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ABSTRACT 

In this position paper, we present our vision for the scheduling 

infrastructure in a many-core hypervisor – the hypervisor targeted 

for many-core platforms. The key objectives of our system are 

scalability and heterogeneity-awareness. We see these as first-

order objectives, because future many-core processors will consist 

of thousands of cores and those cores will be heterogeneous. 

Since existing hypervisors were not designed to handle the scale 

and heterogeneity of many-core hardware, our design will differ 

from that of existing hypervisors in many important ways. The 

design of our experimental many-core hypervisor, Cypress, is 

based on three principles: partitioning, localization, and 

customization. Together, these principles facilitate scalability, by 

minimizing the sharing of scheduling runqueues, and manage 

heterogeneity, by assigning to each VM the cores most suitable 

for its workload. In this paper we motivate our design, present its 

key components, discuss challenges in our research, and report on 

its status.    

Categories and Subject Descriptors 
D.4 [Operating Systems]: Organization and Design, Process 

Management  

General Terms 
Algorithms, Design, Experimentation, Management, 

Measurement. 

Keywords 
Many-core processors, scheduling algorithms, hypervisor, virtual 

machine monitor, heterogeneous multi-core systems, scalability, 

guest operating system. 

1. INTRODUCTION 
Future many-core processors will consist of hundreds or 

thousands of heterogeneous processing cores [7,11,25]. 

Schedulers in existing hypervisors were not designed to scale at 

this level, and they are not heterogeneity aware. The focus of our 

work is to design a scalable and heterogeneity-aware scheduling 

infrastructure in a virtual machine hypervisor. In particular we 

expect to address two research problems: 

(1) Evaluate scalability of schedulers in existing hypervisors on 

processors with hundreds or thousands of cores, and (if 

necessary) investigate how to design a scheduler that scales. 

 

(2) Design hypervisor scheduling algorithms that allocate 

heterogeneous cores to VMs in the optimal manner.  We 

expect that this will be done in one of two ways: (1) via 

explicit communication with heterogeneity-aware guest 

operating systems or (2) via hints from legacy 

(heterogeneity-unaware) guests. In the former case, we will 

have to design the interface by which the guest will learn 

about the kinds of CPU cores available on the system and by 

which it will communicate to the hypervisor its resource 

requirements. We expect our contribution to be new 

scheduling algorithms that make optimal decisions in terms 

of performance, energy consumption and fairness, and that 

are, at the same time, light-weight and scalable.   

Addressing scheduling in the hypervisor is an important problem, 

because dependence on hypervisor technology will increase as 

many-core hardware matures. Since hardware scales at a faster 

rate than software [7], utilizing a many-core system by a single 

workload will be challenging. Therefore, those systems will often 

run multiple independent workloads. Those diverse workloads 

will run on various guest operating systems and will have to be 

isolated from one another for faults and performance effects. 

Since hypervisor technology addresses both of these concerns1 

[9,26], its use will be widespread in many-core environments.  

Since our design will introduce new guest/hypervisor interfaces, 

some of our work concerns with implementing a heterogeneity-

aware guest OS that works synergistically with the Cypress 

hypervisor. At the same time, our hypervisor will support legacy 

(heterogeneity-unaware) guests.  

The rest of the paper is organized as follows. In Section 2 we 

motivate our work by discussing the challenges posed by many-

core hardware. In Section 3 we present the design of Cypress. In 

Section 4 we discuss the status of our project. In Section 5 we 

                                                                    

1 While microkernels and container operating systems (such as 

Linux VServer, Solaris Zones, and IBM AIX 6.1) also provide 

isolation, they offer less flexibility as far as diversity of 

operating systems. 
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compare and contrast our approach with related work, and in 

Section 6 we summarize. 

2. MANY-CORE CHALLENGES 
We begin with identifying our assumptions about future many-

core processors and about the software that will be running on 

them. We then discuss the challenges that scale and heterogeneity 

of many-core processors pose for system software.  

2.1 System model 
We envision that future many-core systems will consists of three 

kinds of CPU cores: (1) low-power simple in-order cores, i.e., 

slow cores, (2) powerful complex, i.e., fast, cores, and, finally, (3) 

accelerator cores, such as vector processors (as in IBM Cell 

engine) or general-purpose GPUs. Slow cores will be abundant. 

