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Abstract 

Future heterogeneous single-ISA multicore processors will have 
an edge in potential performance per watt over comparable 
homogeneous processors. To fully tap into that potential, the OS 
scheduler needs to be heterogeneity-aware, so it can match jobs to 
cores according to characteristics of both. We propose a 
Heterogeneity-Aware Signature-Supported scheduling algorithm 
that does the matching using per-thread architectural signatures, 
which are compact summaries of threads’ architectural properties 
collected offline. The resulting algorithm does not rely on 
dynamic profiling, and is comparatively simple and scalable. We 
implemented HASS in OpenSolaris, and achieved average 
workload speedups of up to 13%, matching best static assignment, 
achievable only by an oracle. We have also implemented a 
dynamic IPC-driven algorithm proposed earlier that relies on 
online profiling. We found that the complexity, load imbalance 
and associated performance degradation resulting from dynamic 
profiling are significant challenges to using this algorithm 
successfully. As a result it failed to deliver expected performance 
gains and to outperform HASS. 

Categories and Subject Descriptors D.4.1 [Operating Systems]: 
Process Management – scheduling.  

General Terms Algorithms, Management, Performance, Design. 

Keywords heterogeneous, multicore, scheduling, asymmetric, 
architectural signatures. 

1. Introduction 

Single-ISA heterogeneous multicore processors, also known as 
asymmetric single-ISA (ASISA) [18], consist of cores exposing 
the same ISA, but delivering different performance. These cores 
differ in clock frequency, power consumption, and possibly in 
cache size and other microarchitectural features. Asymmetry may 
be built in by design [14][15], or may occur due to process 
variation [13] or explicit clock frequency scaling. Given a diverse 
workload, an ASISA system can deliver more performance per

watt than a homogeneous system, because threads can be matched 
to cores according to the relative benefit that they derive from 
running on different core types. For example, in an ASISA system 
with several fast and powerful cores (high clock speed, ILP-
oriented optimizations) and several simple and slow cores, 
memory-bound threads should typically be mapped to slow cores, 
because the speedup they experience on fast cores relative to slow 
cores is disproportionately smaller than the additional power they 
consume. Power and area efficiencies of ASISA systems have 
been demonstrated in numerous studies [3][14][15][16][18]. In 
addition, asymmetric systems allow superior performance for 
mixed workloads of sequential and parallel applications [10]. 

Efficiency of ASISA systems is maximized when workloads 
are matched with cores according to the properties of the 
workload and features of the core. This matching is typically done 
by a heterogeneity-aware scheduling algorithm in the operating 
system (het.-aware from now on for brevity). In this paper we 
describe a new het.-aware scheduling algorithm that employs an 
original methodology compared to the ones proposed in the past. 

Our algorithm, called Het.-Aware Signature-Supported 
(HASS) scheduler is based on the idea of architectural signatures. 
An architectural signature is a compact summary of architectural 
properties of an application. It may contain information about 
memory-boundedness, available ILP, sensitivity to variations in 
clock speed and other parameters. The common property of these 
parameters is that they can all be relatively easily and quickly 
interpreted by the scheduler to determine how well a given 
application “matches” a given core. The signatures are generated 
offline and are presented to the scheduler as a single unit with the 
application binary, perhaps by being embedded into the binary 
itself. The scheduler then matches jobs with cores based on these 
signatures. 

Unlike HASS, previously proposed het.-aware algorithms 
determined the best matching of threads to cores via online 
performance monitoring [3][15], which determined relative 
speedup of each thread on different core types. As the number of 
cores (and core types) on the chip increases [1][5], the overhead 
of performance monitoring grows and it becomes less practical as 
a means of determining optimal assignment. Our scheme does not 
use online monitoring and thus removes the overhead associated 
with it, in exchange sacrificing some accuracy. 

Static nature of HASS imposes some limitations on its 
structure and functionality, and so it is important to investigate 
their impact. First of all, in the current implementation there is 
only one signature per application. While this scheme can be 
extended to multithreaded applications with relative ease, it is 
more difficult to accommodate for different input sets, which can 
sometimes cause significant changes in application behaviour and 
therefore optimal thread-to-core mappings. We investigated the 



effect of varying program inputs on HASS’s accuracy and 
determined that while some inaccuracies are unavoidable, the 
overall impact on accuracy is small. Another limitation of HASS 
is that it requires cooperation from the application development 
side for generation of architectural signatures. This, however, can 
be achieved without significant involvement from the developer. 
For example, signature generation can be done in conjuction with 
compilation with minimal additional manual effort. Thus this 
aspect is not a significant hindrance if improved system 
performance is achieved in return. A final limitation is that HASS 
does not account for phase changes, since the architectural 
signature persists for the lifetime of a program. While this means 
that HASS cannot outperform the best static (oracle) assignment, 
it also eliminates the need for dynamic performance monitoring, 
which, as we discovered, causes load imbalance and thus hurts 
performance.  

The advantages of HASS, on the other hand, are (1) better 
scalability, (2) simpler implementation (both due to the absence of 
dynamic monitoring in the scheduler), and (3) support for short-
lived threads: threads that would otherwise spend the whole or the 
majority of their lifetime in the suboptimal “performance 
monitoring” stage.  

HASS deliberately trades accuracy for simplicity and 
efficiency compared to algorithms based on online profiling. In 
order to fully evaluate whether this trade-off is worth making, we 
compare HASS to a het.-aware IPC-driven algorithm that uses 
online profiling, proposed by Becchi et al. [3]. We found that 
while the IPC-driven algorithm usually improves thread 
assignments, it causes load imbalance due to its need to frequently 
migrate threads from one core type to another for performance 
measurements. This causes performance overhead, often negating 
the benefits of improved thread assignments.  

We implemented both algorithms, HASS and IPC-driven, 
which had not previously been implemented, in the OpenSolaris 
operating system. We evaluated the algorithms on two real 
multicore platforms made asymmetric via CPU frequency scaling. 
We found that both HASS and IPC-driven improve performance 
by 7-13% for a diverse workload, but that the IPC-driven 
algorithm suffered significant instability in workloads other than 
those with few phases.  

The rest of the paper is organized as follows. Section 2 
discusses related work. Section 3 describes the methodology for 
constructing architectural signatures.  Section 4 describes the 
HASS scheduler, and Section 5 provides the evaluation. Section 6 
describes the IPC-driven algorithm, provides the evaluation, and 
compares it with HASS. Section 7 summarizes and outlines plans 
for future work. 

