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ABSTRACT 
Heterogeneous multicore architectures promise greater 
energy/area efficiency than their homogeneous counterparts. 
This efficiency can only be realized, however, if the operating 
system assigns applications to appropriate cores based on their 
architectural properties.  While several such heterogeneity-
aware algorithms were proposed in the past, they were not 
meant to scale to a large number of cores and assumed long-
lived threads due to reliance on continuous performance 
monitoring of threads for core assignment purposes.  We 
propose a scheme that does not rely on dynamic performance 
monitoring.  Instead, the information needed to make an 
appropriate core assignment decision is provided with the job 
itself.  This information is presented as an architectural 
signature of the application, and is composed of certain 
microarchitecture-independent characteristics.  An architectural 
signature is generated offline and can be embedded in the 
application binary.  In this paper we describe our preliminary 
work on architectural signature framework.  We present 
architectural signatures that predict application’s sensitivity to 
variations in core clock speed.  We evaluate a scheduler 
prototype that uses these signatures for scheduling on a 
heterogeneous system composed of cores with various clock 
frequencies.  

Categories and Subject Descriptors 
D.4 [Operating Systems]: Organization and Design, Process 
Management  

General Terms 
Algorithms, Measurement, Performance, Experimentation 

Keywords 
Heterogeneous, Scheduling, DVFS, Architectural signatures, 
Microarchitecture-independent, Sensitivity to changes 

1. INTRODUCTION 
Future multicore and many-core processors will consist of 
heterogeneous cores that may expose a common ISA but differ 
in features, size, performance and energy consumption [3,6,14].  
A single processor will contain many small simple cores, and 
several larger complex cores.  Simple cores will be scalar, in-
order and might have a smaller cache and lower clock 
frequency.  Complex cores will be super-scalar, and may be 
equipped with high-performance features such as out-of-order 
instruction scheduling, aggressive pre-fetching or a vector unit.   
Complex cores will be larger and consume significantly more 
power.  Heterogeneous architectures are motivated by their 
potential to achieve a higher performance per watt than 
comparable homogeneous systems [9,10], because each 
application can run on a core that best suits its architectural 
properties.  
To realize this potential, however, the operating system must be 
heterogeneity aware.  That is, it must assign applications to run 
on appropriate cores.  Consider a workload consisting of a 
scientific application characterized by high instruction level 
parallelism (ILP), and a memory-bound job such as transaction 
processing in a database.  The scientific application will be 
executing significantly faster on a complex core, whereas the 
database application might show comparable performance on 
both types of cores.  In this scenario, assigning threads to cores 
that are appropriate for them (the scientific application to a 
complex core and the database application to a simple core) will 
achieve significant power savings.  Being able to make such 
intelligent decisions at runtime is the goal of heterogeneity-
aware scheduling.   
While heterogeneity-aware scheduling algorithms were 
proposed in the past [4,7,9,10], they were targeted at small-scale 
multicore systems and assumed long-lived threads.  As we 
explain in the next section, they relied on continuous 
performance monitoring of threads to determine the optimal 
assignment of threads to cores.  As the number of cores per chip 
increases [6], dynamic monitoring may become too time-
consuming and impractical.  
We propose a new approach to scheduling on heterogeneous 
multicore systems based on architectural signatures.  An 
architectural signature is a short summary of the application’s 
architectural properties, such as its memory-boundedness, 
available ILP, etc.  The signature is generated off-line and 
embedded in the application binary.  The idea is that the 
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operating system will determine the best thread-to-core 
assignment simply by examining this signature, and without any 
dynamic monitoring of applications’ performance.  
In this study we begin exploring the signature approach to 
scheduling.  We describe how we generated architectural 
signatures that predict application sensitivity to variations in 
clock speed frequency.  These signatures can be used by the 
scheduler on a heterogeneous system where cores differ in their 
clock frequency.  The scheduler would assign insensitive 
applications to low-frequency cores and sensitive applications to 
high-frequency cores and thus maximize performance per watt.  
We have built and evaluated a user-mode scheduler prototype 
that determines appropriate cores for threads using signatures.  
We found that architectural signatures are good predictors of 
sensitivity to clock frequency and that the scheduler can 
improve performance using them.  In the future we plan to 
extend our architectural signature framework to cover other 
architectural parameters.   
A potential drawback of the signature-based scheduling is that it 
does not take into account dynamic phase behavior of the 
application [12].  In our initial design, there is only one 
signature associated with the application, while in reality the 
application may contain many phases that have different 
architectural properties and require different thread-to-core 
mappings.  Another limitation is that signatures are difficult to 
adapt to varying input sets, which can sometimes drastically 
change program performance.  Potential benefits of this 
approach, on the other hand, are (1) simpler implementation of 
the scheduler, (2) greater scalability potential on many-core 
systems, and (3) support for short-lived threads.  It is the goal of 
our research to investigate whether the simplicity and scalability 
of the signature-based approach outweigh its drawbacks. 
The rest of this paper is organized as follows.  Section 2 
discusses related work.  Section 3 presents the methodology for 
generation of architectural signatures and describes how they 
are used in the scheduler.  Section 4 presents preliminary 
evaluation of our algorithm via a user-level prototype on a 
heterogeneous multicore system.  Section 5 summarizes our 
work and outlines the plans for future research.  