Fast cores will be less plentiful. They will expose the same ISA as 

slow cores but offer better performance for high-ILP programs. 

Finally, accelerator cores will expose distinct ISA and there will 

be only a handful of them on the chip. It is projected that the total 

number of cores per chip will be on the order of hundreds or 

thousands, as early as a decade from the time of this writing 

[7,11].  

We expect that on many-core processors the prevalent execution 

environment will be based on a hypervisor. The workload 

consolidation enabled by the hypervisor will allow keeping the 

many-core machine busy. Despite ongoing parallelization of many 

applications, there will still be algorithms that are fundamentally 

serial, so workload consolidation will be an important means of 

achieving full utilization of many-core hardware. Aggressive 

workload consolidation will create very diverse VM workloads 

running on the same processor, e.g., servers, desktop applications, 

scientific applications and soft real-time workloads, and thus we 

expect to see diverse guest operating systems. There will be 

operating systems that are customized for heterogeneous 

hardware. Those guests will be able to give the hypervisor hints 

with respect to the kind of cores that are needed by their 

workloads. There will also be legacy operating systems that will 

provide no such information. The hypervisor must be designed to 

provide efficient allocation of resources in both of these scenarios.    

2.2 Scale   
The first goal of our research is to evaluate scalability of existing 

hypervisors on many-core processors. While hypervisor 

scalability was evaluated on small-scale multiprocessor systems 

[2,3,22], scalability on systems with more than four cores has not 

been measured.  If we find that scalability has limitations, we will 

investigate how the hypervisor must be designed so that it scales. 

While scalability of operating systems is a well-studied area 

[6,12,16], it is not clear whether hypervisor will be subject to 

same issues. Furthermore, existing research on OS scalability 

addressed this problem in the context of multi-processor 

hardware. Understanding the nature of scalability limitations on 

many-core hardware is still an open question.  

Nevertheless, existing research on OS scalability allows us to 

speculate about potential scalability bottlenecks and project how 

the hypervisor might be designed to avoid them. Earlier research 

showed that scalability of system software is usually limited by 

(1) synchronized access to shared data structures [16,17] and (2) 

reduced cache affinity due to interrupt processing [2,3]. We now 

elaborate on these problems. 

2.2.1 Shared data structures 
When several cores simultaneously read and write shared data 

they must synchronize their access and transfer modified data 

from one core to another. This limits concurrency and increases 

access latency.  

In schedulers, most frequently shared data structures are per-CPU 

(or per-core) runqueues.  Most commercial schedulers (e.g., in 

Linux, Solaris, Xen) access shared runqueues during context 

switches and during load balancing [5,17,21]. A recent study of 

the Linux kernel [17] revealed that the majority of scalability 

bottlenecks came from accessing those shared runqueues, with 

roughly 22% of highest-latency cache misses coming from that 

code. Although the Linux study was done on a multi-chip 

multicore system and thus observed higher inter-core 

communication latencies than those that would be seen on a 

single-chip multicore processor, it showed that sharing of 

runqueues can be a barrier to scalability2. While the impact of 

runqueue sharing in many-core systems is yet to be understood, in 

our design we minimize access to shared runqueues. As Section 

3.1.1 explains, we partition the cores among VMs rather than 

time-share them, when possible.  

2.2.2 Interrupts 
Many scalability problems in existing hypervisors and operating 

systems stem from the fact that interrupts are delivered to a 

different processor than that which last ran the thread expecting 

the interrupt [2,17]. As a result, the thread is awaken on a 

different processor and loses its cache affinity. We are interested 

in experimenting with the hardware that supports targeted 

interrupt delivery, i.e., message signalled interrupts, and in 

evaluating its implications for the scalability of many-core 

hypervisors.  

2.3 Heterogeneity 
Heterogeneous architectures are expected to be in wide use in 

future many-core processors [7,11]. The reason is that 

heterogeneous architectures can potentially achieve a higher 

performance per watt than homogeneous architectures [19,20]. To 

realize this potential, however, applications must be scheduled to 

run on the cores that best fit to their architectural properties 

[10,20].  Existing hypervisors are agnostic of heterogeneous 

hardware and thus they do not reap the energy-saving potential of 

heterogeneous processors. Our research will address the design of 

heterogeneity-aware scheduling algorithms in a hypervisor that 

will allow realizing this potential. This will be the main 

contribution of our work.  