2. Background and Related Work 

The problem of scheduling on ASISA multicore processors is 
relatively new. Two of the most well-known scheduling 
algorithms proposed are by Becchi et al. [3] and Kumar et al. [15]. 
Both of them assume a system with two core types (“fast” and 
“slow”) and rely on continuous performance monitoring to 
determine optimal thread-to-core assignment. Becchi’s IPC-
driven algorithm periodically samples threads’ instructions per 
cycle (IPC) on cores of both types to determine the relative 
benefit for each thread from running on the faster core. Those 
threads that have a higher fast-to-slow IPC ratio have a priority in 
running on the fast core, because they are able to achieve a 
relatively greater speedup there. Kumar’s method uses a similar 
technique, except that the sampling method is made more robust 
by using more than one sample per core type per thread. In 
addition, Kumar proposed an algorithm that tries to determine a 

globally optimal assignment by sampling performance of thread 
groups rather than making local thread-swapping decisions. 

Both these approaches promise significantly better 
performance than naïve heterogeneous-agnostic policies with any 
kind of heterogeneous workload, but they are both difficult to 
scale to many cores. There are several barriers to scalability.  

Firstly, in their unmodified versions they both support only 
two distinct core types. Secondly, their reliance on profiling 
means that demand for different core types will be unequal. In 
particular, the larger the ratio of slow cores to fast cores, the more 
demand there will be to run on any given fast core for sampling 
purposes. This creates a workload imbalance and interferes with 
threads that are “legitimately” running on faster cores – we found 
this to be a challenging problem in implementing the IPC-driven 
algorithm. Since our algorithm relies on predetermined 
performance profiles, it sacrifices accuracy, but at the same time 
avoids scalability barriers related to sampling and has a much 
simpler implementation.  

Teodorescu and Torrellas [22] developed an algorithm for 
optimal assignment in the context of mildly heterogeneous 
platforms where core differences are caused by within-die process 
variation. Although performance profiling is still required, a lot of 
overhead is avoided by assuming that a thread’s IPC is the same 
on all core types. The approach works well when cores are very 
similar to each other, but unlike our approach, it is generally 
inapplicable to highly heterogeneous systems. 

Balakrishnan et al. [2] implemented a simple het.-aware 
scheduler in Linux that ensures that fast cores never go idle before 
slow cores. While this scheduler mitigates the effects of 
performance asymmetry, it is not meant to improve efficiency. 
Mogul et al. [18] described a scheduler that temporarily switches 
a thread to run on a slow core when the thread is executing a 
system call. By using system calls as a heuristic for thread 
assignment, this scheduler completely avoids any monitoring 
overhead (or the need to pre-generate architectural signatures), but 
it only applies to workloads dominated by system calls.  

Li et al. [16] designed a het.-aware algorithm for Linux, 
AMPS, that makes sure that the load on each core is proportional 
to its power and that fast cores are never under-utilized. HASS 
also ends up loading faster cores more than slow cores (as we 
explain later), but HASS makes this decision based on the 
properties of threads, while AMPS does not, so AMPS may run a 
memory-bound thread on a fast core and lose efficiency. 

3. Architectural Signatures 

Signatures Overview  

An architectural signature is a summary of the architectural 
characteristics of an application. HASS relies on the ability to 
estimate potential performance of a thread on a core given the 
load and characteristics of that core. To that end, the signature 
must enable it to predict threads’ relative performance on different 
cores. In this work we focus on systems where cores differ in 
clock frequency (as on the evaluation platforms used in this 
paper) and in cache size, parameters expected to play a prominent 
role in future ASISA systems. Construction of signatures that take 
into account the pipeline characteristics is left for future work.  

To predict performance variations due to clock frequency, we 
must consider the application’s degree of memory-boundedness 
[9]. An application with a high rate of memory accesses is likely 
to stall the core often, so clock frequency will not have a 
significant effect on performance. Memory-boundedness can be 
captured by an application’s reuse-distance profile. A reuse 
distance indicates the number of intervening memory accesses 



between consecutive accesses to the same memory location, and 
the reuse distance profile is the distribution of reuse distances. 
From a reuse-distance profile we can accurately estimate the 
application’s last-level cache miss rates for any cache 
configuration [4][11][19][21]. These estimated miss rates are the 
contents of the signature. From them we approximate 
performance on cores with different frequencies and cache sizes. 
Before explaining how this is done, we describe the process of 
constructing the signatures. 

Constructing Signatures 

An important property of signatures is their microarchitecture-
independence: out of all hardware platforms where it is possible 
to run the binary, we should be able to select any single one to 
construct a signature usable by all.  

The signature should be available to the OS at scheduling 
time, so the ideal place to hold it is the application binary itself. 
For evaluation covered in this paper we have not implemented the 
binary embedding scheme, and have instead opted for hard-coding 
a limited set of signatures into the kernel. 

To construct the signature, we need to obtain the reuse-
distance profile, which is collected via offline profiling. Such 
profiling can be done, for example, as part of the feedback-
directed optimization phase of the application development, 
which can be set up with little or no involvement from the 
programmer.  All that needs to be done is to execute a program 
once with the profiler (see below) that will generate the signature 
and embed it into the binary. The responsibility of the developer, 
then, is to make sure that the thread exhibits “typical” behaviour 
during this signature run.  If it is impossible to do in one run, the 
developer can do several runs (for example with different inputs) 
and combine the results into one signature. In this work, we 
construct profiles using Pin, a binary instrumentation framework 
from Intel [17], along with a custom Pin extension, MICA [12]. A 
more detailed account can be found in our previous work [19]. 
Once the profile is collected, we estimate (also offline) cache 
misses for a limited set of realistic cache configurations. These 
estimations, collected in a matrix, comprise the architectural 
signature. We support 11 different cache sizes (powers of two 
from 16K to 16M) and four set-associativities (4, 8, 16 and 32), so 
the matrix has 44 values.  
Shown below is an example signature for the benchmark 179.art 
from SPEC CPU2000 suite: 

  cache size 

se
t-

as
so

c.
  256K 512K 1M 2M 4M 8M 16M

4 427 412 325 157 42 6 1 
8 427 418 332 131 21 1 0 
16 427 424 337 107 11 0 0 
32 427 426 336 86 5 0 0 

 

Each integer represents the expected number of misses per 4096 
instructions (the number 4096 was selected to speed up 
calculations at scheduling time).  Columns for sizes 16K to 128K 
are omitted, because the values there are in this case exactly the 
same as for 256K (427 misses). 

