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Abstract

While soft real-time applications must run quickly
enough to meet the deadline, there is usually no extra benefit
from running more quickly than that. This property provides
the opportunity for energy savings using Dynamic Voltage
and Frequency Scaling (DVFS). In this paper, we propose
the GreenRT framework that allows an application to mon-
itor its own progress, and subsequently adjust the processor
frequency dynamically to meet the deadline. Our approach
assumes the application can be subdivided into well-defined
sub-tasks, each with quantifiable input and output sizes. Us-
ing information from the application’s past history, the al-
gorithm estimates the amount of input that will be passed
into and generated by each sub-task. We demonstrate the
effectiveness of the GreenRT framework by using it to imple-
ment a pedestrian detection algorithm and show GreenRT
could provide an accurate estimation of workload and pre-
cisely adapt the execution time of an application under dif-
ferent deadlines.

1. Introduction

Soft real-time applications perform a series of deadline-
sensitive tasks, where each such task must be completed
within a fixed time frame. Each of these time frames is
usually assigned manually or determined by features of the
application. Examples of such applications include audio
and video decoding, image recognition and certain robot
controllers. While missing a task deadline in these appli-
cations presents no danger to human well-being (in con-
trast with hard real-time applications), meeting the deadline
is important for good interactive user experience. Another
property of these applications is that while each task must
run quickly enough to meet the deadline, it does not benefit
from running more quickly than that. For example, it is of
little use to finish the computation of the robot command
much earlier than the robot is ready to accept it. In sum-

mary, soft real-time applications must run quickly enough
to meet their deadline, but not more quickly than that.

This property presents interesting opportunities for
power savings on modern processors capable of Dynamic
Voltage and Frequency Scaling (DVES). DVES allows dy-
namically increasing and reducing the processor voltage
and frequency. If the voltage and frequency are reduced
the applications deliver lower instruction throughput, but
the system saves energy. As such, DVFS allows trading
off performance and power consumption. DVFS is present
on many modern processors, such as PowerTune in IBMs
PowerPC 970-based systems, AMDs PowerNow, and Intels
Enhanced SpeedStep.

With DVES, soft real-time applications lend themselves
for energy optimizations without the loss to performance as
perceived by the user. We envision the following scenario.
A soft real-time application monitors its own performance
and estimates whether its observed instruction throughput is
sufficient to make the deadline. If it is, the application can
scale down the frequency on the processor and save energy.
If it is not, the application can increase the frequency to
make sure that it delivers satisfactory performance to the
user.

To evaluate this idea, we have built GreenRT, a frame-
work for incorporating power-awareness into soft real-time
applications. The framework consists of three parts: (1)
monitoring self-progress by the application; (2) estimating
the instruction rate needed to meet the deadline; (3) dynam-
ically adjusting the processor frequency to trade-off per-
formance and energy consumption. We experiment with
GreenRT in the context of a pedestrian detection applica-
tion. We show that using the GreenRT framework, appli-
cations use less energy while meeting deadlines. Energy
savings are thus achieved without a noticeable impact on
user experience. GreenRT framework could become very
important for mobile devices, where soft real-time applica-
tions are common and power conservation is essential.



2. Related Work
2.1. Power Saving

Power saving is currently a hot topic especially in the
field of embedded system. Canturk Isci et al. [7] have pro-
posed a method that maximizes the system throughput given
a power budget. By monitoring the workload, they estimate
the performance degradation which is proportional to the
degradation in frequency. Power savings are achieved by
scaling down the frequency when power savings are much
more important than performance loss.

Rajamani et al. [12] propose an application-aware power
management algorithm. They continuously monitor the
critical workload and achieve power management in two
different directions. The first is Performance Maximizer
that exploits DVFS levels to maximize performance while
ensuring power consumption is within a set limit. The other
direction is Power Save that provides energy savings while
maintaining specific performance. The performance metric
used in that work is IPC.