2. RELATED WORK 
The two most prominent heterogeneity-aware scheduling 
algorithms were described by Becchi [4] and Kumar [10].  
Becchi’s algorithm relied on continuous monitoring of 
performance of each thread on each type of core to determine 
the best thread-to-core assignment for the system.  Kumar’s 
algorithm used a similar approach as well as another technique, 
where selected thread-to-core assignments were tried by the 
operating system and then the best-performing assignment was 
used thereafter.  
While these algorithms demonstrated improved performance 
over a heterogeneity-agnostic scheduler, they have several 
drawbacks.  When the number of different core types is large (as 
may be the case on future many-core systems), monitoring of 
individual threads or thread subsets may become infeasible.  
The operating system will have to track too much information, 
which may hurt performance.  Furthermore, the amount of time 
used for monitoring (before the optimal thread-to-core 
assignment is determined) may become long, and so until the 

monitoring is complete the system runs sub-optimally.  Besides, 
if threads are short-lived and determining the optimal core 
assignment takes a long time, threads they may terminate before 
the scheduler has had a chance to learn a good assignment.  
There are several trade-offs to consider when comparing the 
dynamic approaches used by Becchi and Kumar and our 
signature-based approach.  Dynamic approaches can adapt to 
program phase changes (because they monitor performance 
continuously) and may determine the optimal thread-to-core 
assignment more efficiently, since they rely on real performance 
measurements as opposed to modeling, which is inevitable with 
a signature-based approach.  On the other hand, dynamic 
approaches are vulnerable to the drawbacks that we discussed 
above.  Our goal is to evaluate these tradeoffs and to develop a 
better understanding of scheduling on heterogeneous multicore 
systems. 

3. METHODOLOGY 
3.1 General Overview  
A heterogeneous processor contains cores with different 
capabilities.  At the same time, the workload running on these 
cores also might and often will be heterogeneous, meaning that 
different applications will have different resource demands.  A 
scheduler managing tasks on such a heterogeneous system will 
improve system performance if it is able to align the workload 
with the cores in a way that will maximize the utilization of 
resources on each core.   
In essence, what the scheduler needs to know at runtime is how 
each job’s performance changes depending on the availability of 
architectural resources.  The resources considered might be 
cache size, clock frequency, issue width, a FPU, a vector unit, or 
an intelligent branch predictor.  One way to acquire this 
information offline is to run the job on cores that differ along 
those criteria and store the resulting performance data in a table- 
or matrix-like form.  This approach is unwieldy, because it 
requires either many different cores to be available for testing, 
or a simulator.  In both cases, as the number of possible 
permutations of different characteristics becomes large, this 
method becomes infeasible due to cost or time constraints.  
Another way is to let the programmer specify the architectural 
signature of the job.  This is unrealistic for most applications, 
because it requires very deep understanding of program 
behaviour, often at a level much lower than programmers are 
comfortable with.  A third strategy is to run a program, and 
based on what it does figure out what resources it might benefit 
from.  This is the path we take.   
A well-known way of tracing the behaviour of a program is 
through binary instrumentation, which allows arbitrary code to 
be executed during pre-defined points in program as it runs.  In 
our research we used Pin, a binary instrumentation framework 
from Intel [11].  Pin is non-invasive, in that it does not require 
any modifications of the target program for instrumentation 
purposes.  Besides providing many common binary 
instrumentation tools, Pin allows custom toolkits to be built on 
top of it, and one of such custom toolkits is Microarchitecture-
Independent Workload Characterization (MICA) by Hoste and 
Eechhout [8].  MICA uses Pin to collect metrics such as opcode 
(instruction) mix, memory access patterns, register access 
patterns, the amount of inherent ILP and others.  Although these 



