
HASS: A Scheduler for Heterogeneous Multicore Systems
Daniel Shelepov1

dsa5@cs.sfu.ca
Juan Carlos Saez Alcaide2

jcsaezal@fdi.ucm.es
Stacey Jeffery3

sjeffery@uwaterloo.ca

Alexandra Fedorova1
fedorova@cs.sfu.ca

Nestor Perez1
npa5@sfu.ca

Zhi Feng Huang1
zfh@sfu.ca

Sergey Blagodurov1
sba70@cs.sfu.ca

Viren Kumar1
vka4@cs.sfu.ca

1 Simon Fraser University
8888 University Drive
Burnaby, BC, Canada

2 Complutense University of Madrid
Ciudad Universitaria – 28040,

Madrid, Spain

3 University of Waterloo
200 University Avenue West

Waterloo, ON, Canada

Abstract

Future heterogeneous single-ISA multicore processors will have
an edge in potential performance per watt over comparable
homogeneous processors. To fully tap into that potential, the OS
scheduler needs to be heterogeneity-aware, so it can match jobs to
cores according to characteristics of both. We propose a
Heterogeneity-Aware Signature-Supported scheduling algorithm
that does the matching using per-thread architectural signatures,
which are compact summaries of threads’ architectural properties
collected offline. The resulting algorithm does not rely on
dynamic profiling, and is comparatively simple and scalable. We
implemented HASS in OpenSolaris, and achieved average
workload speedups of up to 13%, matching best static assignment,
achievable only by an oracle. We have also implemented a
dynamic IPC-driven algorithm proposed earlier that relies on
online profiling. We found that the complexity, load imbalance
and associated performance degradation resulting from dynamic
profiling are significant challenges to using this algorithm
successfully. As a result it failed to deliver expected performance
gains and to outperform HASS.

Categories and Subject Descriptors D.4.1 [Operating Systems]:
Process Management – scheduling.

General Terms Algorithms, Management, Performance, Design.

Keywords heterogeneous, multicore, scheduling, asymmetric,
architectural signatures.

1. Introduction

Single-ISA heterogeneous multicore processors, also known as
asymmetric single-ISA (ASISA) [18], consist of cores exposing
the same ISA, but delivering different performance. These cores
differ in clock frequency, power consumption, and possibly in
cache size and other microarchitectural features. Asymmetry may
be built in by design [14][15], or may occur due to process
variation [13] or explicit clock frequency scaling. Given a diverse
workload, an ASISA system can deliver more performance per

watt than a homogeneous system, because threads can be matched
to cores according to the relative benefit that they derive from
running on different core types. For example, in an ASISA system
with several fast and powerful cores (high clock speed, ILP-
oriented optimizations) and several simple and slow cores,
memory-bound threads should typically be mapped to slow cores,
because the speedup they experience on fast cores relative to slow
cores is disproportionately smaller than the additional power they
consume. Power and area efficiencies of ASISA systems have
been demonstrated in numerous studies [3][14][15][16][18]. In
addition, asymmetric systems allow superior performance for
mixed workloads of sequential and parallel applications [10].

Efficiency of ASISA systems is maximized when workloads
are matched with cores according to the properties of the
workload and features of the core. This matching is typically done
by a heterogeneity-aware scheduling algorithm in the operating
system (het.-aware from now on for brevity). In this paper we
describe a new het.-aware scheduling algorithm that employs an
original methodology compared to the ones proposed in the past.

Our algorithm, called Het.-Aware Signature-Supported
(HASS) scheduler is based on the idea of architectural signatures.
An architectural signature is a compact summary of architectural
properties of an application. It may contain information about
memory-boundedness, available ILP, sensitivity to variations in
clock speed and other parameters. The common property of these
parameters is that they can all be relatively easily and quickly
interpreted by the scheduler to determine how well a given
application “matches” a given core. The signatures are generated
offline and are presented to the scheduler as a single unit with the
application binary, perhaps by being embedded into the binary
itself. The scheduler then matches jobs with cores based on these
signatures.

Unlike HASS, previously proposed het.-aware algorithms
determined the best matching of threads to cores via online
performance monitoring [3][15], which determined relative
speedup of each thread on different core types. As the number of
cores (and core types) on the chip increases [1][5], the overhead
of performance monitoring grows and it becomes less practical as
a means of determining optimal assignment. Our scheme does not
use online monitoring and thus removes the overhead associated
with it, in exchange sacrificing some accuracy.

Static nature of HASS imposes some limitations on its
structure and functionality, and so it is important to investigate
their impact. First of all, in the current implementation there is
only one signature per application. While this scheme can be
extended to multithreaded applications with relative ease, it is
more difficult to accommodate for different input sets, which can
sometimes cause significant changes in application behaviour and
therefore optimal thread-to-core mappings. We investigated the

effect of varying program inputs on HASS’s accuracy and
determined that while some inaccuracies are unavoidable, the
overall impact on accuracy is small. Another limitation of HASS
is that it requires cooperation from the application development
side for generation of architectural signatures. This, however, can
be achieved without significant involvement from the developer.
For example, signature generation can be done in conjuction with
compilation with minimal additional manual effort. Thus this
aspect is not a significant hindrance if improved system
performance is achieved in return. A final limitation is that HASS
does not account for phase changes, since the architectural
signature persists for the lifetime of a program. While this means
that HASS cannot outperform the best static (oracle) assignment,
it also eliminates the need for dynamic performance monitoring,
which, as we discovered, causes load imbalance and thus hurts
performance.

The advantages of HASS, on the other hand, are (1) better
scalability, (2) simpler implementation (both due to the absence of
dynamic monitoring in the scheduler), and (3) support for short-
lived threads: threads that would otherwise spend the whole or the
majority of their lifetime in the suboptimal “performance
monitoring” stage.

HASS deliberately trades accuracy for simplicity and
efficiency compared to algorithms based on online profiling. In
order to fully evaluate whether this trade-off is worth making, we
compare HASS to a het.-aware IPC-driven algorithm that uses
online profiling, proposed by Becchi et al. [3]. We found that
while the IPC-driven algorithm usually improves thread
assignments, it causes load imbalance due to its need to frequently
migrate threads from one core type to another for performance
measurements. This causes performance overhead, often negating
the benefits of improved thread assignments.

We implemented both algorithms, HASS and IPC-driven,
which had not previously been implemented, in the OpenSolaris
operating system. We evaluated the algorithms on two real
multicore platforms made asymmetric via CPU frequency scaling.
We found that both HASS and IPC-driven improve performance
by 7-13% for a diverse workload, but that the IPC-driven
algorithm suffered significant instability in workloads other than
those with few phases.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 describes the methodology for
constructing architectural signatures. Section 4 describes the
HASS scheduler, and Section 5 provides the evaluation. Section 6
describes the IPC-driven algorithm, provides the evaluation, and
compares it with HASS. Section 7 summarizes and outlines plans
for future work.