2.2. Running Time Estimation

Estimating the running time of the application is critical
for the GreenRT framework. Corti [2] attempts to find the
worst-case execution time of soft real-time applications by
computing the duration of each instruction under a specific
hardware platform and the maximum amount of possible
iterations. By finding the upper-bound execution time of
each crucial step, the worst-case execution time could be
estimated. Poplavko et al. [11] proposed a generic loop ex-
ecution time estimate giving a tight upper bound and taking
parallelism into account. Using the worst-case execution
time, however, can lead to overly pessimistic frequency ad-
justments and will not account for variations due to changes
in input. Therefore, we estimate the execution time bases on
runtime measurements.

Some previous works have proposed precise prediction
for a specific application. For example, Foley et al. [5]
propose a preliminary predictive model for a key biomed-
ical imaging application which is highly input-dependent.
It could give a precise running time estimation by analyz-
ing the algorithm in detail.

Xu et al. [16] propose a model that uses Dynamic Volt-
age Scaling (DVS) for completing tasks under deadline con-
straint while minimizing energy consumption. Their model
estimates the workload of each task bases on the probabil-
ity density function of the workload of previous tasks. Their
assumption is that all tasks are independent and can be run
in any order.

More general approaches for running time estimation
usually rely on the principle that applications having sim-
ilar characteristics have similar running times [3, 6, 13].
Shonali Krishnaswamy et al. [9] propose a model that uses
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Figure 1. The pedestrian detector uses a windows scanning ap-
proach where windows of different size are used to scan the input
image.

data mining to estimate application runtime. Execution time
of the current application could be categorized by exploring
the similarity of the current application to the ones in the
database.

While all these approaches could be used in our frame-
work, they are more complex than an approach based on
runtime measurements employed in our framework.

3. Application Model

We describe properties of a soft real-time application that
make it suitable for GreenRT. There are two key require-
ments: first, the application must consist of well defined
tasks. For example, in our pedestrian detection application,
a task is the processing of a single image.

Second, it must be possible to set a deadline for each par-
ticular task, in a fashion reasonable for the application. For
example, for the pedestrian detection application, it should
be possible to determine the reasonable time frame within
which the image should be processed. (This time frame will
depend on the particular scenario where the pedestrian de-
tection is used.)

Third, it must be possible to estimate (with some accept-
able amount of error) the amount of time needed to com-
plete a task. This can be done in one of the following
ways. If same tasks are periodically repeated, past com-
pletion time of a task could be used to estimate its future
completion time. Otherwise, it must be possible to repre-
sent a task as a series of smaller operations and to estimate
performance of each operation based on past performance.
With that, the entire tasks completion time can be trivially
estimated.

Our application of choice, the pedestrian detection pro-
gram, answers these three requirements and thus fits within
the GreenRT framework. We describe the application in the
following section. Many soft real-time applications, such as
audio/video encoder/decoder, have a similar structure as our
application. This allows our approach to be implemented
similarly into such software.



3.1. Pedestrian Detection

For this work, we consider pedestrian detectors in the
context of human-computer interaction. Most common
pedestrian detectors use a window scan approach, where
they scan a variable sized window over the input frame
from a video sequence and compute the likelihood of the
window-covered area containing a pedestrian (see figure 1).
We have chosen an algorithm based on Shapelets [15]. This
work approaches the pedestrian detection problem by in-
corporating a set of classifiers named Shapelets. During
the window scanning phase, each window is passed to the
Shapelets to compute the likelihood.

The original detector passes each window to all avail-
able classifiers for the likelihood computation. However,
to make the algorithm suitable for the GreenRT framework
we had to break it down into smaller sub-tasks. We mod-
ified the Shapelet detector to a cascading structure similar
to the one developed by Viola and Jones [14]. With cascad-
ing structure, the classifiers are separated into five groups.
During the windows scanning phase, we pass all windows
to the first group. Only windows that pass the first group
will be used as input to the second group of classifiers, and
so on. This is sensible because most of the windows do not
contain pedestrians and can be rejected by checking a few
strong classifiers. Essentially, we have separated the work-
load into unique stages (as our sub-tasks), where output of
one stage is passed down (as a set of windows) to the next
stage. Therefore, if we can estimate the amount of work that
will be passed down to the next stage, we can estimate the
total workload and therefore the total required time and the
optimal frequency. This will be explained with more detail
in section 4.1.

In summary, we have structured our application into
tasks and sub-tasks, where each task is the work of pro-
cessing one frame from the video, and each of these tasks
is separated into interdependent sub-tasks with windows as
their input and output.

