hot Tutorials, 27(3):63-72, 2007

 [19] R. Kumar, K. Farkas, N. Jouppi, R. Parthasarathy, and

Dean M. Tullsen. Single-ISA Heterogeneous Multi-

Core Architectures: The Potential for Processor Power

Reduction. In Proceedings of 36th annual IEEE/ACM

International Symposium on Microarchitecture, 2003

 [20] R. Kumar, Dean M. Tullsen, R. Parthasarathy, N.

Jouppi, and K. Farkas. Single-ISA Heterogeneous

Multicore Architectures for Multithreaded Workload

Performance. In Proceedings of 31st Annual

International Symposium on Computer Architecture,

2004

 [21] Richard McDougall and Jim Mauro. Solaris™ Internals:

Solaris 10 and OpenSolaris Kernel Architecture.

Prentice Hall, 2006

 [22] B. Quetier, V. Neri, and F. Cappello. Scalability

Comparison of Four Host Virtualization Tools. Journal

of Grid Computing, 5(1):83-98, March 2007

 [23] K. Rajamani, H. Hanson, J. Rubio, S. Ghiasi, and F.

Rawson. Application-Aware Power Management. In

Proceedings of IEEE International Symposium on

Workload Characterization, 2006

 [24] Suresh Siddha and Venkatesh Pallipadi. Chip Multi

Processing Aware Linux Kernel Scheduler. In

Proceedings of Linux Symposium, 2005

 [25] Burton Smith. Many-Core Operating Systems. In

Proceedings of Workshop on the Interaction between

Operating Systems and Computer Architecture

(WIOSCA), in conjunction with ISCA-34, Keynote

Speech, 2007

 [26] VMWare White Paper. VMware ESX Server 2

Architecture and Performance Implications.

http://www.vmware.com/pdf/esx2_performance_implica

tions.pdf