2. Background and Related Work

The problem of scheduling on ASISA multicore processors is
relatively new. Two of the most well-known scheduling
algorithms proposed are by Becchi et al. [3] and Kumar et al. [15].
Both of them assume a system with two core types (“fast” and
“slow”) and rely on continuous performance monitoring to
determine optimal thread-to-core assignment. Becchi’s IPC-
driven algorithm periodically samples threads’ instructions per
cycle (IPC) on cores of both types to determine the relative
benefit for each thread from running on the faster core. Those
threads that have a higher fast-to-slow IPC ratio have a priority in
running on the fast core, because they are able to achieve a
relatively greater speedup there. Kumar’s method uses a similar
technique, except that the sampling method is made more robust
by using more than one sample per core type per thread. In
addition, Kumar proposed an algorithm that tries to determine a

globally optimal assignment by sampling performance of thread
groups rather than making local thread-swapping decisions.

Both these approaches promise significantly better
performance than naïve heterogeneous-agnostic policies with any
kind of heterogeneous workload, but they are both difficult to
scale to many cores. There are several barriers to scalability.

Firstly, in their unmodified versions they both support only
two distinct core types. Secondly, their reliance on profiling
means that demand for different core types will be unequal. In
particular, the larger the ratio of slow cores to fast cores, the more
demand there will be to run on any given fast core for sampling
purposes. This creates a workload imbalance and interferes with
threads that are “legitimately” running on faster cores – we found
this to be a challenging problem in implementing the IPC-driven
algorithm. Since our algorithm relies on predetermined
performance profiles, it sacrifices accuracy, but at the same time
avoids scalability barriers related to sampling and has a much
simpler implementation.

Teodorescu and Torrellas [22] developed an algorithm for
optimal assignment in the context of mildly heterogeneous
platforms where core differences are caused by within-die process
variation. Although performance profiling is still required, a lot of
overhead is avoided by assuming that a thread’s IPC is the same
on all core types. The approach works well when cores are very
similar to each other, but unlike our approach, it is generally
inapplicable to highly heterogeneous systems.

Balakrishnan et al. [2] implemented a simple het.-aware
scheduler in Linux that ensures that fast cores never go idle before
slow cores. While this scheduler mitigates the effects of
performance asymmetry, it is not meant to improve efficiency.
Mogul et al. [18] described a scheduler that temporarily switches
a thread to run on a slow core when the thread is executing a
system call. By using system calls as a heuristic for thread
assignment, this scheduler completely avoids any monitoring
overhead (or the need to pre-generate architectural signatures), but
it only applies to workloads dominated by system calls.

Li et al. [16] designed a het.-aware algorithm for Linux,
AMPS, that makes sure that the load on each core is proportional
to its power and that fast cores are never under-utilized. HASS
also ends up loading faster cores more than slow cores (as we
explain later), but HASS makes this decision based on the
properties of threads, while AMPS does not, so AMPS may run a
memory-bound thread on a fast core and lose efficiency.

3. Architectural Signatures

Signatures Overview

An architectural signature is a summary of the architectural
characteristics of an application. HASS relies on the ability to
estimate potential performance of a thread on a core given the
load and characteristics of that core. To that end, the signature
must enable it to predict threads’ relative performance on different
cores. In this work we focus on systems where cores differ in
clock frequency (as on the evaluation platforms used in this
paper) and in cache size, parameters expected to play a prominent
role in future ASISA systems. Construction of signatures that take
into account the pipeline characteristics is left for future work.

To predict performance variations due to clock frequency, we
must consider the application’s degree of memory-boundedness
[9]. An application with a high rate of memory accesses is likely
to stall the core often, so clock frequency will not have a
significant effect on performance. Memory-boundedness can be
captured by an application’s reuse-distance profile. A reuse
distance indicates the number of intervening memory accesses

between consecutive accesses to the same memory location, and
the reuse distance profile is the distribution of reuse distances.
From a reuse-distance profile we can accurately estimate the
application’s last-level cache miss rates for any cache
configuration [4][11][19][21]. These estimated miss rates are the
contents of the signature. From them we approximate
performance on cores with different frequencies and cache sizes.
Before explaining how this is done, we describe the process of
constructing the signatures.

Constructing Signatures

An important property of signatures is their microarchitecture-
independence: out of all hardware platforms where it is possible
to run the binary, we should be able to select any single one to
construct a signature usable by all.

The signature should be available to the OS at scheduling
time, so the ideal place to hold it is the application binary itself.
For evaluation covered in this paper we have not implemented the
binary embedding scheme, and have instead opted for hard-coding
a limited set of signatures into the kernel.

To construct the signature, we need to obtain the reuse-
distance profile, which is collected via offline profiling. Such
profiling can be done, for example, as part of the feedback-
directed optimization phase of the application development,
which can be set up with little or no involvement from the
programmer. All that needs to be done is to execute a program
once with the profiler (see below) that will generate the signature
and embed it into the binary. The responsibility of the developer,
then, is to make sure that the thread exhibits “typical” behaviour
during this signature run. If it is impossible to do in one run, the
developer can do several runs (for example with different inputs)
and combine the results into one signature. In this work, we
construct profiles using Pin, a binary instrumentation framework
from Intel [17], along with a custom Pin extension, MICA [12]. A
more detailed account can be found in our previous work [19].
Once the profile is collected, we estimate (also offline) cache
misses for a limited set of realistic cache configurations. These
estimations, collected in a matrix, comprise the architectural
signature. We support 11 different cache sizes (powers of two
from 16K to 16M) and four set-associativities (4, 8, 16 and 32), so
the matrix has 44 values.
Shown below is an example signature for the benchmark 179.art
from SPEC CPU2000 suite:

 cache size

se
t-

as
so

c.
 256K 512K 1M 2M 4M 8M 16M

4 427 412 325 157 42 6 1
8 427 418 332 131 21 1 0
16 427 424 337 107 11 0 0
32 427 426 336 86 5 0 0

Each integer represents the expected number of misses per 4096
instructions (the number 4096 was selected to speed up
calculations at scheduling time). Columns for sizes 16K to 128K
are omitted, because the values there are in this case exactly the
same as for 256K (427 misses).

Using Signatures for Scheduling

At runtime the architectural signature is used to estimate a
thread’s performance on each type of core present. To accomplish
this, we calculate a hypothetical completion time of some constant
number of instructions. Two separate parts are considered:
execution time and stall time. Execution time is the amount of
time it takes to execute the instructions assuming a constant

number of cycles per instruction. We have used a cost of 1.5
cycles per instruction. Clock speed is also factored in.

We approximate stall time by the number of cycles used for
servicing last-level cache misses that ended up going into main
memory. Although this is a coarse approximation, it gives
reasonable accuracy, because memory access time dominates
other stalls. To estimate this, we need memory access latency
(discoverable by the OS) and the miss rate that we obtain by
looking up the signature. Note that since we are assuming
constant memory latency, the presence of non-uniform memory
access (NUMA) can reduce the accuracy of estimates. Although
we did not have a chance to investigate this effect
comprehensively, we observed that in our case the presence of
NUMA on one of the experimental platforms did not prevent the
algorithm from performing successfully.

The resultant sum of both time components gives us an
abstract “completion time” metric. For actual scheduling, we
focus on the ratio of completion times calculated for different
types of cores. The exact method is described in the next section.