Using Signatures for Scheduling 

At runtime the architectural signature is used to estimate a 
thread’s performance on each type of core present. To accomplish 
this, we calculate a hypothetical completion time of some constant 
number of instructions. Two separate parts are considered: 
execution time and stall time. Execution time is the amount of 
time it takes to execute the instructions assuming a constant 

number of cycles per instruction. We have used a cost of 1.5 
cycles per instruction. Clock speed is also factored in.  

We approximate stall time by the number of cycles used for 
servicing last-level cache misses that ended up going into main 
memory. Although this is a coarse approximation, it gives 
reasonable accuracy, because memory access time dominates 
other stalls. To estimate this, we need memory access latency 
(discoverable by the OS) and the miss rate that we obtain by 
looking up the signature. Note that since we are assuming 
constant memory latency, the presence of non-uniform memory 
access (NUMA) can reduce the accuracy of estimates. Although 
we did not have a chance to investigate this effect 
comprehensively, we observed that in our case the presence of 
NUMA on one of the experimental platforms did not prevent the 
algorithm from performing successfully.  

The resultant sum of both time components gives us an 
abstract “completion time” metric. For actual scheduling, we 
focus on the ratio of completion times calculated for different 
types of cores. The exact method is described in the next section. 

Wrapping up the discussion of architectural signatures, we 
would like to reflect on shared caches. On shared-cache 
architectures (including SMT), performance is affected not only 
by the frequency of the core and the properties of the application, 
but by cache access patterns of co-scheduled threads. Our existing 
method for estimating performance does not account for effects of 
shared caches. In our evaluation, this caused performance benefits 
to diminish or even completely disappear when shared caches 
were present. In our case, in addition to a shared L3 cache, each 
core had a large exclusive L2 cache.  The situation could be even 
worse if the L2 cache were shared. Modelling shared cache effects 
is an orthogonal and well-studied problem. Existing models of 
miss rates in shared caches are based on input data very similar to 
reuse-distance profiles (used to construct our signatures) [7], and 
this presents a good opportunity to extend our signature-based 
model to account for cache sharing. We are currently 
investigating a solution.   

To summarize, we predict performance of different threads on 
different cores based on threads’ caching behaviour and cores’ 
cache size and frequency. This allows threads to distinguish cores 
by their relative desirability. While we have not been able to test 
the accuracy of this relative performance estimation for cores that 
differ in cache sizes, we have been able to test it on cores that 
differ in frequency by using Dynamic Voltage and Frequency 
scaling (DVFS) facilities. DVFS allows the operating system to 
control the clock speed of the CPU.  Figure 1 shows how well real 
performance ratios match predicted ratios for some of our test 
configurations (described in 5.1). As evident, the estimation 
method is successful in separating memory-bound threads (which 

 

Figure 1.  Signature-estimated performance ratios vs. observed 
ratios. Some outliers labeled. Perfectly accurate estimations 
would have all points on the diagonal line. 
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are less sensitive to changes in frequency and therefore 
concentrated towards lower left) from CPU-bound threads (upper 
right), but is less precise in characterizing memory-boundedness.  

We would like to emphasize that the process of performance 
estimation occurs at scheduling time, and not offline. 
Nevertheless, we have presented it in this section, because it is 
closely connected with the format of the signature.  

4. HASS Scheduler 

HASS stands for Heterogeneity-Aware Signature-Supported. 
Besides those properties, the scheduling algorithm also 
emphasizes scalability, because future ASISA processors may, in 
fact, be many-core. Scalability mainly manifests in two aspects: 
the lack of global locks, and local greedy decision-making on the 
part of threads. As we describe the algorithm, we will point out 
particular features that ensure scalability. 

We begin the description of the algorithm by introducing a few 
key abstractions. The first abstraction is a processor class. A 
processor class has a unique combination of features (described 
inside the class) such as clock frequency, cache hierarchy, or 
different execution cores. If two cores belong to the same class, 
they must be identical, and a system must have at least two classes 
to be heterogeneous. We assume that the class configuration of 
the system is static. Since classes may contain a very large 
number of cores on future many-core systems, class-based load 
balancing and accounting may become tedious. To manage this 
problem, processors are also grouped together in CPU partitions. 
Each partition must belong to exactly one processor class, but 
each class may contain one or more partitions. Each core must 
belong to exactly one partition, and a partition is the widest 
locking scope during normal operation of the scheduler. This 
allows managing a large number of cores in a scalable way. Each 
partition keeps a counter of runnable threads (threads either 
currently running or ready to be run), which is updated in real 
time. This counter is the primary partition-wide contention point, 
as it has to be fully synchronized.  

When threads enter the system, they iterate through all existing 
processor classes and estimate their performance using signatures 
(the is method described in Section 3.3) according to the attributes 
of that class (there needs to be only one such estimation per class). 
These values can be calculated once and used until the thread 
exits. Note that these base ratings represent the expected 
performance, were the thread able to get a core of that class for 
exclusive use.  

To assign itself to a partition the thread goes through the list of 
all partitions and estimates its performance in that partition using 
the base ratings and the current number of runnable threads per 
core in the partition (the thread assumes that CPU time will be 
shared equally within the partition). After that, the thread selects 
the partition with the highest expected performance and assigns 
itself there. This process is called regular assignment. Note that 
regular assignment has linear complexity with respect to the 
number of partitions, so there should be a balance between the 
number of partitions and the number of cores in each partition 
when large processor classes need to be partitioned. Assignment 
is not only done initially, but is repeated every time a thread 
accumulates a certain amount of CPU time on its current partition, 
in case the current partition becomes non-optimal, i.e., when the 
number of threads in a partition changes. This is called a refresh. 
By having the refresh period tied to CPU rather than wallclock 
time, we avoid increasing the absolute number of refreshes as the 
load factor grows.  

Load balancing and core assignment within partitions can be 
done according to regular OS policies, which can also be tailored 

to emphasize scalability (we do not discuss these techniques). 
Between partitions, however, there is no direct load balancing. 
Instead threads will converge to a balanced load distribution, with 
more powerful partitions potentially receiving higher loads. This 
also allows a situation where a thread is waiting in a queue, when 
there is an idle core somewhere in the system. To prevent such 
occurrences, it is forbidden to move to fully loaded or overloaded 
partitions when some partitions are less than fully loaded 
(underloaded). 