We now provide an example demonstrating why heterogeneity-

aware scheduling is crucial. Consider, a single-ISA heterogeneous 

system. On this system, a scientific application with high 

instruction-level parallelism (ILP) would run much faster on a 

“fast” core, as opposed to a “slow” core. On the other hand, a 

memory-bound database application would experience 

comparable performance on slow and fast cores. The best 

performance/energy trade off is achieved by assigning the 

                                                                    

2 We are not aware of any recent studies examining scalability of 

schedulers in other operating systems and in VM hypervisors. 

Existing scalability of Xen and VMWare focused mostly on 

scalability of I/O and were done on hardware with at most four 

cores  



scientific application to the fast core and the database application 

to the slow core. As another example, an application with high 

thread-level parallelism (TLP) could perform well on many slow 

cores, while a low-TLP application that cannot take advantage of 

hardware parallelism must be run on a few fast cores.  

These examples demonstrate that the hypervisor (and the guest 

OS) must be heterogeneity aware. That is, the hypervisor must 

expose heterogeneous properties of the hardware to the guest, and 

the guest must schedule tasks to cores in the most efficient 

manner. While heterogeneity-awareness in the guest was partially 

addressed in the research community [10,15,19,20], OS-level 

solutions are not directly applicable to the hypervisor and design 

heterogeneity-aware algorithms for the hypervisor remains an 

open question.  

In addition to building a heterogeneity-aware hypervisor we are 

also exploring heterogeneous aware designs of the guest OS. 

Although several heterogeneity-aware scheduling algorithms for 

OS were proposed in the past [10,19,20], they were not meant to 

scale to many cores and assumed long-lived threads. In particular, 

the two most prominent algorithms by Becchi [10] and Kumar 

[20] relied on continuous monitoring of performance of each 

thread (or thread co-schedules) on each heterogeneous core to 

determine the best core for each thread. When the number of 

different core types is large (as may be the case on many-core 

systems), this task becomes infeasible. Furthermore, these 

algorithms (while not implemented in a real OS) implied frequent 

examination of scheduler’s runqueues, which, as we know [17], 

may limit scalability. Finally, these algorithms assumed that 

threads were long-lived, since short-lived threads may terminate 

before the scheduler learns the optimal core placement for them. 

Our goal is to experiment with new scheduling algorithms that 

address these shortcomings. 

Studies of heterogeneous multicore systems showed that they 

achieve superior performance/watt in comparison to homogeneous 

systems, but only when CPU cores are assigned to match the 

properties of applications [10,19,20]. This means that system 

software must be heterogeneity-aware in order to leverage the 

power-efficiency of those systems. This also means that if 

heterogeneity-aware system software is not designed before 

heterogeneous hardware enters the mainstream, hardware 

designers will have little incentive to build heterogeneous 

systems, a so-called chicken-and-egg problem. By developing 

heterogeneity-aware system software early on, before 

heterogeneous processor designs are finalized, we have a unique 

opportunity to influence future hardware trends by facilitating the 

adoption of heterogeneous processors, and to enable systems that 

are both energy efficient and fast.  

3. OUR DESIGN 
In this section, we present the design of Cypress (Section 3.1), 

discuss our research on heterogeneity-aware operating systems 

(Section 3.2), and present some experimental results showing the 

benefits of heterogeneity-aware system software.  

Cypress is novel in two respects: 

(1) It will be the first hypervisor designed for heterogeneous 

hardware 

(2) Its will be designed, from the start, to scale to 

hundreds/thousands of cores. 

While implementation of this vision will, in some cases, require 

application of existing techniques in the new domain (e.g., ideas 

from research on scalable OS), it will also necessitate completely 

new design ideas and new algorithms, in particular related to 

implementing support for heterogeneous cores.   

3.1 Design of Cypress 
Our experimental design is based on three principles: partitioning, 

localization and customization (PLC). Partitioning and 

localization address scalability (although partitioning must be 

heterogeneity-aware). Customization addresses heterogeneity. 