Wrapping up the discussion of architectural signatures, we
would like to reflect on shared caches. On shared-cache
architectures (including SMT), performance is affected not only
by the frequency of the core and the properties of the application,
but by cache access patterns of co-scheduled threads. Our existing
method for estimating performance does not account for effects of
shared caches. In our evaluation, this caused performance benefits
to diminish or even completely disappear when shared caches
were present. In our case, in addition to a shared L3 cache, each
core had a large exclusive L2 cache. The situation could be even
worse if the L2 cache were shared. Modelling shared cache effects
is an orthogonal and well-studied problem. Existing models of
miss rates in shared caches are based on input data very similar to
reuse-distance profiles (used to construct our signatures) [7], and
this presents a good opportunity to extend our signature-based
model to account for cache sharing. We are currently
investigating a solution.

To summarize, we predict performance of different threads on
different cores based on threads’ caching behaviour and cores’
cache size and frequency. This allows threads to distinguish cores
by their relative desirability. While we have not been able to test
the accuracy of this relative performance estimation for cores that
differ in cache sizes, we have been able to test it on cores that
differ in frequency by using Dynamic Voltage and Frequency
scaling (DVFS) facilities. DVFS allows the operating system to
control the clock speed of the CPU. Figure 1 shows how well real
performance ratios match predicted ratios for some of our test
configurations (described in 5.1). As evident, the estimation
method is successful in separating memory-bound threads (which

Figure 1. Signature-estimated performance ratios vs. observed
ratios. Some outliers labeled. Perfectly accurate estimations
would have all points on the diagonal line.

1

1.5

1 1.5

es
ti

m
at

ed
 r

at
io

observed ratio

Intel, 3GHz vs. 2GHz

swim

mcf

art

equake

1

1.5

2

1 1.5 2

es
ti

m
at

ed
ra

ti
o

observed ratio

AMD, 2.3GHz vs. 1.15GHz

swim

mcf

art
equake

are less sensitive to changes in frequency and therefore
concentrated towards lower left) from CPU-bound threads (upper
right), but is less precise in characterizing memory-boundedness.

We would like to emphasize that the process of performance
estimation occurs at scheduling time, and not offline.
Nevertheless, we have presented it in this section, because it is
closely connected with the format of the signature.

4. HASS Scheduler

HASS stands for Heterogeneity-Aware Signature-Supported.
Besides those properties, the scheduling algorithm also
emphasizes scalability, because future ASISA processors may, in
fact, be many-core. Scalability mainly manifests in two aspects:
the lack of global locks, and local greedy decision-making on the
part of threads. As we describe the algorithm, we will point out
particular features that ensure scalability.

We begin the description of the algorithm by introducing a few
key abstractions. The first abstraction is a processor class. A
processor class has a unique combination of features (described
inside the class) such as clock frequency, cache hierarchy, or
different execution cores. If two cores belong to the same class,
they must be identical, and a system must have at least two classes
to be heterogeneous. We assume that the class configuration of
the system is static. Since classes may contain a very large
number of cores on future many-core systems, class-based load
balancing and accounting may become tedious. To manage this
problem, processors are also grouped together in CPU partitions.
Each partition must belong to exactly one processor class, but
each class may contain one or more partitions. Each core must
belong to exactly one partition, and a partition is the widest
locking scope during normal operation of the scheduler. This
allows managing a large number of cores in a scalable way. Each
partition keeps a counter of runnable threads (threads either
currently running or ready to be run), which is updated in real
time. This counter is the primary partition-wide contention point,
as it has to be fully synchronized.

When threads enter the system, they iterate through all existing
processor classes and estimate their performance using signatures
(the is method described in Section 3.3) according to the attributes
of that class (there needs to be only one such estimation per class).
These values can be calculated once and used until the thread
exits. Note that these base ratings represent the expected
performance, were the thread able to get a core of that class for
exclusive use.

To assign itself to a partition the thread goes through the list of
all partitions and estimates its performance in that partition using
the base ratings and the current number of runnable threads per
core in the partition (the thread assumes that CPU time will be
shared equally within the partition). After that, the thread selects
the partition with the highest expected performance and assigns
itself there. This process is called regular assignment. Note that
regular assignment has linear complexity with respect to the
number of partitions, so there should be a balance between the
number of partitions and the number of cores in each partition
when large processor classes need to be partitioned. Assignment
is not only done initially, but is repeated every time a thread
accumulates a certain amount of CPU time on its current partition,
in case the current partition becomes non-optimal, i.e., when the
number of threads in a partition changes. This is called a refresh.
By having the refresh period tied to CPU rather than wallclock
time, we avoid increasing the absolute number of refreshes as the
load factor grows.

Load balancing and core assignment within partitions can be
done according to regular OS policies, which can also be tailored

to emphasize scalability (we do not discuss these techniques).
Between partitions, however, there is no direct load balancing.
Instead threads will converge to a balanced load distribution, with
more powerful partitions potentially receiving higher loads. This
also allows a situation where a thread is waiting in a queue, when
there is an idle core somewhere in the system. To prevent such
occurrences, it is forbidden to move to fully loaded or overloaded
partitions when some partitions are less than fully loaded
(underloaded).

The greedy approach has a potential problem where threads
may become locked in a suboptimal assignment and further
optimization can only be accomplished by cooperative action
between two threads (swapping) rather than by a greedy decision
of any one thread. There is a mechanism to do that, and it is called
optimistic assignment. It can be selected by the thread instead of
regular assignment during a refresh, if it fails to find a good target
partition. The initiator has to find a partner in the target partition
and swap with it. The initiator can only trigger the switch if it
confirms that the swap will actually increase its own, as well as
overall system performance. This is done by comparing the base
performance ratings of the initiator and the potential partner. The
search for a partner can be slow when the target partition has
many threads or when there are a lot of partitions. Therefore, it is
critical to forgo exhaustive search and instead use randomized
search with a limited amount of probing.

One special case where optimistic rebinding is especially
important is when the aforementioned partition underload
protection mechanism kicks in. Remember that during these
situations regular assignment to any partitions except those that
are underloaded is forbidden. However, it is permissible to rebind
optimistically to any partition, even those that are not
underloaded. This is because swapping threads cannot create a
load imbalance worse than that which already exists. Without this
relaxation, any balanced configuration that had the number of
runnable threads in the system equal to the number of cores would
be immutable, even if it were suboptimal.

The partition scheme allows the scheduler to avoid global
locks during scheduling. Instead, threads can lock one partition at
a time when doing a refresh (for reading the runnable threads
counter), migrating between partitions or entering/leaving
runnable states (for updating the runnable counter). Using
read/write locks can further decrease the pressure on this
contention point.

We chose Solaris as the platform to implement the scheduling
algorithm due to its powerful profiling framework DTrace [6]. We
used build 86 of OpenSolaris 2008.05. In implementing HASS we
reused much of the Solaris code for CPU partitions.

We have not implemented the “multiple partitions per
processor class” scheme, because our testing platforms did not
have enough cores to motivate this apparatus. Finally, due to time
constraints, we have simplified optimistic assignment target
search. Only one partition was probed for a partner, the partition
with the highest expected performance.

5. Evaluation of HASS Algorithm

Evaluation Platform and Methodology

We used two machines for our experiments. One was an Intel
Xeon X5365 server with four dual-core packages. A pair of cores
on a package shared a 4MB L2 cache. Another was an AMD
Opteron 8356 with four quad-core chips. Cores on the same chip
shared a 2MB L3 victim cache (512KB L2 caches were private).
Both systems were running versions of OpenSolaris 2008.05 build
86 for the x86 platform.