are specific to binaries for x86 architecture, they are 
microarchitecture-independent, meaning that they do not imply 
or rely on specific core characteristics.  Thus, we need only one 
system to generate all the data required for producing an 
architectural signature for an application, and that signature will 
be useful on any x86 system where that binary runs.   
The binary instrumentation process itself is notoriously slow, 
and we have seen run time increases on the order of tens of 
thousand percent.  Making a complete run of a program is likely 
unacceptable as a means of generating an architectural stamp, 
but it is possible that instrumenting over intelligently picked 
intervals during the run can significantly cut down the time 
required with little loss of accuracy.  This problem, however, is 
outside the scope of the paper. 
The only remaining question is how to leverage 
microarchitecture-independent job characteristics provided by 
MICA to predict whether the job benefits from a larger cache, 
an out-of-scalar core, etc.  Each of such core features or 
parameters requires its own separate prediction model.  In this 
paper, we study the architectural signature framework in the 
context of varying clock speed (i.e. frequency).  Our goal is to 
generate architectural signatures that will help the scheduler 
predict if an application’s performance is sensitive to the clock 
frequency of the processor.  We chose to study clock frequency, 
because we can set up a real heterogeneous system using 
dynamic voltage and frequency scaling (DVFS) feature on 
general-purpose multicore machines.  Studying other 
architectural parameters is the subject of future work. 

3.2 Measuring Clock Speed Sensitivity 
In general, program performance does not scale linearly with 
clock frequency of the underlying core.  This is because besides 
performing computational tasks, a process also makes memory 
requests, which take a relatively long time and are somewhat 
independent of the core’s speed.  Since different programs 
exhibit different memory access behaviour, their performance 
(which in this paper we tie to completion time) scales with clock 
frequency at different rates.  This observation is key to 
differentiating tasks according to their clock speed sensitivity.  
Our first step is to define a metric for clock speed sensitivity.  
Towards that end, we picked a set of 25 benchmarks from SPEC 
CPU2000 suite1 and ran those individually using different 

                                                                 
1 All SPEC CPU2000 benchmarks were utilized, except galgel, 

which we could not get to run correctly on our test platform. 

frequency settings on our DVFS-enabled machines (see Table 1 
for specifications of these machines).  DVFS presents an 
especially convenient way to measure effects of clock speed 
changes, because any change in completion time can be 
attributed exclusively to a difference in core frequency. 
As expected, different benchmarks exhibited different speedups 
when running on a faster core.  Figure 1 illustrates the increase 
in completion time of some benchmarks when run on 1.6GHz as 
opposed to 1.87GHz on machine 1.  Benchmarks such as eon 
and art react strongly to changes in frequency, while mcf and 
equake do not.  To put a number on this behaviour, we have 
borrowed the arc elasticity formula from economics to define 
clock speed elasticity of completion time, which will be used as 
our clock speed sensitivity metric.  Elasticity of a function is its 
sensitivity to a change in a variable.  Rigorously speaking, if T 
is completion time and F is clock frequency, we have: 
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which is calculated on some region [F1, F2].  In plain terms, we 
can view elasticity as the ratio of a relative change in T over a 
relative change in F.   
As an example, let us say that vpr completes in 58.17 seconds 
running on a core at 1.87GHz, and takes 65.33 seconds when 
the frequency is set at 1.6GHz.  The elasticity on [1.6, 1.87] is 
then calculated as follows: 
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Also note that elasticity generally ranges from -∞ to +∞, with 
negative values representing an inverse relationship that we 
expect to see in our scenario (completion time decreases 
following increases in clock speed).  Higher magnitude indicates 
higher sensitivity of performance to changes in clock speed, and 
vice versa (elasticity of 0 would indicate that performance does 
not at all depend on clock speed over the range specified).  As a 
base point, an elasticity of -1 means that a change of clock 
speed by a certain factor will decrease the completion time by 
the same factor. 
Using this definition, we have gathered the elasticity data, a 
sampling of which is available in Table 2.   
Of interest are the results for machine 2, which has a 
significantly smaller L2 cache than the other two machines.  We 