4. Framework

The key components of the framework are extraction of
stages from the application, and estimation of the running
time of each stage. Because of the application-specific na-
ture of program stages, the stage extraction in GreenRT is
a manual process. Automating this process is an interest-
ing subject of the future work, but it is out of scope of the
current paper.

The workload C; of stage i (i = 1...n) is defined as the
total number of cycles this stage will take.

Based on our understanding of the application, we as-
sume that C; depends linearly on Wi, the number of win-
dows passed down to stage ¢. Notice that since the windows
are of different sizes, Wi is a N,,-dimensional vector, where

N, is the number of scales.

From preliminary experiments we observed that the
IPC is static within each stage and approximately constant
across different frequencies, for input images as large as
1920 x 1440. This means our application is CPU bounded.
This is expected given the long running time required to
process one image, and the fact that the application runs by
itself on a single thread.

Finally, we assume that the total instructions I; to pro-
cess stage ¢ depends only on the number of windows. Ac-
cording to the following relationships:

I;

G = IPC; M)
C;

fi = T (2)
C; I

T = 5 =1pCy, ©)

where f; is the frequency at which stage i runs, and T; is the
time used for stage 7, we know that C'; depends only on Wi.
We use C; = ELWI + b; to model the total cycles. k_; is the
number of cycles required to compute each window (again,
k:— should be a N,, dimensional vector). The constant b; is
added to account for non-major operations. k; and b; are
learned online.

In addition, equation 3 suggests an inverse relationship
between the frequency and the running time.

We can use our model to assign frequency at each stage
such that the application runs at minimum energy while
meeting its deadline. Here we use the linear DVFS assump-
tion as used in [7], and write the energy consumption as:

E(f7 t) = fat’

where a describes how drastic the energy grows with re-
spect to the frequency. The problem specification is given
as:

a>2 (4)

mi”zn:E(fi,ti)

s.t.iti <D
i

where D is the deadline, and n is the total number of stages.
In order to know the optimal CPU frequency for each stage,
we have to address the uncertainty of the number of win-
dows passed down into the current stage.

4.1. Dynamic Assignments

In order to dynamically adjust the CPU frequency to the
thread, we need to predict the number of windows in each
stage. Let r; be the acceptance ratio between the number of
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windows in adjacent stages, 7; = Tl
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Figure 2. The acceptance ratio is used to calculate how much input
will be pass down to the next stage, based on the current stage’s
input.

We adaptively update the ratios and use them to com-
pute the number of windows to be processed. The ratios
are updated by taking a weighted average of their empirical
values and the observed value. Specifically, at stage 7, when
Wj are known for all j < ¢, 7; is updated using:

-

7 e A Wi + (1= N,
i—1
The updated value cannot be used for the current image
since the number of input windows at stage ¢ is used for
updating the ratio for stage + — 1. However, the new value
will be used in stage ¢ — 1 during the processing of the next
frame in the video sequence and will have a decaying influ-
ence for the following frames, depending on the magnitude
of A (see figure 2).
At stage 7, the number of windows in the following
stages are estimated by:

0<A<1 ®))

—
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Then the workload is computed using the above-mentioned
linear equation C; = k_;WZ + b;, and we calculate the fre-
quency f; such that the entire application, if runs at f;, can
finish on time: "
_ Ej:i Cj

fi= ==

where t is the elapsed time, and D — ¢ gives the remaining
time. According to Ishihara and Yasutjra [8], this frequency
fi will in fact consume the least power under the deadline
D — t. Unlike the general conception, running the appli-
cation at the maximum frequency and then set the core to
sleep will not be the optimal saving strategy, because it can
be observed from equation 3 and 4 that the energy grows
at least linearly with the frequency. On the other hand, al-
though it gives the minimum energy consumption to always
run at the minimum frequency, the running time often ex-
ceed the enforced deadline.