Note that although reuse-distance profiles for our test
applications had to be collected on Linux (Pin does not run on
OpenSolaris), we ensured that the benchmark binaries compiled
for Linux-x86 were sufficiently similar to the binaries compiled
for Solaris-x86 by using the same compiler version and flags.

We created heterogeneity by setting cores to run at different
speeds using DVFS. We created several test configurations, and in
each configuration we had a number of partitions, each with its
own frequency. The test configurations used in our tests are
summarized in Table 1. In some configurations we used fewer
cores than the total available (AMD-2,2, Intel-2,2) in order to
avoid any performance effects due to cache sharing (to avoid this
we had to use at most one core per chip). Conversely,
configurations where most of the cores are used, AMD-12,4 and
AMD-4,4,2,2, are subject to cache interference effects (each
partition shared an L3 cache). The AMD machine has NUMA,
and half the cores experienced more costly memory accesses on
average due to asymmetric memory topology. We configured our
platform such that fast cores experience higher latency. Since we
prefer to assign memory-bound threads to slower cores, it is there
that most of the memory traffic originates. Therefore it is more
efficient to place slower cores closer to memory.

The benchmarks that we used for evaluation were from the
SPEC CPU2000 suite. We have used two categories of workloads
for most of our tests. The first category is highly heterogeneous
(HH), and consists of a pair of highly CPU-bound benchmarks
and a pair of memory-bound benchmarks. In this category we
used three base workloads: (1) sixtrack, crafty, mcf and
equake, (2) gzip, sixtrack, mcf and swim, and (3) mesa,
perlbmk, equake and swim. In each of these workloads, the first
two benchmarks are CPU-bound with virtually any cache size
(and thus are good candidates for faster cores), and the second
pair is memory-bound. The base workload was replicated in
experiments where we wanted to run more than four threads per
system. For instance, if we wanted to run sixteen threads, we
would run four copies of each benchmark in the base workload.

The second category of workloads is moderately
heterogeneous (MH). It consists of the following base workloads:
(1) vortex, twolf, art and fma3d, (2) gap, parser, applu and
vpr, (3) apsi, ammp, lucas and mgrid, and (4) bzip2,
wupwise, gcc and art. Here the benchmarks represent the whole
spectrum of memory-boundedness, with less extreme differences
between the benchmarks. The behaviour of some benchmarks
(art, for example) is highly dependent on cache availability, so
their properties vary among different test configurations.

Due to space limitations, for the rest of the paper we focus
only on the first workload from each category, and just summarize
the other results.

We have also performed tests with a homogeneous workload
LH (four instances of wupwise), where HASS, as expected, did

not deliver any performance improvements since all benchmarks
have similar signatures. Again, due to space limitations we do not
analyze LH results in detail.

For a given test we launch a predetermined number of
benchmarks, and as individual copies terminate, they are
immediately restarted by a script. Thus we keep the workload
constant and measure average completion time of every type of
benchmark (for each test there were at least three completion time
value samples, depending on the benchmark).

Our original goal was to compare completion times achieved
with HASS to completion times achieved with the native Solaris
scheduler, but we found that completion times under the native
scheduler were highly variable (standard deviation was as high as
23% of the mean in some cases) and thus not suitable for
comparison. This is due to the fact that the native scheduler is not
het.-aware and thus migrates threads between different core types
at infrequent and arbitrary intervals. Therefore, the fraction of
time that a thread spends on a particular core type varies from one
run to another. Achieving a low standard deviation is not possible
in these conditions.

Instead we compare HASS completion times with two
composite metrics. The first is the default metric. It is calculated
by taking a weighted average of benchmark completion times
when they were bound to a particular type of core, while the
overall system load was as specified in the corresponding
experiment. This metric gives us the expected completion time of
a benchmark if it randomly binds to a core at the start and never
switches. It is a good approximation of how the default scheduler
operates, because if possible, it tries to keep the thread on its
original core to maintain cache affinity. At the same time, this
metric is too pessimistic for sustained loads, because as threads
running on faster cores retire more often, faster cores will be
available for assignment more often. To compensate, we also
show a second ideal round robin (ideal-RR) metric. It is
calculated by combining the completion times on all core types
such that the total time spent on each core type is proportional to
how many of those cores are present in the system. It illustrates a
hypothetical scheduler that is perfectly fair and suffers no
additional penalties or overhead compared to the default
scheduler. A round-robin scheduler can be an approximation of
such a perfect scheduler, but it suffers from additional non-trivial
delays from numerous migrations, synchronization overheads and
cold cache effects. In summary, while we do not use real
completion times for the native scheduler, we understand that they
are no worse than the default metric, and no better than the ideal-
RR metric.

For performance comparison we report completion times
normalized to the default metric for each benchmark and the
geometric average for all benchmarks of that workload.

Performance Analysis

First we explored the behaviour of the algorithm when there is
one runnable thread per core. The results are reported in Figures 2
and 3 (recall that we only illustrate the first workload in HH and
MH). As can be expected, the scheduler performed especially well
with the HH workload, where the average speedup was as much
as 13% on AMD-2,2 (Figure 2a). This result is within 0.5% of the
speedup on the best static assignment. A static assignment is a
partition mapping for the workload that is decided at the
beginning of execution and never changed thereafter. This
assignment is obtained by testing all possible ones and picking the
one with the best performance. To understand why HASS
successfully matches the best static performance, we ran the
experiments again and traced the execution with DTrace. Table 2

Table 1. Test configurations.

Name Partitions / cores Other information
Intel-2,2 Part. 1: (2@2GHz),

Part. 2: (2@3GHz)
exclusive L2$ per core

AMD-2,2 Part. 1: (2@1.15GHz),
Part. 2: (2@2.3GHz)

exclusive L3$ per core,
NUMA among partitions

AMD-12,4 Part. 1: (12@1.15GHz),
Part. 2: (4@2.3GHz)

fast cores share one L3$,
slow cores share three L3$,
NUMA among slow cores

AMD-4,4,2,2 Part. 1: (4@1.15GHz),
Part. 2: (4@1.4GHz),
Part. 3: (2@2GHz),
Part. 4: (2@2.3GHz)

one L3$ per partition,
NUMA among partitions

shows how HASS assigns threads to cores, and this assignment
actually corresponds to the best static assignment.

On other two-partition setups results were also positive for the
HH workload, although on Intel-2,2 (graph not shown), the boost
was smaller (7% average speedup vs. default; 4.5% speedup vs.
ideal-RR) due to a smaller difference between minimum and
maximum frequencies on this system. AMD-12,4 too had a
smaller speedup, but this time due to only a quarter of cores being
fast, rather than half. Because HASS considered sixtrack to be
the most CPU-bound benchmark according to its signature, it
picked four copies of sixtrack to run on faster cores, while crafty
was left to run on slower cores (Figure 2b).