Table 1. Machines used for gathering elasticity data 
# CPUs Caches DVFS settings 

used (GHz) 

1 Intel Xeon E5320 
(Clovertown), 4 cores 

L1I 4x32K (8-way), 
L1D 4x32K (8-way), 
L2 2x4MB (16-way) 

1.6, 1.87 

2 Intel Pentium 4 
(Northwood), 2 cores 

L1D 2x8K (4-way),  
L2 2x512K (8-way) 

2.1, 2.8 

3 Intel Xeon X5365 
(Clovertown), 8 cores 

L1I 8x32K (8-way), 
L1D 8x32K (8-way), 
L2 4x4MB (16-way) 

2, 2.33, 2.67, 3 

*All machines run Linux 2.6.xx (Redhat) 
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Figure 1. Relative slowdown of selected benchmarks when 
run on 1.6GHz compared to 1.87GHz 



can see that a smaller cache causes elasticity values to converge.  
This indicates that clock speed sensitivity is heavily dependent 
on cache size, a microarchitecure-dependent variable.  
Therefore, in our approach we will calculate several sensitivity 
values for common cache configurations and have the OS select 
the appropriate one at scheduling time.  If we have a 
heterogeneous system where the cores differ only in their 
frequencies, the OS will pick the sensitivity value for the cache 
size used on these cores.  If, however, we use a heterogeneous 
system where the cores also differ in their cache sizes, the OS 
will first try to pick a core with an appropriate cache size for a 
job to run on, and then optimize the clock speed.  Otherwise any 
clock-speed benefit might be nullified by a severely limiting 
cache size. 
More details on this scheme will be provided in the following 
sections, but for now the goal is to construct a model for 
predicting clock speed sensitivity for different cache sizes, using 
microarchitecture-independent job characteristics gathered with 
MICA.  

3.3 Predicting Clock Speed Sensitivity 
As we have mentioned in Section 3.2, memory access patterns 
of a job can be used to explain its clock speed sensitivity.  One 
of the most easily interpreted memory access metrics is the 
cache miss rate.  Intuitively, the more misses there are in a 
cache, the more time is the CPU stalled, and the less benefit 
there is in having a higher core frequency.  L2 miss rate can be 
especially telling, due to ever-growing performance gap 
between the CPU and main memory.  This is why we chose L2 
cache miss rate estimation as our means of calculating clock 
speed elasticity.  

Figure 2 shows how we derive elasticity values that are 
presented to the OS scheduler. As shown, elasticity is computed 
as the linear function of the L2 cache miss rates. The 
microarchitecture-independent linear function is derived offline 
using linear regression and L2 cache miss rates are also 
estimated offline using the microarchitecture-independent 
metrics collected with MICA. We now explain how we estimate 
the L2 cache miss rates. 

Estimating cache miss rates without directly simulating a 
memory hierarchy is a challenging problem.  Berg and 
Hagersten suggest tracking reuse distances of memory 
references to estimate miss rates [5].  We opt for a similar 
approach with some modifications, necessitated by the fact that 
reuse distances computed by MICA are defined somewhat 
differently than those used by Berg and Hagersten2.   

For any memory address we consider, let’s call the previous 
access to that location the initial reference and the current 
access to it the final reference. The reuse distance of the current 
access is then the number of distinct memory locations touched 
between the initial and the final references.  A large reuse 
distance indicates a high chance of a cache miss, because many 
other cache blocks would have been requested and possibly 
brought into the cache since the initial reference, and the chance 
that the cache block we need is still resident in the cache is 
decreased.    