The greedy approach has a potential problem where threads 
may become locked in a suboptimal assignment and further 
optimization can only be accomplished by cooperative action 
between two threads (swapping) rather than by a greedy decision 
of any one thread. There is a mechanism to do that, and it is called 
optimistic assignment. It can be selected by the thread instead of 
regular assignment during a refresh, if it fails to find a good target 
partition. The initiator has to find a partner in the target partition 
and swap with it. The initiator can only trigger the switch if it 
confirms that the swap will actually increase its own, as well as 
overall system performance. This is done by comparing the base 
performance ratings of the initiator and the potential partner. The 
search for a partner can be slow when the target partition has 
many threads or when there are a lot of partitions. Therefore, it is 
critical to forgo exhaustive search and instead use randomized 
search with a limited amount of probing.  

One special case where optimistic rebinding is especially 
important is when the aforementioned partition underload 
protection mechanism kicks in. Remember that during these 
situations regular assignment to any partitions except those that 
are underloaded is forbidden. However, it is permissible to rebind 
optimistically to any partition, even those that are not 
underloaded. This is because swapping threads cannot create a 
load imbalance worse than that which already exists. Without this 
relaxation, any balanced configuration that had the number of 
runnable threads in the system equal to the number of cores would 
be immutable, even if it were suboptimal.  

The partition scheme allows the scheduler to avoid global 
locks during scheduling. Instead, threads can lock one partition at 
a time when doing a refresh (for reading the runnable threads 
counter), migrating between partitions or entering/leaving 
runnable states (for updating the runnable counter).  Using 
read/write locks can further decrease the pressure on this 
contention point. 

We chose Solaris as the platform to implement the scheduling 
algorithm due to its powerful profiling framework DTrace [6]. We 
used build 86 of OpenSolaris 2008.05. In implementing HASS we 
reused much of the Solaris code for CPU partitions.  

We have not implemented the “multiple partitions per 
processor class” scheme, because our testing platforms did not 
have enough cores to motivate this apparatus. Finally, due to time 
constraints, we have simplified optimistic assignment target 
search. Only one partition was probed for a partner, the partition 
with the highest expected performance. 

5. Evaluation of HASS Algorithm 

Evaluation Platform and Methodology 

We used two machines for our experiments. One was an Intel 
Xeon X5365 server with four dual-core packages. A pair of cores 
on a package shared a 4MB L2 cache. Another was an AMD 
Opteron 8356 with four quad-core chips. Cores on the same chip 
shared a 2MB L3 victim cache (512KB L2 caches were private). 
Both systems were running versions of OpenSolaris 2008.05 build 
86 for the x86 platform.  



Note that although reuse-distance profiles for our test 
applications had to be collected on Linux (Pin does not run on 
OpenSolaris), we ensured that the benchmark binaries compiled 
for Linux-x86 were sufficiently similar to the binaries compiled 
for Solaris-x86 by using the same compiler version and flags. 

We created heterogeneity by setting cores to run at different 
speeds using DVFS. We created several test configurations, and in 
each configuration we had a number of partitions, each with its 
own frequency. The test configurations used in our tests are 
summarized in Table 1. In some configurations we used fewer 
cores than the total available (AMD-2,2, Intel-2,2) in order to 
avoid any performance effects due to cache sharing (to avoid this 
we had to use at most one core per chip). Conversely, 
configurations where most of the cores are used, AMD-12,4 and 
AMD-4,4,2,2, are subject to cache interference effects (each 
partition shared an L3 cache). The AMD machine has NUMA, 
and half the cores experienced more costly memory accesses on 
average due to asymmetric memory topology. We configured our 
platform such that fast cores experience higher latency. Since we 
prefer to assign memory-bound threads to slower cores, it is there 
that most of the memory traffic originates. Therefore it is more 
efficient to place slower cores closer to memory.  

The benchmarks that we used for evaluation were from the 
SPEC CPU2000 suite. We have used two categories of workloads 
for most of our tests. The first category is highly heterogeneous 
(HH), and consists of a pair of highly CPU-bound benchmarks 
and a pair of memory-bound benchmarks. In this category we 
used three base workloads: (1) sixtrack, crafty, mcf and 
equake, (2) gzip, sixtrack, mcf and swim, and (3) mesa, 
perlbmk, equake and swim. In each of these workloads, the first 
two benchmarks are CPU-bound with virtually any cache size 
(and thus are good candidates for faster cores), and the second 
pair is memory-bound. The base workload was replicated in 
experiments where we wanted to run more than four threads per 
system. For instance, if we wanted to run sixteen threads, we 
would run four copies of each benchmark in the base workload. 

The second category of workloads is moderately 
heterogeneous (MH). It consists of the following base workloads: 
(1) vortex, twolf, art and fma3d, (2) gap, parser, applu and 
vpr, (3) apsi, ammp, lucas and mgrid, and (4) bzip2, 
wupwise, gcc and art. Here the benchmarks represent the whole 
spectrum of memory-boundedness, with less extreme differences 
between the benchmarks. The behaviour of some benchmarks 
(art, for example) is highly dependent on cache availability, so 
their properties vary among different test configurations.  

Due to space limitations, for the rest of the paper we focus 
only on the first workload from each category, and just summarize 
the other results. 

We have also performed tests with a homogeneous workload 
LH (four instances of wupwise), where HASS, as expected, did 

not deliver any performance improvements since all benchmarks 
have similar signatures. Again, due to space limitations we do not 
analyze LH results in detail. 

For a given test we launch a predetermined number of 
benchmarks, and as individual copies terminate, they are 
immediately restarted by a script. Thus we keep the workload 
constant and measure average completion time of every type of 
benchmark (for each test there were at least three completion time 
value samples, depending on the benchmark).  

Our original goal was to compare completion times achieved 
with HASS to completion times achieved with the native Solaris 
scheduler, but we found that completion times under the native 
scheduler were highly variable (standard deviation was as high as 
23% of the mean in some cases) and thus not suitable for 
comparison. This is due to the fact that the native scheduler is not 
het.-aware and thus migrates threads between different core types 
at infrequent and arbitrary intervals. Therefore, the fraction of 
time that a thread spends on a particular core type varies from one 
run to another. Achieving a low standard deviation is not possible 
in these conditions.  