MH workloads were more difficult to optimize. Since
application behaviour was less extreme, the signatures were less
distinctive, and there was more room for error in determining the
best candidate to be placed on a faster or slower core. As Figure
2a shows, HASS was still able to correctly identify two memory-
bound applications on AMD-2,2 (fma3d and art) and thus get a
9.2% speedup vs. default or 2% vs. ideal-RR, matching the best
static assignment. With Intel-2,2, most of the benchmarks were
actually fairly close together in memory-boundedness, so overall
HASS lost 1% to ideal-RR, still gaining 2.5% over default. MH
fared worse on AMD-12,4, where HASS identified vortex as the
best candidate for faster cores, when, in fact, twolf was. Twolf
was the best candidate, because by running in its own partition it

(as well as other memory-bound benchmarks) could have had
better cache performance due to less contention, but HASS could
not detect this, because it does not account for cache sharing. As a
result, performance slid below ideal-RR in both configurations
(by 2.9%), although still retaining some margin over default.

HASS had trouble getting any speedup on AMD-4,4,2,2
(Figure 3). There were two reasons for this. Firstly, our simplified
implementation of optimistic assignment did not optimize thread
mappings among the three slower partitions (Table 2 shows that
mcf spent more time in fast partitions than crafty, which was
suboptimal). Secondly, cache sharing again disrupted the
optimality of thread assignments, this time even in the workload
HH (mcf being the victim of undue cache contention this time).
Combined, these factors caused the performance to be no better
than even the default metric, let alone the best static performance,
which we do not report due to a large search space for such an
assignment. This scenario showcases that awareness of shared
caches is critical in configurations where they are present.

As to the remaining workloads from categories HH and MH,
the average speedups were very similar to what we have shown:
12% and 7% compared to default for HH and MH workloads
respectively on AMD-2,2; 7.7% and 3% on Intel-2,2; 9.5% and
4.9% on AMD-12,4; and –1% and 0.6% on AMD-4,4,2,2.

In the next round of experiments we tested the algorithm in
overloaded conditions. At any given moment we had five times as

Figure 3. Average completion times on
AMD-4,4,2,2, relative to the default metric.
Base workload multiplied by 3 (12 in total).

Figure 2. Average benchmark completion times relative to the default metric (results for IPC-driven are explained in 6.2):
(a) AMD-2,2 – base workload, and (b) AMD-12,4 – base workload multiplied by 4 (16 benchmarks in total).
Bars above 100% represent slowdown, and below 100% – speedup.

Table 2. HASS thread to partition assignments.

 % of time spent in different partitions (ordered from slow to fast)

Intel-
2,2

AMD-
2,2

AMD-
12,4

AMD-4,4,2,2
AMD-2,2
overloaded

AMD-4,4,2,2
overloaded

sixtrack 0.9 / 99 6.9 / 93 1.2 / 98 13 / 5.8 / 13 / 67 0 / 100 0 / 0 / 44 / 56
crafty 1.8 / 98 8.5 / 91 99 / 1.0 60 / 17 / 21 / 1.9 0 / 100 0 / 39 / 36 / 25
mcf 98 / 1.5 95 / 4.4 99 / 0.2 0.1 / 8.5 / 65 / 26 100 / 0 99 / 1.2 / 0 / 0
equake 98 / 1.1 88 / 12 99 / 0.5 40 / 36 / 22 / 0.5 90 / 10 14 / 86 / 0.2 / 0.1
fma3d 94 / 5.5 93 / 7.0 98 / 2.0 43 / 28 / 26 / 2.5 77 / 23 8.0 / 66 / 26 / 0.2
art 90 / 9.1 89 / 11 99 / 0.2 23 / 70 / 6.3 / 0.3 100 / 0 99 / 0.7 / 0.2 / 0.2
vortex 7.5 / 92 9.7 / 90 2.9 / 97 18 / 10 / 7.1 / 64 0.1 / 100 0 / 0 / 16 / 84
twolf 6.6 / 93 8.2 / 91 99 / 0.6 49 / 24 / 25 / 0.8 0 / 100 7.4 / 65 / 28 / 0.2

70%

80%

90%

100%

110%

120%

si
xt

ra
ck

cr
af

ty

m
cf

e
qu

a
ke

(H
H

)

fm
a

3
d

a
rt

vo
rt

e
x

tw
ol

f

(M
H

)re
la

ti
ve

 c
o

m
p

le
ti

o
n

 t
im

e HASS ideal-RR

(HH) , (MH)
are gmeans

50%

60%

70%

80%

90%

100%

110%

120%

si
xt

ra
ck

cr
af

ty

m
cf

e
qu

a
ke

(H
H

 g
m

e
a

n
)

fm
a

3
d

a
rt

vo
rt

e
x

tw
ol

f

(M
H

 g
m

e
a

n
)

(L
H

 g
m

e
a

n
)

re
la

ti
ve

 c
o

m
p

le
ti

o
n

 t
im

e

HASS IPC-driven IPC-driven CPU time best static ideal-RR

A

50%

60%

70%

80%

90%

100%

110%

120%

si
xt

ra
ck

cr
af

ty

m
cf

e
qu

a
ke

(H
H

 g
m

e
a

n
)

fm
a

3
d

a
rt

vo
rt

e
x

tw
ol

f

(M
H

 g
m

e
a

n
)

re
la

ti
ve

 c
o

m
p

le
ti

o
n

 t
im

e

HASS best static ideal-RR

B

Figure 4. Estimated performance ratios for AMD-12,4 given a distinct signature for each input. Black bars represent ref sets, and gray
bars represent train sets.

many threads running as there were cores available.
Unfortunately, the native Solaris load balancer and scheduler were
not successful in sharing the CPU fairly among so many
competing threads, and so the completion times were inconsistent
in both the native and HASS schedulers (which use these default
mechanisms for intra-partition scheduling). Nevertheless, we were
able to evaluate optimality of partition assignments (Table 2),
which was in fact reasonable: CPU-bound benchmarks were
spending more time on faster cores and faster partitions received
higher loads.

In summary, the results demonstrate that HASS is able to
differentiate among benchmarks with different architectural
properties and assign them to the “right” types of cores, especially
when the workload is highly heterogeneous. Moreover, HASS is
highly unlikely to perform worse than the default metric even for
homogeneous workloads, where performance improvements are
difficult to obtain. The biggest performance issue we found was
due to HASS being unaware of shared caches, a problem that we
expect to address in future work. We defer discussion regarding
the lack of phase awareness in HASS until later in the paper,
when we have had a chance to evaluate the IPC-driven algorithm.

HASS is unfair by design – it assigns to fast cores those jobs
that experience the most speedup on those cores, and thus may not
be appropriate in situations when memory-bound threads must be
run at a higher priority. HASS can be extended to be more
priority-aware by introducing priorities into its swapping and
assignment mechanisms. For example, a higher priority thread
would be able to switch to a more optimal partition regardless of
the overall system throughput. This would work well only with
fixed priorities (as opposed to those that change regularly), and
potentially compromise throughput, because high-priority threads
would be allowed to run in the fast partition even if they are not
sensitive to the CPU speed. We have not implemented this
improved technique, and have instead opted for a simpler
algorithm. In scenarios where improving the overall system

efficiency is the primary goal, the basic version of our algorithm
is able to deliver improved performance per watt by increasing the
overall throughput of the workload.