In MICA the reuse distance is calculated according to the 
number of unique 64-byte blocks touched since the last 
reference to the same block.  MICA is able to categorize 
memory accesses into 20 buckets according to their reuse 
distance.  There is one bucket for reuse distance of 0 (meaning 
that the last block touched was the same block), one for cold 
references (the block was touched for the first time since the 
start of execution), one for distances larger than 2^17, and 
seventeen buckets for distances between consecutive powers of 
                                                                 
2 MICA calculates a reuse distance based on the number of 

unique intervening references before the reuse of the same 
location, while Berg and Hagersten count all intervening 
references. 

Table 2. Measured elasticity values of selected benchmarks 
 machine 1,   

[1.6, 1.87GHz] 
machine 2,  
[2.1, 2.8GHz] 

machine 3, 
(average) 

mcf -0.486 -0.821 -0.512 
equake -0.557 -0.808 -0.499 
vpr -0.752 -0.776 -0.727 
gap -0.818 -0.790 -0.858 
vortex -0.896 -0.789 -0.895 
gcc -0.917 -0.798 -0.937 
parser -0.971 -0.797 -0.968 
mesa -0.981 -0.799 -0.968 
crafty -0.988 -0.814 -1.004 
twolf -0.991 -0.780 -1.005 
gzip -1.000 -0.774 -0.989 
art -1.023 -0.785 -1.007 
eon -1.074 -0.904 -1.000 
*Values for machine 3 were calculated by averaging elasticity values 
on regions [2, 2.33GHz], [2, 2.33GHz] and [2, 2.33GHz]. 
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2 from 0 to 17.  Each memory reference is reported in exactly 
one bucket, so at the end of the run (or an interval), we are able 
to see how many memory accesses fell into each bucket: 

B∞ = # of cold references 

B0 = # of accesses with reuse distance 0 

B(131073, ∞) = # of accesses with reuse distance more than 217 

B(1, 2), B(3, 4), B(5, 8),.. B(65537, 131072) – buckets for references 
with reuse distances that fall into corresponding ranges 

Our approach is then to estimate the number of misses based on 
bucket values: 

m(B) = # of misses generated by accesses from bucket B 

References from B0 are unlikely to trigger any cache misses, 
because a reuse distance of 0 implies that there was no 
opportunity to evict the cache line.  It can still be evicted by a 
co-runner thread, in a context switch or by an overzealous 
prefetcher, but we ignore these cases for the sake of simplicity.  
Instead, we consider accesses from B0 to always hit in the cache.  

Similarly, we consider references in B∞ to be compulsory cache 
misses.  Thus we have 

m(B0) = 0 

m(B∞) = B∞ 

The other 18 buckets are left to consider.  We build on the 
assumption that memory accesses that have similar reuse 
distance should have similar chances of triggering a cache miss: 

)(*)( BpBBm =    )1(   

where p(B) is the bucket-specific cache miss rate. 

We don’t want to deal with ranges of reuse distances, so for the 
sake of simplicity, we consider all references in a bucket B(x, y) to 
have the same reuse distance, which we define as  

3
4)( ),(

xBr yx =    )2(  

For example, r(B(65537, 131072)) = 4 / 3 * 65537 = 87164. 

As we consider the possible values of p(B), the problem of 
different cache sizes comes into view.  A memory read with a 
certain reuse distance might likely to trigger a miss in a cache of 
one size, but not to trigger it in a larger cache.  After an 
investigation, we were convinced that the size, as well as degree 
of associativity of the L2 cache, had to be considered for further 
analysis.  Thus our model splits into several branches, each 
assuming a common set associativity (we chose powers of two 
from 4 to 32) and a common L2 cache size (powers of two from 
512K to 16MB).  Final sensitivities for all these variants (there 
are 24 of them) are made available to the scheduler, so it can 
pick the appropriate sensitivity value at scheduling time. 

After we know the cache size and set associativity, we can make 
estimations of p(B) values.  Let’s consider a memory access 
with reuse distance r and an S-way associative cache of N lines 
with LRU replacement.  The cache line we’re interested in has 
S-1 neighbours in its set, and at the time of the initial reference, 
it is the most recently used cache line of the set.  Notice that if 

there are requests to S or more unique locations that map into 
this set, our cache line must be evicted as it will be the least 
recently used by the Sth request.  