Instead we compare HASS completion times with two 
composite metrics. The first is the default metric. It is calculated 
by taking a weighted average of benchmark completion times 
when they were bound to a particular type of core, while the 
overall system load was as specified in the corresponding 
experiment. This metric gives us the expected completion time of 
a benchmark if it randomly binds to a core at the start and never 
switches. It is a good approximation of how the default scheduler 
operates, because if possible, it tries to keep the thread on its 
original core to maintain cache affinity. At the same time, this 
metric is too pessimistic for sustained loads, because as threads 
running on faster cores retire more often, faster cores will be 
available for assignment more often. To compensate, we also 
show a second ideal round robin (ideal-RR) metric. It is 
calculated by combining the completion times on all core types 
such that the total time spent on each core type is proportional to 
how many of those cores are present in the system. It illustrates a 
hypothetical scheduler that is perfectly fair and suffers no 
additional penalties or overhead compared to the default 
scheduler. A round-robin scheduler can be an approximation of 
such a perfect scheduler, but it suffers from additional non-trivial 
delays from numerous migrations, synchronization overheads and 
cold cache effects. In summary, while we do not use real 
completion times for the native scheduler, we understand that they 
are no worse than the default metric, and no better than the ideal-
RR metric.  

For performance comparison we report completion times 
normalized to the default metric for each benchmark and the 
geometric average for all benchmarks of that workload.  

Performance Analysis 

First we explored the behaviour of the algorithm when there is 
one runnable thread per core. The results are reported in Figures 2 
and 3 (recall that we only illustrate the first workload in HH and 
MH). As can be expected, the scheduler performed especially well 
with the HH workload, where the average speedup was as much 
as 13% on AMD-2,2 (Figure 2a). This result is within 0.5% of the 
speedup on the best static assignment. A static assignment is a 
partition mapping for the workload that is decided at the 
beginning of execution and never changed thereafter. This 
assignment is obtained by testing all possible ones and picking the 
one with the best performance. To understand why HASS 
successfully matches the best static performance, we ran the 
experiments again and traced the execution with DTrace. Table 2 

Table 1.  Test configurations. 

Name Partitions / cores Other information 
Intel-2,2 Part. 1: (2@2GHz),  

Part. 2: (2@3GHz) 
exclusive L2$ per core 

AMD-2,2 Part. 1: (2@1.15GHz),  
Part. 2: (2@2.3GHz) 

exclusive L3$ per core, 
NUMA among partitions 

AMD-12,4 Part. 1: (12@1.15GHz),  
Part. 2: (4@2.3GHz) 

fast cores share one L3$, 
slow cores share three L3$, 
NUMA among slow cores 

AMD-4,4,2,2 Part. 1: (4@1.15GHz),  
Part. 2: (4@1.4GHz),  
Part. 3: (2@2GHz),  
Part. 4: (2@2.3GHz) 

one L3$ per partition, 
NUMA among partitions 



shows how HASS assigns threads to cores, and this assignment 
actually corresponds to the best static assignment.   

On other two-partition setups results were also positive for the 
HH workload, although on Intel-2,2 (graph not shown), the boost 
was smaller (7% average speedup vs. default; 4.5% speedup vs. 
ideal-RR) due to a smaller difference between minimum and 
maximum frequencies on this system. AMD-12,4 too had a 
smaller speedup, but this time due to only a quarter of cores being 
fast, rather than half. Because HASS considered sixtrack to be 
the most CPU-bound benchmark according to its signature, it 
picked four copies of sixtrack to run on faster cores, while crafty 
was left to run on slower cores (Figure 2b).  

MH workloads were more difficult to optimize. Since 
application behaviour was less extreme, the signatures were less 
distinctive, and there was more room for error in determining the 
best candidate to be placed on a faster or slower core. As Figure 
2a shows, HASS was still able to correctly identify two memory-
bound applications on AMD-2,2 (fma3d and art) and thus get a 
9.2% speedup vs. default or 2% vs. ideal-RR, matching the best 
static assignment. With Intel-2,2, most of the benchmarks were 
actually fairly close together in memory-boundedness, so overall 
HASS lost 1% to ideal-RR, still gaining 2.5% over default. MH 
fared worse on AMD-12,4, where HASS identified vortex as the 
best candidate for faster cores, when, in fact, twolf was. Twolf 
was the best candidate, because by running in its own partition it 

(as well as other memory-bound benchmarks) could have had 
better cache performance due to less contention, but HASS could 
not detect this, because it does not account for cache sharing. As a 
result, performance slid below ideal-RR in both configurations 
(by 2.9%), although still retaining some margin over default.  

HASS had trouble getting any speedup on AMD-4,4,2,2 
(Figure 3). There were two reasons for this. Firstly, our simplified 
implementation of optimistic assignment did not optimize thread 
mappings among the three slower partitions (Table 2 shows that 
mcf spent more time in fast partitions than crafty, which was 
suboptimal). Secondly, cache sharing again disrupted the 
optimality of thread assignments, this time even in the workload 
HH (mcf being the victim of undue cache contention this time). 
Combined, these factors caused the performance to be no better 
than even the default metric, let alone the best static performance, 
which we do not report due to a large search space for such an 
assignment. This scenario showcases that awareness of shared 
caches is critical in configurations where they are present. 

As to the remaining workloads from categories HH and MH, 
the average speedups were very similar to what we have shown: 
12% and 7% compared to default for HH and MH workloads 
respectively on AMD-2,2; 7.7% and 3% on Intel-2,2; 9.5% and 
4.9% on AMD-12,4; and –1% and 0.6% on AMD-4,4,2,2.  

In the next round of experiments we tested the algorithm in 
overloaded conditions. At any given moment we had five times as 

 

Figure 3.  Average completion times on  
AMD-4,4,2,2, relative to the default metric.  
Base workload multiplied by 3 (12 in total). 

Figure 2.  Average benchmark completion times relative to the default metric (results for IPC-driven are explained in 6.2): 
(a) AMD-2,2 – base workload, and (b) AMD-12,4 – base workload multiplied by 4 (16 benchmarks in total). 
Bars above 100% represent slowdown, and below 100% – speedup.

 

Table 2. HASS thread to partition assignments. 