Scalability Analysis

Scalability was one of the main emphases in HASS’ design, and
so we evaluated how its overhead scales as setup complexity
grows. The most superficial overhead measurement, the
difference between a thread’s wallclock completion and CPU
times, was comparable to that of the native scheduler (between
0.1% and 0.3% depending on the configuration). We did not
consider overloaded tests, because there we cannot distinguish
between legitimate runqueue waiting time and overhead. HASS
overheads were slightly higher in some configurations with
workload MH, due to more inter-partition migrations, which can
sometimes leave cores idle for short periods of time.

We then focused on a part more specific to our algorithm: the
time spent executing HASS partition assignment logic (regular
and optimistic). This is the part that we would expect to grow as
setup complexity increases. The results, however, showed that at
16 cores the overhead was insignificant (Table 3). The maximum
overhead observed for any single thread was 0.06% of its CPU
time (not shown). Overall, the range of values indicates that
partition assignment is not a likely bottleneck, at least as we move
into medium-scale setups.

Lastly, we have traced rates of inter-partition thread migration.
This metric reflects how quickly the workload stabilizes once a
disruption occurs, and whether there is unnecessary thrashing
(also Table 3). The numbers indicate that overall the algorithm is
not prone to thrashing, except in cases where the workload is not
very heterogeneous, but the effect was still relatively benign in
our case. We postulate that this thrashing may grow as the
complexity of the setup grows, indicating a possible area of
improvement: a mechanism to throttle some migrations.

Sensitivity to Varying Inputs

One potential area of concern for HASS is a scenario where an
application is run with an input different than the one assumed by
its signature (recall that there is only one signature per
application). Since benchmarks in SPEC CPU2000 are available
with different inputs, we were able to investigate this effect.
Ideally, we want the performance estimated with a signature for a
particular input to be about the same as the performance estimated
with signatures for all other inputs. To see whether this is so, we
compared estimated performance ratios using signatures obtained
on different inputs of the same program. We constructed
signatures for all train and ref inputs of 23 SPEC benchmarks
(eon, galgel, and facerec had compilation issues and we did not

Table 3. HASS overheads. Values in parentheses are maxima
observed for any one thread.

 Partition
assignment logic
(% of CPU time)

of partition migrations
per thread per minute of
CPU time

HH MH HH MH
AMD-2,2 0.020 0.021 0.50 (1.36) 0.45 (0.97)
AMD-12,4 0.011 0.011 0.29 (1.03) 1.78 (4.69)
AMD-4,4,2,2 0.013 0.014 1.12 (2.48) 8.19 (12.3)
AMD-2,2 ovrld 0.026 0.026 0.43 (0.91) 0.17 (0.84)
AMD-4,4,2,2 ovrld 0.019 0.028 0.77 (2.31) 0.84 (1.81)

0.0

1.0

2.0

a
rt

e
qu

a
ke gc
c

gz
ip

m
e

sa

p
a

rs
e

r

tw
ol

f

vo
rt

e
x

vp
r

cr
af

ty

ga
p

m
cf

a
m

m
p

a
p

p
lu

a
p

si

b
zi

p
2

fm
a

3
d

lu
ca

s

m
gr

id

p
e

rlb
m

k

si
xt

ra
ck

sw
im

w
u

p
w

is
e

use them for the paper). We estimated performance with each
signature on our configurations, and then computed performance
ratios between fast and slow cores (recall that such ratios are used
by HASS for thread assignments). As an illustration we present
the results for the AMD-12,4 configuration (1.15GHz vs. 2.3
GHz, cache size 512KB) in Figure 4. Each set of bars shows ratio
estimates for different inputs of the same application. Each
estimate is done with its own signature. Ideally, all bars for a
given application should be the same; then we know that a single
signature can be used regardless of input. While it is evident that
the estimated ratio varies depending on the input, the effect is not
significant in all benchmarks. In other words, cache miss rates (on
which we base our signatures) do not always vary significantly
between inputs. Thus HASS is likely to retain at least some
accuracy in the presence of varying inputs.

There has been other research related to the problem of miss
rate estimation for various inputs given a profile for only one
input [8], but we have not attempted to incorporate these
approaches into the current version.

Extension to Multithreaded Applications

Although the signature-based framework was designed for single-
threaded applications, there are no inherent barriers to extending it
for multithreaded applications. In that case, the signature would
be generated per thread, or in cases where a thread switches
between various heterogeneous tasks (as in newly emerging
parallel environments), the signature could be generated per task
and communicated to the OS upon the beginning of each new
task. To minimize the overhead, the signature could be propagated
to the OS only if it is sufficiently different from the previous
signature associated with that thread. While support for
multithreaded applications would require changes to the signature
framework, almost no changes would have to be done in the
scheduler itself, because it already uses threads as schedulable
entities associated with an architectural signature.

6. IPC-driven Algorithm

We wanted to compare HASS side by side against a phase-aware
dynamic algorithm based on online profiling of threads. Our goal
was to evaluate the benefits of phase awareness and drawbacks (if
any) of online monitoring. We were not aware of any
implementation of such an algorithm in a real system, and
therefore decided to implement such an algorithm ourselves. We
chose the IPC-driven scheduler proposed previously by Becchi
[3], an algorithm that combined good results, applicability to
general purpose systems and specification completeness. We
created the first implementation of the IPC-driven algorithm in
OpenSolaris (in the original work [3] the scheduler was
simulated) and report our evaluation results in this section.

The Algorithm

The IPC-driven algorithm assumes two types of cores (“fast”) and
(“slow”). The assignment is done based on IPC ratios, which
determine the relative benefit of running a thread on a particular
core type. A thread with a high IPC ratio between fast and slow
cores is expected to benefit from the fast core. The scheduler
periodically samples threads’ IPC on both cores types and
compares the smallest IPC ratio on the fast core with the highest
IPC ratio on the slow one. If the latter exceeds the former, the
corresponding threads are swapped, so that the thread with the
higher IPC ratio is set to run on the fast core. Even though the
original algorithm assumed only two types of cores, our
implementation is a generalization for n different types. As in

HASS, cores are organized into partitions according to their types.
The scheduler measures IPC ratios in all partitions relative to the
current partition.

Whenever a program enters a new IPC phase, the IPC ratios
relative to all partitions are re-measured. This is done via forced
migrations where a thread is switched to run in every partition
other than its current one for a period of time called
refresh_period.

IPC phase changes, which are independent of the type of core
[20], are detected through sudden changes in the moving average
of IPC that exceed a certain ipc_threshold.

In order to limit the number of forced migrations and to allow
the system to stabilize between two consecutive thread swaps, a
thread must run on a new core for a period of time equal to a
swap_inactivity period before another forced migration is
allowed. A thread that has been assigned to a particular core and
is eligible for swapping is in a pinned state. A thread whose IPC
ratio is in the process of being updated is refreshing.

Performance of the IPC-driven algorithm is sensitive to the
settings of the aforementioned parameters (refresh_period,
swap_inactivity period, etc.). We have carried out an exhaustive
evaluation of the parameter space and picked the ones that yielded
the best overall performance. Refresh_period was set to 30
milliseconds, ipc_threshold to 10%, and swap_inactivity
period to 1.5 seconds.

Evaluation

We use the same experimental conditions as in Section 5, but due
to space limitations we refrain from presenting the entire set of
our experiments, highlighting only those that best illustrate our
findings about the algorithm.