3.1.1 Partitioning 
Partitioning is a decentralized framework for scheduling of VMs 

that minimizes the overhead of runqueue management in the 

hypervisor. With partitioning, cores are partitioned among VMs 

(VMs are pinned to subsets of cores), and so cores are not time-

shared among VMs. This reduces the overhead of runqueue 

management in the hypervisor. Although the idea of partitioning 

is not new (as far as we know it is often used in existing 

hypervisors to avoid the overhead), in existing systems 

partitioning does not take into account the fact that cores are 

heterogeneous. In Cypress, partitioning is heterogeneity-aware. 

We now describe how it works.  

As we mentioned, on many-core systems small, simple and low-

power cores will be abundant. Because of abundance, there will 

be no need to time-share those cores among VMs, so the cores can 

be simply partitioned among them. Therefore, Cypress maps a 

group of cores to each virtual machine and lets the guest OS 

assign those cores to applications, performing no load-balancing 

or queue management itself.  

Fast cores will be less numerous, and so it may be necessary to 

time-share them among VMs. In Cypress, fast cores are assigned 

to a special anonymous partition. They are given to VMs on short-

term leases. Short-term leases are similar to time-sharing, but the 

scheduling quantum is longer (on the order of seconds), so there 

should be less overhead due to runqueue management. When a 

VM’s lease for a fast core expires, the virtual CPU that was 

mapped to the fast core is re-mapped to a slow core. So while 

some of the VM’s applications run slower in-between leases, they 

still make progress.  

Accelerator cores cannot be substituted with other (abundant) 

cores, because they expose a distinct ISA. In Cypress, those cores 

are time-shared among VMs in a traditional fashion. Since the 

number of these cores will be small, the overhead of runqueue 

maintenance should be low.   

Partitions will be created, modified and destroyed by a Global 

Partition Manager (GPM). Since partition changes will be rare, 

the GPM should not be a bottleneck.  

Partitioning should reduce the sharing of runqueues and thus 

promote scalability. In addition, partitioning will give the guest a 

better control over CPU resources, since most of the virtual CPUs 

will be mapped directly to physical CPUs. As a result, partitioning 

may offer better support for real-time guest domains. (In this case, 

it may be necessary to notify the guest if the core being is mapped 

to a dedicated physical core or if it is being time-shared.)   

While partitioning in itself is already used in existing VM 

installations to reduce hypervisor overhead, it is configured 

manually by the system administrator. In Cypress, partitioning 



will be built into the hypervisor itself and, most importantly, it 

will support heterogeneous CPU cores. 

3.1.2 Localization  
Each VM partition will be managed by a Local Partition Manager 

(LPM). LPM will perform virtualization-related housekeeping 

tasks for its VM, such as page table updates and processing of 

interrupts – those housekeeping tasks are usually done globally 

for all VMs in existing hypervisors. LPM will also notify the 

GPM if the partition size must be changed due to a change in the 

CPU utilization inside the VM.  

LPM will run on a dedicated core (or cores) within the partition. 

This will prevent CPU bottlenecks related to interrupt processing 

reported in previous work [2,3]. LPM will access only the 

memory objects belonging to the VM running in that partition, 

hence we have localization. Localization will reduce memory 

latency and avoid synchronization bottlenecks.  Localization is 

inspired by Tornado and K42 operating systems [6,16]. 

3.1.3 Customization 
Customization is about making sure that each VM schedules its 

applications on the “right” kinds of heterogeneous cores, so as to 

maximize the system’s performance per watt. This, in contrast to 

partitioning and localization, is an entirely new concept in the 

realm of hypervisor design.  

There are three things that the hypervisor must do to offer good 

support for processors with heterogeneous cores: (1) it must 

export the cores’ features to heterogeneity-aware guests, (2) it 

must optimally allocate heterogeneous cores to heterogeneity-

unaware (legacy) guests, and (3) it must properly account for 

utilization of the cores of different types.  