 % of time spent in different partitions (ordered from slow to fast)  

 
Intel-
2,2 

AMD-
2,2 

AMD-
12,4 

AMD-4,4,2,2 
AMD-2,2 
overloaded 

AMD-4,4,2,2 
overloaded 

sixtrack 0.9 / 99 6.9 / 93 1.2 / 98 13 / 5.8 / 13 / 67 0 / 100 0 / 0 / 44 / 56 
crafty 1.8 / 98 8.5 / 91 99 / 1.0 60 / 17 / 21 / 1.9 0 / 100 0 / 39 / 36 / 25 
mcf 98 / 1.5 95 / 4.4 99 / 0.2 0.1 / 8.5 / 65 / 26 100 / 0  99 / 1.2 / 0 / 0 
equake 98 / 1.1 88 / 12 99 / 0.5 40 / 36 / 22 / 0.5 90 / 10 14 / 86 / 0.2 / 0.1 
fma3d 94 / 5.5 93 / 7.0 98 / 2.0 43 / 28 / 26 / 2.5 77 / 23 8.0 / 66 / 26 / 0.2
art 90 / 9.1 89 / 11 99 / 0.2 23 / 70 / 6.3 / 0.3 100 / 0 99 / 0.7 / 0.2 / 0.2 
vortex 7.5 / 92 9.7 / 90 2.9 / 97 18 / 10 / 7.1 / 64 0.1 / 100 0 / 0 / 16 / 84 
twolf 6.6 / 93 8.2 / 91 99 / 0.6 49 / 24 / 25 / 0.8 0 / 100 7.4 / 65 / 28 / 0.2 
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Figure 4.  Estimated performance ratios for AMD-12,4 given a distinct signature for each input. Black bars represent ref sets, and gray 
bars represent train sets. 

many threads running as there were cores available. 
Unfortunately, the native Solaris load balancer and scheduler were 
not successful in sharing the CPU fairly among so many 
competing threads, and so the completion times were inconsistent 
in both the native and HASS schedulers (which use these default 
mechanisms for intra-partition scheduling). Nevertheless, we were 
able to evaluate optimality of partition assignments (Table 2), 
which was in fact reasonable: CPU-bound benchmarks were 
spending more time on faster cores and faster partitions received 
higher loads.   

In summary, the results demonstrate that HASS is able to 
differentiate among benchmarks with different architectural 
properties and assign them to the “right” types of cores, especially 
when the workload is highly heterogeneous. Moreover, HASS is 
highly unlikely to perform worse than the default metric even for 
homogeneous workloads, where performance improvements are 
difficult to obtain. The biggest performance issue we found was 
due to HASS being unaware of shared caches, a problem that we 
expect to address in future work.  We defer discussion regarding 
the lack of phase awareness in HASS until later in the paper, 
when we have had a chance to evaluate the IPC-driven algorithm.  

HASS is unfair by design – it assigns to fast cores those jobs 
that experience the most speedup on those cores, and thus may not 
be appropriate in situations when memory-bound threads must be 
run at a higher priority. HASS can be extended to be more 
priority-aware by introducing priorities into its swapping and 
assignment mechanisms.  For example, a higher priority thread 
would be able to switch to a more optimal partition regardless of 
the overall system throughput.  This would work well only with 
fixed priorities (as opposed to those that change regularly), and 
potentially compromise throughput, because high-priority threads 
would be allowed to run in the fast partition even if they are not 
sensitive to the CPU speed. We have not implemented this 
improved technique, and have instead opted for a simpler 
algorithm. In scenarios where improving the overall system 

efficiency is the primary goal, the basic version of our algorithm 
is able to deliver improved performance per watt by increasing the 
overall throughput of the workload. 

Scalability Analysis 

Scalability was one of the main emphases in HASS’ design, and 
so we evaluated how its overhead scales as setup complexity 
grows. The most superficial overhead measurement, the 
difference between a thread’s wallclock completion and CPU 
times, was comparable to that of the native scheduler (between 
0.1% and 0.3% depending on the configuration). We did not 
consider overloaded tests, because there we cannot distinguish 
between legitimate runqueue waiting time and overhead. HASS 
overheads were slightly higher in some configurations with 
workload MH, due to more inter-partition migrations, which can 
sometimes leave cores idle for short periods of time.  

We then focused on a part more specific to our algorithm: the 
time spent executing HASS partition assignment logic (regular 
and optimistic). This is the part that we would expect to grow as 
setup complexity increases. The results, however, showed that at 
16 cores the overhead was insignificant (Table 3). The maximum 
overhead observed for any single thread was 0.06% of its CPU 
time (not shown). Overall, the range of values indicates that 
partition assignment is not a likely bottleneck, at least as we move 
into medium-scale setups.  

Lastly, we have traced rates of inter-partition thread migration. 
This metric reflects how quickly the workload stabilizes once a 
disruption occurs, and whether there is unnecessary thrashing 
(also Table 3). The numbers indicate that overall the algorithm is 
not prone to thrashing, except in cases where the workload is not 
very heterogeneous, but the effect was still relatively benign in 
our case. We postulate that this thrashing may grow as the 
complexity of the setup grows, indicating a possible area of 
improvement: a mechanism to throttle some migrations. 

Sensitivity to Varying Inputs 

One potential area of concern for HASS is a scenario where an 
application is run with an input different than the one assumed by 
its signature (recall that there is only one signature per 
application). Since benchmarks in SPEC CPU2000 are available 
with different inputs, we were able to investigate this effect. 
Ideally, we want the performance estimated with a signature for a 
particular input to be about the same as the performance estimated 
with signatures for all other inputs. To see whether this is so, we 
compared estimated performance ratios using signatures obtained 
on different inputs of the same program. We constructed 
signatures for all train and ref inputs of 23 SPEC benchmarks 
(eon, galgel, and facerec had compilation issues and we did not 

Table 3.  HASS overheads. Values in parentheses are maxima 
observed for any one thread. 

 Partition 
assignment logic  
(% of CPU time) 

# of partition migrations 
per thread per minute of 
CPU time 

HH MH HH MH 
AMD-2,2 0.020 0.021 0.50 (1.36) 0.45 (0.97) 
AMD-12,4 0.011 0.011 0.29 (1.03) 1.78 (4.69) 
AMD-4,4,2,2 0.013 0.014 1.12 (2.48) 8.19 (12.3) 
AMD-2,2 ovrld 0.026 0.026 0.43 (0.91) 0.17 (0.84) 
AMD-4,4,2,2 ovrld 0.019 0.028 0.77 (2.31) 0.84 (1.81) 
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use them for the paper). We estimated performance with each 
signature on our configurations, and then computed performance 
ratios between fast and slow cores (recall that such ratios are used 
by HASS for thread assignments). As an illustration we present 
the results for the AMD-12,4 configuration (1.15GHz vs. 2.3 
GHz, cache size 512KB) in Figure 4. Each set of bars shows ratio 
estimates for different inputs of the same application. Each 
estimate is done with its own signature. Ideally, all bars for a 
given application should be the same; then we know that a single 
signature can be used regardless of input. While it is evident that 
the estimated ratio varies depending on the input, the effect is not 
significant in all benchmarks. In other words, cache miss rates (on 
which we base our signatures) do not always vary significantly 
between inputs. Thus HASS is likely to retain at least some 
accuracy in the presence of varying inputs. 