Unfortunately, DVFS does not provide fine granularity
in frequency steps. Most of the time we will end up work-
ing with a few frequency options (three on our experimental
system). One solution for this is to always round up the fre-
quency in order to safely meet the deadline. Another solu-
tion is to linearly combine frequencies to achieve the effect

output

no worse than that achieved by the calculated frequency. In
the single-threaded case, it has been shown in [8] that the
optimal combination can be achieved by running at two ad-
jacent frequencies f4 and fp for time periods t4 and tp
respectively:

fiti = fata + fBtB @)
ta+ip <t (8
E(fa,ta) + E(fB,tg) < E(fi,t;) )

4.2. Static Assignment

In the static assignment, we are interested in knowing the
optimal energy consumption without linearly combining the
frequencies. First, we run the detector on all possible fre-
quencies in advance and collect the oracular execution time
of each stage under each frequency. Then we permute all
frequency assignments and select the one that consumes the
minimum energy under each deadline. Finally, the perfor-
mance under static assignment will be used to evaluate the
quality of the dynamic assignments.

5. Implementation of GreenRT

The pedestrian detection algorithm has been imple-
mented in the GreenRT framework using Matlab. When
the detector first starts up and begins detecting an input
video sequence, the starting frames of the video are used
for measuring how many cycles each window of different
size will take for each stage. This measurement allows us
to determine the values for the vector k; in the equation
C; = ksz + b;, since the number of work done for each
window of a specific size is constant for each stage.

The starting frames are also used to initialize the accep-
tance ratios needed for estimating the number of input win-
dows that will be passed to the consecutive stages. At each
new frame after the starting frames, these ratios are used to
estimate the total number of windows (and therefore cycles)
needed for completing the task. These ratio is also updated
as described in the above section.

At the beginning of each stage, the estimated number of
remaining cycles is used to determine the optimal frequency
assignment for the remaining stages. However, solving for
the exact best frequency for each stage is a knapsack prob-
lem and requires dynamic programming, which would add
significant overhead to the algorithm. Instead, we solve for
one lowest fixed frequency that can be used for all remain-
ing stages while meeting the deadline, using the equation
T = <. Since the number of possible frequencies are fixed,
we try both the Round-up strategy and the Linear combina-
tion strategy to approximate the final frequency choice.
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Figure 3. This figure shows the actual execution time of the appli-
cation under different deadlines.
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Figure 4. This figure shows the energy consumption under differ-
ent deadlines. Each line represents a specific frequency adjustment
strategy.

6. Results

We ran our experiments on a Dual-CPU hyperthreaded
Pentium 4 (Northwood). We use only a single CPU and
disable hyperthreading, since our test application is single-
threaded. The processor is capable of running at three
frequency settings (2.10GHz, 2.45GHz and 2.80GHz) via
DVEFS. These settings are controlled using system calls
from within Matlab. The execution time is measured us-
ing tic and toc functions provided by MATLAB. We
compare the Round-up and the Linear-combination strate-

gies with the cases where the application is always run-
ning at the highest/lowest frequency. We do not include the
Linux default energy manager in the comparison because
frequency assignments performed by it are often affected
by workloads of other cores and do not account for appli-
cation deadlines. For the energy consumption function in
equation 4 we use o = 2.

For our first experiment, we tested our application behav-
ior on one specific frame from the video sequence. The re-
quired time for processing our selected frame at the highest
frequency is slightly over 9 seconds. We varied the dead-
line from 9-13 seconds as shown in figure 3. The graph
shows the actual used time for all different strategies un-
der the different deadline. The two horizontal lines show
the execution time of the application running at the high-
est and lowest frequencies respectively. The static assign-
ment can almost perfectly meet the deadline, except for the
time when the small system noises are affecting the result
due to the preciseness of our schedule. The reason for the
good performance is that for the static assignment, we use
the actual information of the workload instead of estimating
it. Thus the execution time could be precisely controlled
by assigning appropriate frequencies for each stage. How-
ever, this method is not yet the best possible ideal sched-
ule, due to the fact that we are not using linear combination
of frequencies. For dynamic methods, both Round-up and
Linear-combination strategies have met the deadlines. The
execution time under the Round-up strategy is always less
than that under the Linear-combination strategy given the
same deadline.

In terms of energy savings, we show in figure 4 that en-
ergy consumption of both static and dynamic methods is
less than that of running at the highest frequency. Among
these three methods, the Round-up strategy has the highest
energy consumption. The Linear-combination strategy has
almost the same energy consumption as the static assign-
ment. Note that the flat line showing the scenario when the
processor runs at the highest frequency is always consum-
ing more energy than the others, indicating the correctness
of [8].