A heterogeneity-aware guest (as in [10,20]) must be able to 

discover the features of heterogeneous cores present on the 

physical machine, so it can map its heterogeneous virtual cores to 

the heterogeneous physical cores and then assign threads to run on 

the “right” cores. To enable this, Cypress will provide support for 

dynamic hardware discovery. In existing systems, an operating 

system may discover features of the processor by reading its 

model-specific registers (MSR). Cypress will provide support for 

reading MSR registers of heterogeneous processors. The key 

challenge is to provide the guest enough information about the 

features of the hardware without overwhelming it with 

microarchitectural details. 

If the guest is not heterogeneity aware, Cypress will take hints 

from the guest in order to map the guest’s virtual cores to the 

machine’s physical heterogeneous cores in the optimal way. 

Those hints may come, for example, from power management 

policies used in existing (heterogeneity-unaware) operating 

systems [14,23,24]. According to these policies, the OS brings 

cores into lower power states (via DVFS) when applications 

running on them do not benefit from high clock frequencies. In 

Cypress, when the legacy guest lowers the power state of the core, 

the hypervisor maps that virtual core to a slow physical core, and 

vice versa.  

Some mechanism must be used in the hypervisor to encourage the 

use of power-efficient scheduling policies in the guest. One 

solution is to “price” the processing time on each core in 

accordance with the core’s power consumption. As a result, a VM 

that uses power-intensive cores will be charged more per unit of 

processing time than a VM that uses low-power cores.  

Another solution is to give each VM a certain power budget. 

Initially, each VM would be allocated a certain number of 

“cheap” low-power cores that fit within its budget. (The budget is 

decided by a system administrator.) Then, as the guest OS learns 

about the properties of its workload, it may “exchange” low-

power cores for higher-power cores. Exchange can be driven by 

DVFS hints from heterogeneity-unaware guests or by explicit 

communication with heterogeneity-aware guests.  The hypervisor 

ensures fair sharing of cores. For example, a core drawing 80 

watts can be exchanged for two cores drawing 40 watts each, etc. 

As a result, a VM with a high thread-level parallelism (TLP) will 

probably get many low-power cores, while a VM with a low TLP 

will get few high-power cores. (This method of trading the 

number of cores and their complexity in known to maximize 

performance per watt [19,20].)   

3.2 Heterogeneity awareness in the guest 
In this section we outline our research on heterogeneity-aware 

scheduling algorithms in the guest OS. As we explained above, 

existing heterogeneity-aware OS schedulers assume long-lived 

threads and are not meant to scale to hundreds of cores. The 

reason for these drawbacks is reliance on dynamic performance 

monitoring to determine the suitability of each heterogeneous core 

for each thread [10,20]. The goal of our work is to eliminate 

reliance on dynamic monitoring from the scheduling algorithms.  

Our main idea is that the application itself should provide 

information that helps the scheduler determine the best suitable 

core for it. This information is encoded in an architectural 

signature, a set of microarchitecture-independent characteristics 

of the application [18]. These characteristics may describe the 

memory access patterns of the application, its available ILP, the 

properties of its instruction mix, etc., thus helping predict its 

sensitivity to the variation in certain processor features, such as 

cache size, issue width, instruction scheduling architecture, clock 

frequency, etc. An architectural signature is generated offline, via 

profiling or binary analysis, and embedded in the application 

binary.  

Use of architectural signatures eliminates the need to perform 

online profiling in the scheduler and facilitates efficiency and 

scalability in the scheduling algorithm.  

Our early results indicate that it is possible to construct 

architectural signatures that help effectively determine allocation 

of CPU cores that differ in terms of clock frequency. We are still 

evaluating whether signatures can be constructed for other kinds 

of heterogeneous cores.  

3.3 Benefits of heterogeneity awareness 
We now present experiments demonstrating the benefits of 

heterogeneity-awareness in the hypervisor and in the guest. Since 

our hypervisor implementation is not complete, we illustrate its 

future potential via an emulated environment.  



We use UNIX tasksets to represent a virtual machine, a user-level 

taskset manager to emulate a guest OS, and a user-level CPU-

affinity manager to emulate the hypervisor. The taskset manager 

launches the applications belonging to its taskset and tells the 

CPU-affinity manager what types of cores it needs for its 

applications. (We assume that optimal core assignments are 

known to the taskset manager a priori.) The CPU-affinity 

manager then assigns cores to tasksets (emulating the partitioning 

done in the hypervisor), and the taskset manager assigns tasks to 

cores (emulating the scheduling done in the guest). 