There has been other research related to the problem of miss 
rate estimation for various inputs given a profile for only one 
input [8], but we have not attempted to incorporate these 
approaches into the current version.  

Extension to Multithreaded Applications 

Although the signature-based framework was designed for single-
threaded applications, there are no inherent barriers to extending it 
for multithreaded applications. In that case, the signature would 
be generated per thread, or in cases where a thread switches 
between various heterogeneous tasks (as in newly emerging 
parallel environments), the signature could be generated per task 
and communicated to the OS upon the beginning of each new 
task. To minimize the overhead, the signature could be propagated 
to the OS only if it is sufficiently different from the previous 
signature associated with that thread. While support for 
multithreaded applications would require changes to the signature 
framework, almost no changes would have to be done in the 
scheduler itself, because it already uses threads as schedulable 
entities associated with an architectural signature.  

6. IPC-driven Algorithm 

We wanted to compare HASS side by side against a phase-aware 
dynamic algorithm based on online profiling of threads. Our goal 
was to evaluate the benefits of phase awareness and drawbacks (if 
any) of online monitoring. We were not aware of any 
implementation of such an algorithm in a real system, and 
therefore decided to implement such an algorithm ourselves. We 
chose the IPC-driven scheduler proposed previously by Becchi 
[3], an algorithm that combined good results, applicability to 
general purpose systems and specification completeness. We 
created the first implementation of the IPC-driven algorithm in 
OpenSolaris (in the original work [3] the scheduler was 
simulated) and report our evaluation results in this section. 

The Algorithm  

The IPC-driven algorithm assumes two types of cores (“fast”) and 
(“slow”). The assignment is done based on IPC ratios, which 
determine the relative benefit of running a thread on a particular 
core type. A thread with a high IPC ratio between fast and slow 
cores is expected to benefit from the fast core. The scheduler 
periodically samples threads’ IPC on both cores types and 
compares the smallest IPC ratio on the fast core with the highest 
IPC ratio on the slow one. If the latter exceeds the former, the 
corresponding threads are swapped, so that the thread with the 
higher IPC ratio is set to run on the fast core. Even though the 
original algorithm assumed only two types of cores, our 
implementation is a generalization for n different types. As in 

HASS, cores are organized into partitions according to their types. 
The scheduler measures IPC ratios in all partitions relative to the 
current partition. 

Whenever a program enters a new IPC phase, the IPC ratios 
relative to all partitions are re-measured. This is done via forced 
migrations where a thread is switched to run in every partition 
other than its current one for a period of time called 
refresh_period.  

IPC phase changes, which are independent of the type of core 
[20], are detected through sudden changes in the moving average 
of IPC that exceed a certain ipc_threshold.  

In order to limit the number of forced migrations and to allow 
the system to stabilize between two consecutive thread swaps, a 
thread must run on a new core for a period of time equal to a 
swap_inactivity period before another forced migration is 
allowed. A thread that has been assigned to a particular core and 
is eligible for swapping is in a pinned state. A thread whose IPC 
ratio is in the process of being updated is refreshing.  

Performance of the IPC-driven algorithm is sensitive to the 
settings of the aforementioned parameters (refresh_period, 
swap_inactivity period, etc.). We have carried out an exhaustive 
evaluation of the parameter space and picked the ones that yielded 
the best overall performance. Refresh_period was set to 30 
milliseconds, ipc_threshold to 10%, and swap_inactivity 
period to 1.5 seconds.  

Evaluation 

We use the same experimental conditions as in Section 5, but due 
to space limitations we refrain from presenting the entire set of 
our experiments, highlighting only those that best illustrate our 
findings about the algorithm.  

Figure 2a shows the results for three workloads: HH 
{sixtrack, crafty, mcf, equake}, MH {vortex, twolf, art, 
fma3d} and LH {wupwise, wupwise, wupwise, wupwise} on 
AMD-2,2. In addition to reporting completion time, we also show 
user CPU time. The difference between the two is overhead: 
system time plus runqueue wait time.  

For the HH workload, we note that IPC-driven improves 
performance over default and fair by 8% and 1.5% respectively. 
Contrary to our expectations, however, IPC-driven achieves a 
smaller speedup than both HASS and the best static assignment. 
We expected it to improve over them, since it is phase aware. The 
reason that it did not is as follows.  

The best static assignment would map the two frequency-
sensitive applications sixtrack and crafty to the two fast cores, 
and the two memory-bound applications mcf and equake to the 
two slow cores. IPC-driven, on the other hand, maps mcf to the 
fast core roughly 51% of the time, pushing crafty to run on the 
slow core during this time. Although mcf does have some high-
IPC phases when it makes sense to map it to the fast core (see 
Figure 5), those phases last only 25% of the time, not 51%. So 
26% of the time mcf is not being mapped to the right core, which 
hurts performance. 

 

Figure 5.  IPC over time for mcf on Intel Quad Xeon at 2.0 GHz. 



The reason for this suboptimal mapping has to do with the 
unstable nature of phase changes. When mcf runs on a fast core 
during a high-IPC phase and a phase change is detected, it is 
migrated to a slow core to refresh its IPC ratio. However, as it 
runs on the slow core, the phase change (towards low IPC) 
continues, and so the IPC degradation reflects not only the lower 
clock frequency of the slow core but the fact that the program has 
entered an even more memory-bound phase. Ideally, we want the 
IPC ratio to be computed from IPCs measured on fast and slow 
cores during the same program phase. When this is not the case, 
the IPC ratio is inaccurate, and in this particular example it is 
much higher than it should be. In fact, we saw ratios as high as 2.2 
and 2.5, which are not realistic, because the ratio of high and low 
frequencies in our configurations is at most 2. Since the ratio is so 
high, the algorithm decides that mcf derives significant benefit 
from running on the fast core and pins it there, when in fact it 
would be more optimal to pin it to the slow core.  