Figure 2a shows the results for three workloads: HH
{sixtrack, crafty, mcf, equake}, MH {vortex, twolf, art,
fma3d} and LH {wupwise, wupwise, wupwise, wupwise} on
AMD-2,2. In addition to reporting completion time, we also show
user CPU time. The difference between the two is overhead:
system time plus runqueue wait time.

For the HH workload, we note that IPC-driven improves
performance over default and fair by 8% and 1.5% respectively.
Contrary to our expectations, however, IPC-driven achieves a
smaller speedup than both HASS and the best static assignment.
We expected it to improve over them, since it is phase aware. The
reason that it did not is as follows.

The best static assignment would map the two frequency-
sensitive applications sixtrack and crafty to the two fast cores,
and the two memory-bound applications mcf and equake to the
two slow cores. IPC-driven, on the other hand, maps mcf to the
fast core roughly 51% of the time, pushing crafty to run on the
slow core during this time. Although mcf does have some high-
IPC phases when it makes sense to map it to the fast core (see
Figure 5), those phases last only 25% of the time, not 51%. So
26% of the time mcf is not being mapped to the right core, which
hurts performance.

Figure 5. IPC over time for mcf on Intel Quad Xeon at 2.0 GHz.

The reason for this suboptimal mapping has to do with the
unstable nature of phase changes. When mcf runs on a fast core
during a high-IPC phase and a phase change is detected, it is
migrated to a slow core to refresh its IPC ratio. However, as it
runs on the slow core, the phase change (towards low IPC)
continues, and so the IPC degradation reflects not only the lower
clock frequency of the slow core but the fact that the program has
entered an even more memory-bound phase. Ideally, we want the
IPC ratio to be computed from IPCs measured on fast and slow
cores during the same program phase. When this is not the case,
the IPC ratio is inaccurate, and in this particular example it is
much higher than it should be. In fact, we saw ratios as high as 2.2
and 2.5, which are not realistic, because the ratio of high and low
frequencies in our configurations is at most 2. Since the ratio is so
high, the algorithm decides that mcf derives significant benefit
from running on the fast core and pins it there, when in fact it
would be more optimal to pin it to the slow core.

It is very difficult to ensure that the IPCs used to compute the
ratio belong to the same phase. Phase changes are difficult to
predict at runtime. The problem gets worse if the number of
partitions, and hence the number of IPCs, is large (recall that the
ratio has to be computed for each partition). We tried to solve this
problem by increasing the ipc_threshold, but this did not work,
because no single threshold worked well for all workloads. The
reason why this problem did not occur in the original evaluation
of the IPC-driven algorithm [3] is that IPC refreshing was not
simulated realistically. IPCs used to compute ratios were obtained
from offline IPC traces, so, in contrast with real systems, IPCs
always corresponded to the same program phase.

Turning again to Figure 2a, we note that in all workloads the
algorithm experiences significant overhead, causing LH workload
to perform worse than default, even though it beats it in terms of
user CPU cycles. The overhead is caused by forced migrations.
When a thread is migrated to a new core to refresh its IPC, the
threads pinned to that core experience longer waiting times. One
solution would be to swap the refreshing thread with one of the
pinned threads. We did not pursue this solution after considering
its complexity and potential degradation of cache affinity.

Migration overhead is particularly large for MH and LH
workloads due to very frequent migrations caused by frequent
phase changes, every 500-600 milliseconds, in fma3d (MH) and
wupwise (LH). Increasing ipc_threshold and swap_inactivity
period alleviates this problem, but at the expense of making the
algorithm less phase-aware.

Migration overhead was not detected in the original paper on
the IPC-driven algorithm, perhaps because runqueue contention
was modelled differently than in a real scheduler. The paper did
not provide sufficient detail about this part of the simulation.

Summary

Our real-world implementation of the IPC-driven algorithm
revealed that IPC ratios were often inaccurate due to the unstable
nature of phase changes, and that the overhead of forced
migrations in highly phased workloads was prohibitively high. In
workloads with infrequent and smooth phase changes the IPC-
driven algorithm performs better. One such “friendly” workload
consisting of {sixtrack, crafty, equake, equake} experiences
less than 1% overhead and its performance is only 2% worse than
the best static assignment. At the same time, with weakly phased
workloads, IPC-driven does not benefit from phase awareness,
which renders unjustified the implementation complexity
associated with this feature. Although previous work on IPC-
driven and similar het.-aware algorithms demonstrated through
simulation that phase-aware dynamic assignment significantly

outperforms the best static assignment [3][14], we were not able
to achieve the same results on a real system due to the
aforementioned difficulties. Solving these problems would require
major changes to the dynamic algorithm that we evaluated, which
was outside the scope of our work.

The difficulties that we encountered while trying to implement
a dynamic phase-aware algorithm raise a question whether the
benefits of a phase-aware algorithm would be worth the effort
expended in overcoming the difficulties associated with its
implementation. While we do not have our own data to reason
about this trade-off, data presented by Becchi et al.[3] and Kumar
et al.[15] can facilitate this analysis. The data in the Becchi’s
paper suggests that the largest portion of the speedup effected by
the IPC-driven algorithm comes from the best static assignment
(approximated by our algorithm) and from the fact that the fast
core is never kept idle (also ensured by our algorithm). Beyond
that, the actual IPC-driven assignment offers little additional
performance improvement. Kumar’s data concurs with this
finding: it shows that a large portion of the speedup on
heterogeneous systems can be obtained with the best static
assignment, and additional gains from phase-aware dynamic
assignments are smaller on average.

This suggests that the static strategy adopted in our approach
could be the right trade-off between performance gains on
heterogeneous multicore systems and complexity of the system
software required to effect these gains.

That said, there certainly might be workloads and applications
where phase-awareness is crucial. In those cases, our static
approach could perhaps be extended to be more phase-aware
without having to detect phases online. For example, phase
detection could be done offline (using a profiler or with the
assistance of a programmer), a signature generated for each phase,
and markers inserted in the executable at the points of phase
change. Then during runtime as the program changes phases, the
correct signature would be provided to the OS. While this
mechanism complicates the signature framework, its
implementation would be relatively straightforward. Evaluating
the feasibility of this approach is in our plans for future work.

7. Conclusions and Future Work

We have described a new het.-aware scheduler, HASS. Its novelty
is in using offline-generated architectural signatures for
determining thread assignments on ASISA multicore processors.
Using signatures removes a need for dynamic profiling, which
causes load imbalance and results in unstable performance
estimates on highly phased workloads. HASS achieves
performance comparable to the best static assignment and
outperforms default and fair heterogeneity-agnostic assignments
most of the time. In cases where HASS mispredicts relative
performance, it usually still improves over default in our
experiments. Our analysis shows that the error rate of the
signature-based performance prediction is small, so we expect
HASS to perform well overall. Two potential limitations of
HASS, the inability of the signature to adjust for different
program inputs and lack of consideration for phase changes, do
not appear to be significant roadblocks. Our analysis of the effect
of input variation on the accuracy of signature-based performance
shows that it is not too detrimental and should not negate the
overall benefits of the algorithm.