We run experiments on an Intel system with two X5365 quad-core 

processors. There are a total of four chips, and there is a pair of 

cores on each chip. Each pair of cores shares the L2 cache and 

each core has a private L1 cache. We use only one core per chip 

in our experiments to eliminate L2 cache interference and the 

associated performance effects.  

We configure the system to be heterogeneous via dynamic 

voltage/frequency scaling (DVFS). DVFS allows us to selectively 

set frequencies on different cores, creating cores with different 

performance. We run one core at 3GHz, one core at 2.7GHz, one 

core at 2.3GHz, and one core at 2GHz. The operating system used 

in our experiments is OpenSolaris 11. 

We picked two benchmarks from the SPEC CPU2000 suite [1], 

sixtrack and mcf. Sixtrack is a CPU-bound benchmark, so it 

achieves a significantly better performance when it runs on a 

high-frequency core vs. a low-frequency core (see Figure 1). Mcf 

is a memory-bound benchmark, so its performance is virtually 

insensitive to the changes in processor frequency. Therefore, if 

sixtrack and mcf are running together on our heterogeneous 

system, sixtrack should be assigned to higher-frequency cores, 

and mcf to lower-frequency cores.  

We experiment with the following tasksets: 

Taskset 1: sixtrack, sixtrack 

Taskset 2: mcf, mcf, 

and the following scheduler configurations: 

Default: All tasks are assigned to cores randomly. This is 

equivalent to having a heterogeneity-unaware hypervisor and a 

heterogeneity unaware guest.  

Basic: We emulate a heterogeneity-aware hypervisor, but a 

heterogeneity-unaware guest. The hypervisor ensures fair 

sharing of the cores according to their power consumption. 

(Power consumption is not measured directly but rather 

estimated based on the core’s frequency). That is, the 

hypervisor will give to one taskset the cores running at 3GHz 

and 2GHz, and to the other taskset the cores running at 2.7 GHz 

and 2.3 GHz. The hypervisor cannot ensure optimal allocation 

of cores to tasks, because the guest is heterogeneity-unaware.  

Het-aware: Each taskset gets the cores best suited for its 

workload. That is, Taskset 1 gets the cores running at 3GHz 

and 2.7GHz, and Taskset 2 gets the cores running at 2.3GHz 

and 2GHz. This is equivalent to having both a heterogeneity 

aware hypervisor and a heterogeneity-aware guest.  

The experiment consists running the two tasksets simultaneously 

with each scheduler. We run the experiment with each scheduler 

five times and report the following data for each taskset: (1) 

average energy per instruction (EPI) normalized to the highest 

EPI observed during all experiments, and (2) average instructions 

per second (IPS) normalized to the highest IPS observed during 

all experiments. We expect to see better performance and lower 

energy consumption when both the hypervisor and guest are 

heterogeneity-aware (Het-Aware scenario).  

Figures 2 and 3 show the results. The first thing to note is the 

overall reduction in energy consumption in Het-Aware scenario. 

Despite the increase in sixtrack’s EPI (by 39%), the dramatic 

reduction in mcf’s EPI (50%) results in overall energy savings. 

The second thing to note is performance. In Het-Aware scenario, 

the IPS for sixtrack rises by 20%, as compared with Default and 

Basic scenarios, while the IPS loss for mcf is modest (only 5%). 

This experiment demonstrates that heterogeneity awareness is 

essential for achieving optimal performance/energy trade-off on 

heterogeneous many-core systems. Further, it demonstrates the 

importance of heterogeneity-awareness in both guest and 

hypervisor and of cooperation between them.  

4. STATUS  
We are in the process of implementing and evaluating Cypress 

using Xen hypervisor [9] as base, as well as refining and 

improving its design. One challenge in our research is to find a 

suitable evaluation platform. Since real many-core processors are 

not yet available, we have to use existing multiprocessor/multi-

core systems, software simulators, or FPGA-accelerated 

simulators. Unfortunately none of these alternatives suits our 

needs perfectly. Large-scale multiprocessor systems are expensive 

and do not accurately reflect the architectural features of future 

many-core processors. Software simulators, while extremely 

flexible, are extremely slow. FPGA-accelerated simulators, such 

as RAMP [4], offer the best potential, but none of the existing 

RAMP systems simulating 100s or 1000s of cores supports 

running a single-image OS or a hypervisor. We are currently 

using multiprocessor systems and software simulators for 

evaluation and are on the look-out for any new developments in 

the RAMP community.   