It is very difficult to ensure that the IPCs used to compute the 
ratio belong to the same phase. Phase changes are difficult to 
predict at runtime. The problem gets worse if the number of 
partitions, and hence the number of IPCs, is large (recall that the 
ratio has to be computed for each partition). We tried to solve this 
problem by increasing the ipc_threshold, but this did not work, 
because no single threshold worked well for all workloads. The 
reason why this problem did not occur in the original evaluation 
of the IPC-driven algorithm [3] is that IPC refreshing was not 
simulated realistically. IPCs used to compute ratios were obtained 
from offline IPC traces, so, in contrast with real systems, IPCs 
always corresponded to the same program phase.   

Turning again to Figure 2a, we note that in all workloads the 
algorithm experiences significant overhead, causing LH workload 
to perform worse than default, even though it beats it in terms of 
user CPU cycles. The overhead is caused by forced migrations. 
When a thread is migrated to a new core to refresh its IPC, the 
threads pinned to that core experience longer waiting times. One 
solution would be to swap the refreshing thread with one of the 
pinned threads. We did not pursue this solution after considering 
its complexity and potential degradation of cache affinity.  

Migration overhead is particularly large for MH and LH 
workloads due to very frequent migrations caused by frequent 
phase changes, every 500-600 milliseconds, in fma3d (MH) and 
wupwise (LH). Increasing ipc_threshold and swap_inactivity 
period alleviates this problem, but at the expense of making the 
algorithm less phase-aware. 

Migration overhead was not detected in the original paper on 
the IPC-driven algorithm, perhaps because runqueue contention 
was modelled differently than in a real scheduler. The paper did 
not provide sufficient detail about this part of the simulation. 

Summary 

Our real-world implementation of the IPC-driven algorithm 
revealed that IPC ratios were often inaccurate due to the unstable 
nature of phase changes, and that the overhead of forced 
migrations in highly phased workloads was prohibitively high. In 
workloads with infrequent and smooth phase changes the IPC-
driven algorithm performs better. One such “friendly” workload 
consisting of {sixtrack, crafty, equake, equake} experiences 
less than 1% overhead and its performance is only 2% worse than 
the best static assignment. At the same time, with weakly phased 
workloads, IPC-driven does not benefit from phase awareness, 
which renders unjustified the implementation complexity 
associated with this feature. Although previous work on IPC-
driven and similar het.-aware algorithms demonstrated through 
simulation that phase-aware dynamic assignment significantly 

outperforms the best static assignment [3][14], we were not able 
to achieve the same results on a real system due to the 
aforementioned difficulties. Solving these problems would require 
major changes to the dynamic algorithm that we evaluated, which 
was outside the scope of our work.  

The difficulties that we encountered while trying to implement 
a dynamic phase-aware algorithm raise a question whether the 
benefits of a phase-aware algorithm would be worth the effort 
expended in overcoming the difficulties associated with its 
implementation. While we do not have our own data to reason 
about this trade-off, data presented by Becchi et al.[3] and Kumar 
et al.[15] can facilitate this analysis.  The data in the Becchi’s 
paper suggests that the largest portion of the speedup effected by 
the IPC-driven algorithm comes from the best static assignment 
(approximated by our algorithm) and from the fact that the fast 
core is never kept idle (also ensured by our algorithm). Beyond 
that, the actual IPC-driven assignment offers little additional 
performance improvement. Kumar’s data concurs with this 
finding: it shows that a large portion of the speedup on 
heterogeneous systems can be obtained with the best static 
assignment, and additional gains from phase-aware dynamic 
assignments are smaller on average.  

This suggests that the static strategy adopted in our approach 
could be the right trade-off between performance gains on 
heterogeneous multicore systems and complexity of the system 
software required to effect these gains.  

That said, there certainly might be workloads and applications 
where phase-awareness is crucial. In those cases, our static 
approach could perhaps be extended to be more phase-aware 
without having to detect phases online. For example, phase 
detection could be done offline (using a profiler or with the 
assistance of a programmer), a signature generated for each phase, 
and markers inserted in the executable at the points of phase 
change. Then during runtime as the program changes phases, the 
correct signature would be provided to the OS. While this 
mechanism complicates the signature framework, its 
implementation would be relatively straightforward.  Evaluating 
the feasibility of this approach is in our plans for future work.  

7. Conclusions and Future Work 

We have described a new het.-aware scheduler, HASS. Its novelty 
is in using offline-generated architectural signatures for 
determining thread assignments on ASISA multicore processors. 
Using signatures removes a need for dynamic profiling, which 
causes load imbalance and results in unstable performance 
estimates on highly phased workloads. HASS achieves 
performance comparable to the best static assignment and 
outperforms default and fair heterogeneity-agnostic assignments 
most of the time. In cases where HASS mispredicts relative 
performance, it usually still improves over default in our 
experiments. Our analysis shows that the error rate of the 
signature-based performance prediction is small, so we expect 
HASS to perform well overall. Two potential limitations of 
HASS, the inability of the signature to adjust for different 
program inputs and lack of consideration for phase changes, do 
not appear to be significant roadblocks. Our analysis of the effect 
of input variation on the accuracy of signature-based performance 
shows that it is not too detrimental and should not negate the 
overall benefits of the algorithm.  

Lack of phase awareness in HASS does not prevent it from 
improving performance, because a static signature captures the 
overall trends in the behaviour of the application. Thus HASS is 
able to achieve performance comparable to the best (oracle) static 
assignment. Contrary to our expectations, we found that lack of 



phase awareness in HASS has worked to its advantage, because it 
saved it from many problems linked to phase changes that were 
revealed by our implementation of IPC-driven algorithm.  

As to the IPC-driven algorithm, we initially expected that it 
would outperform HASS on highly phased workloads, but were 
surprised to find that phase awareness caused so many problems. 
While we do not claim that phase awareness is problematic in 
scheduling algorithms in general, it was problematic in the IPC-
driven algorithm. This was due to the necessity to compute a 
stable IPC ratio, which was impossible because of inherently 
unstable nature of phases, and because phase changes triggered 
devastating migrations that hurt performance. Our experience 
with the IPC-driven algorithm underscored the importance of 
validating simulated results on real systems.  

Another potential improvement is to make HASS account for 
other types of heterogeneity (e.g., differences in the pipeline 
architecture) and adapt it to support multithreaded applications. 
These important problems, as well as support for architectures 
with cache sharing and alternative methods of phase awareness 
are in our plans for future work.  
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