There are two reasons for the less-than-ideal perfor-
mance of the Round-up strategy. First, the estimated work-
load always has some discrepancies compared to the real
workload. Second, the Round-up strategy cannot accu-
rately approximate the required frequency. This results in
the waste of energy caused by always running at higher fre-
quency than actually required.

The Linear-combination strategy, on the other hand, was
able to fit to the deadline by its capability to approximate
the required frequency.

Figure 5 shows the performance of our workload estima-
tion algorithm over a video sequence with 92 frames (in-
dexed 109 to 200), with a fixed deadline of 10.6 seconds.
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Figure 5. The effect of changing the weight for the rejection ratio estimation. This graph compares the used time given a fixed deadline,

with the time needed running at the highest and lowest frequency.

The actual required time for processing each frame running
at the highest frequency and the lowest frequency, with-
out using any frequency adjustment or windows prediction,
are plotted as green and black lines. While there are rapid
changes on the amount of computation between consecutive
images, there is a general trend where images early in our
sequence require more computation, while images later in
our sequence require less. This trend exists because there
are less pedestrians in the second half of the video. Our
prediction algorithm is able to adapt to this trend and create
a more stable completion time. The graph also shows the
effect of changing the weight used in the updating formula
of the acceptance ratios (equation 5). Choosing a weight
of 0.4, where old history is weighted slightly more than the
newest information, proves to provide the best result.

7. Conclusions

In this paper, we have described a method that allows soft
real-time application to meet a specific deadline while sav-
ing energy. We proposed a GreenRT framework. GreenRT
allows an application to monitor its own progress, and
subsequently adjust the processor frequency dynamically
to meet the deadline. This framework is built upon the
knowledge that soft real-time applications must run quickly
enough to meet the deadline, and there is usually no extra
benefit from running more quickly than that. Therefore, if
we can predict the future workload of our application, we
can adjust the frequency using Dynamic Voltage and Fre-
quency Scaling (DVES) to run the application as slowly as
possible.

Our approach assumed that the application could be sub-
divided into well-defined sub-tasks, each with quantifiable
input and output sizes. We introduced the concept of ac-

ceptance ratio, which was used to estimate the amount of
input that is passed into and generated by each sub-task.
Acceptance ratios were calculated using a weighted average
of the past history and the observed value. Combining the
estimated workload with the remaining deadline permits us
to compute the optimum frequency. Since DVFS only al-
lows fixed frequency steps, we used a linear combination
approach that used two different frequencies over the esti-
mated execution time to approximate the actual calculated
optimal frequency.

We demonstrated the steps necessary for incorporating
GreenRT, and the effectiveness of the framework, by imple-
menting a pedestrian detection algorithm within this frame-
work. We compared the performance of the acceptance ra-
tios under different weights, and found that using a weight
of 0.4, which weights past history more than the newest
measurement, provides the best prediction. We showed that
our prediction algorithm is able to predict the general be-
havior of the application, allowing for accurate frequency
changes. We also compared our linear combination method
against a Round-up method. The Round-up method al-
ways rounds the optimum frequency to the next possible
frequency from DVFS. While rounding up guarantees to
meet the deadline, it uses more energy. We showed that
the linear combination method allows for a tighter fit to the
deadline, and also consumed less energy.

In terms of comparison against the static frequency as-
signment given oracle knowledge of the application’s be-
havior, we were able to show that our linear combination
method gives similar performance to the static assignment.

In our work, we limited the application to run alone on
one CPU core. This was based on the fact that most soft
real-time applications generally are the only applications
running in a system, such as the audio decoder on a portable



media player. However, we believe that the workload esti-
mation and the linear combination scheme used in GreenRT
are effective enough to be extended to more complex sce-
narios. In particular, under a multithreaded environment,
workload estimation will be more accurate if the actual IPC
is measured and incorporated into the framework, in which
case the progress of each thread can be monitored separately
using the GreenRT scheme. On the other hand, if there are
multiple applications competing for the cores, we need to
estimate performance using techniques suitable for multi-
core processors [1, 4, 10]. Then we could continue using
the GreenRT by offsetting the frequency options.
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