5. RELATED WORK 
VT-ASOS [8], a hypervisor for application-specific system 

customization, bears many similarities to Cypress. VT-ASOS is, 

essentially, an enhanced version of Xen that gives guest domains 

 

Figure 1. Performance of sixtrack and mcf with varying clock 

frequencies. Sixtrack is CPU bound (0.002 misses per 1000 

cycles), and mcf is memory bound (4.62 misses per 1000 cycles). 

This explains the differences in performance sensitivities. 
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a higher control over CPU resources. For example, in VT-ASOS 

guest domains can explicitly tell the hypervisor how many virtual 

CPUs they need and whether these virtual CPUs can co-exist with 

other CPUs on the same core, socket, or node. While our 

hypervisor also provides enhanced control over CPU resources 

(via customization), it differs in several ways.  

The most important difference of our hypervisor is heterogeneity 

awareness. While VT-ASOS provides no support for 

heterogeneous hardware, Cypress will provide proper 

virtualization of heterogeneous hardware. Cypress will also 

provide heterogeneity-aware partitioning (even though VT-ASOS 

also uses partitioning, no account is taken of heterogeneity) and 

enforce fair sharing of cores based on their power consumption.  

Another difference of our hypervisor is the way in which guest 

domains communicate their preferences to the hypervisor. While 

VT-ASOS explicitly targets “intelligent” guests, i.e., guests that 

can specify a priori how many virtual CPUs they need, our 

framework allows a greater flexibility by letting guests exchange 

cores as they learn about properties of their workload. 

Furthermore, our framework accommodates legacy guests by 

using their power configuration as hints for optimal allocation of 

CPU cores.   

Finally, our hypervisor design specifically targets scalability. 

Therefore, our philosophy is to minimize the amount of work 

done in the hypervisor and to allow only the minimal amount of 

(performance-critical) interactions between guest and hypervisor. 

VT-ASOS pursues a different philosophy: it allows rather high-

volume interactions between guest and hypervisor, even 

introducing some application awareness into the hypervisor. (For 

instance, VT-ASOS hypervisor will monitor performance of 

individual applications using hardware counters. Furthermore, it 

will use a configurable scheduler that is controlled by guest 

domains.) We explicitly avoid heavy-weight interactions between 

guest and hypervisor, because we believe that they might limit 

scalability on many-core machines.  

Another area of related work is on scalable OS design [6,12,16], 

with Tornado [16] and K42 [6] operating systems being some of 

the most prominent contributions. We will study applicability of 

those designs to our problem domain and use them as appropriate. 

Finally, we discuss specialized execution environments [13]. A 

specialized execution environment (SEE) is created by 

configuring the features of OS/runtime uniquely for each 

workload. In SEE, it is possible to turn off some features of the 

OS, such as scheduling or memory management. By "getting the 

OS out of the way", SEEs can improve performance. We believe 

that our hypervisor will facilitate SEEs for high-performance 

applications. Partitioning and heterogeneity awareness give the 

guest a higher control over CPU resources than that which would 

be provided by existing hypervisors. Our hypervisor, therefore, 

ideally suits high-performance SEEs where such control is 

needed. 

6. SUMMARY 
Scale and heterogeneity of future many-core processors motivate 

us to reconsider the design of the scheduling infrastructure in the 

hypervisor. We argued that the scheduler must be designed to 

scale to thousands of cores and to provide effective utilization of 

heterogeneous hardware. We presented the design of Cypress, our 

experimental hypervisor, with which we hope to learn how to 

achieve these goals.  

Cypress is novel in two respects: It will be the first hypervisor 

with explicit support for heterogeneous hardware, and it will be 

explicitly designed to scale on machines with hundreds or 

thousands or processing cores. Implementation, evaluation and 

refinement of design ideas in Cypress are currently under way and 

we hope to share our results with the community in the near 

future.    
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