Lack of phase awareness in HASS does not prevent it from
improving performance, because a static signature captures the
overall trends in the behaviour of the application. Thus HASS is
able to achieve performance comparable to the best (oracle) static
assignment. Contrary to our expectations, we found that lack of

phase awareness in HASS has worked to its advantage, because it
saved it from many problems linked to phase changes that were
revealed by our implementation of IPC-driven algorithm.

As to the IPC-driven algorithm, we initially expected that it
would outperform HASS on highly phased workloads, but were
surprised to find that phase awareness caused so many problems.
While we do not claim that phase awareness is problematic in
scheduling algorithms in general, it was problematic in the IPC-
driven algorithm. This was due to the necessity to compute a
stable IPC ratio, which was impossible because of inherently
unstable nature of phases, and because phase changes triggered
devastating migrations that hurt performance. Our experience
with the IPC-driven algorithm underscored the importance of
validating simulated results on real systems.

Another potential improvement is to make HASS account for
other types of heterogeneity (e.g., differences in the pipeline
architecture) and adapt it to support multithreaded applications.
These important problems, as well as support for architectures
with cache sharing and alternative methods of phase awareness
are in our plans for future work.

References

[1] K. Asanovic et al. The Landscape of Parallel Computing Research:
A View from Berkeley. UC Berkeley Technical Report UCB/EECS-
2006-183, 2006.

[2] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The Impact of
Performance Asymmetry in Emerging Multicore Architectures. In
Proceedings of the 32nd Annual International Symposium on
Computer Architecture (Madison, Wisconsin USA, June 04–08,
2005). ISCA ‘05. IEEE Computer Society, Washington, DC, USA,
506–517.

[3] M. Becchi and P. Crowley. Dynamic Thread Assignment on
Heterogeneous Multiprocessor Architectures. In Proceedings of the
3rd Conference on Computing Frontiers (Ischia, Italy, May 02–05,
2006). Computing Frontiers ‘06. ACM, New York, NY, USA, 29–
40.

[4] E. Berg and E. Hargersten. StatCache: A Probabilistic Approach to
Efficient and Accurate Data Locality Analysis. In Proceedings of the
2004 IEEE International Symposium on Performance Analysis of
Systems and Software (Austin, Texas, USA, March 10–12, 2004).
ISPASS ’04. IEEE Computer Society, Washington, DC, USA, 20–
27.

[5] S. Borkar. Thousand Core Chips—A Technology Perspective. In
Proceedings of the 44th Annual Conference on Design Automation
(San Diego, California, USA, June 04–08, 2007). DAC ’07. ACM,
New York, NY, USA, 746–749.

[6] B. Cantrill, M. Shapiro, and A. Levinthal. Dynamic Instrumentation
of Production Systems. In Proceedings of the USENIX Annual
Technical Conference (Boston, MA, USA, June 27–July 02, 2004).
USENIX ’04. USENIX Association, Berkeley, CA, USA, 2.

[7] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting Inter-Thread
Cache Contention on a Multi-Processor Architecture. In
Proceedings of the 11th International Symposium on High-
Performance Computer Architecture (San Francisco, California,
USA, February 12–16, 2005). HPCA ’05. IEEE Computer Society,
Washington, DC, USA, 340–351.

[8] C. Ding, Y. Zhong. Predicting Whole-program Locality through
Reuse Distance Analysis. In Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and
Implementation (San Diego, California, USA, June 09–11, 2003).
PLDI ’03. ACM, New York, NY, USA, 245–257.

[9] V. Freeh et al. Analyzing the Energy-Time Trade-Off in High-
Performance Computing Applications. IEEE Transactions on
Parallel and Distributed Systems, 18, 6 (June 2007). IEEE Press,
Piscataway, NJ, USA, 835–848.

[10] M. Hill and M. Marty. Amdahl's Law in the Multicore Era. IEEE
Computer, 41, 7 (July 2008). IEEE Computer Society Press, Los
Alamitos, CA, USA, 33–38.

[11] M. Hill and A. Smith. Evaluating Associativity in CPU Caches.
IEEE Transactions on Computers, 38, 12 (December 1989). IEEE
Computer Society, Washington, DC, USA, 1612–1630.

[12] K. Hoste and L. Eeckhout. Microarchitecture-Independent Workload
Characterization. IEEE Micro, 27(3), 2007. IEEE Computer Society
Press, Los Alamitos, CA, USA, 63–72.

[13] E. Humenay, D. Tarjan, and K. Skadron. Impact of Process
Variations on Multicore Performance Symmetry. In Proceedings of
the Conference on Design, Automation and Test in Europe (Nice,
France, April 16–20, 2007). DATE ’07. EDA Consortium, San Jose,
CA, USA, 1653–1658.

[14] R. Kumar et al. Single-ISA Heterogeneous Multi-Core Architectures:
The Potential for Processor Power Reduction. In Proceedings of the
36th Annual IEEE/ACM International Symposium on
Microarchitecture (San Diego, California, USA, December 03–05,
2003). MICRO ’03. IEEE Computer Society, Washington, DC,
USA, 81.

[15] R. Kumar et al. Single-ISA Heterogeneous Multi-Core Architectures
for Multithreaded Workload Performance. In Proceedings of the
31st Annual International Symposium on Computer Architecture
(München, Germany, June 19–23, 2004). ISCA ‘04. IEEE Computer
Society, Washington, DC, USA, 64.

[16] T. Li, D. Baumberger, D. A. Koufaty, and Scott Hahn. Efficient
Operating System Scheduling for Performance-Asymmetric Multi-
Core Architectures. In Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing (Reno, Nevada, USA, November
10–16, 2007). SC ’07. ACM, New York, NY, USA, No. 53.

[17] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. Reddi, K. Hazelwood. Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation. In
Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (Chicago,
Illinois, USA, June 11–15, 2005). PLDI ’05. ACM, New York, NY,
USA, 190–200.

[18] J. Mogul et al. Using Asymmetric Single-ISA CMPs to Save Energy
on Operating Systems. IEEE Micro, 28, 3 (May 2008). IEEE
Computer Society Press, Los Alamitos, CA, USA, 26–41.

[19] D. Shelepov and A. Fedorova. Scheduling on Heterogeneous
Multicore Processors Using Architectural Signatures. In
Proceedings of the Workshop on the Interaction between Operating
Systems and Computer Architecture, in conjunction with the 35th
International Symposium on Computer Architecture (Beijing, China,
June 21–25, 2008). WIOSCA ‘08.

[20] T. Sherwood, S. Sair, and B. Calder. Phase Tracking and Prediction.
In Proceedings of the 30th Annual International Symposium on
Computer Architecture (San Diego, California, USA, June 09–11,
2003). ISCA ’03. ACM, New York, NY, USA, 336–349.

[21] A. Smith. A Comparative Study of Set Associative Memory Mapping
Algorithms and Their Use for Cache and Main Memory. IEEE
Transactions on Software Engineering, 4, 2 (March 1978). IEEE
Press, Piscataway, NJ, USA, 121–130.

[22] R. Teodorescu and J. Torrellas. Variation-Aware Application
Scheduling and Power Management for Chip Multiprocessors. In
Proceedings of the 35th International Symposium on Computer
Architecture (Beijing, China, June 21–25, 2008). ISCA ’08. IEEE
Computer Society, Washington, DC, USA, 363–374.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