The total number of sets in the cache is N / S.  Assuming 
uniform distribution of memory references across the address 
space, the probability of a request being mapped into any 
particular set is 1 / (N / S) = S / N.  The probability that it maps 
into any other set is similarly (N – S) / N.  With this knowledge, 
we can calculate the probability of exactly i requests out of r 
falling into the same set: 
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By evaluating expressions (3) for all i’s from 0 to S-1, we can 
find the probability of having fewer than S requests out of total r 
mapped into any one set with this formula: 
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The complement of that, 1 – (4) is the probability of there being 
S or more requests in the set, or, in other words, the probability 
of our cache line being evicted after r unique cache blocks are 
requested.  Using this fact, we can find p(B) for a given cache 
configuration: 
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Now it is easy to find m(B) for all buckets, using equations (1), 
(2) and (5).  Adding together all twenty m(B) values allows us to 
estimate the total number of misses occurring.    

We have also found it beneficial to scale the resulting sum by a 
certain factor L, which is defined as a function of the cache size 
(N) and the total working set (W) of the program: 
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The total working set is simply how much memory the 
application ever touches during runtime.  It this case, W is the 
number of unique 64-byte blocks touched by the application, 
and is available as one of MICA metrics.  

Scaling by L ensures that the miss rate is going to further 
decrease as the working set size decreases (and the miss rate 
will drop to zero whenever the whole working set fits 
completely into the cache). 

By dividing the result by the total number of retired instructions, 
we arrive at the final L2 miss rate value: 

nsinstructio retiredof#
m(B)*L

  rate miss ∑=    



Although this estimation assumes an LRU cache, caches with 
random replacement policies are known to have miss rates on 
average within a small factor of comparable LRU cache miss 
rates [13]. 

The metric used is fairly naïve in that it does not take into 
account some of the more complicated cache behaviour, such as 
prefetching.  In fact, after collecting miss rate data explicitly on 
one of our test machines, we have found that in several cases the 
actual miss rates observed are significantly lower than 
estimated.  Nevertheless, the metric does correlate quite well 
with observed clock speed elasticity, which is its primary 
purpose (see Figure 3). 

We use linear regression to construct a function describing the 
relationship between the L2 cache miss rate and elasticity.  
Constructed once, this function can be used without any further 
direct elasticity measurements.  Instead we use it to estimate 
elasticity for particular cache parameters.  Figure 4 compares 
estimated elasticities with those that were actually observed for 
a 16-way 4MB cache.  The average absolute error in estimated 
elasticity values was about 0.075.  In general, the metric does a 
very good job at separating highly elastic applications from 
inelastic ones.  

We are still investigating whether a single miss rate vs. 
elasticity function could be used across all caches, or if it needs 
to be constructed for each cache configuration separately. 

3.4 Using Architectural Signatures in the 
Scheduler 
As shown in Figure 2, each application has embedded in its 
binary 24 elasticity values, one for each cache configuration 
with sizes ranging from 512KB to 16MB and associativities 
ranging from 4 to 32.  To pick the right value, the scheduler has 
to know the cache size and set associativity before selecting the 
correct value.  This information can be obtained by the 
scheduler by reading a model-specific register (MSR) on the 
underlying processing cores.  

The scheduler places applications into three categories 
according to their elasticities: highly sensitive, moderately 
sensitive and insensitive.  Jobs that have elasticity smaller than  

-0.9 are considered highly sensitive, jobs with elasticity larger 
than -0.75 are considered insensitive, and the rest are considered 
moderately sensitive.  This ternary scheme is simple and retains 
enough information to aid scheduling.  Although the boundaries 
between the categories are determined mostly arbitrarily at this 
point, this division could be made more meaningful given 
statistical information on distribution of elasticities across 
applications.  Alternatively, the scheduler could determine 
appropriate placement at scheduling time.  In any event, for the 
purposes of testing we selected the scheme described, and 
resulting categories for our benchmarks are summarized in 
Table 3.  While in this paper we consider only clock frequency 
elasticity, in the future we envision a framework where 
application signatures are used to estimate the performance 
effect of several core features.  Besides clock frequency, these 
might be cache size, issue width, the number of present FPUs, 
and others.  Some of these parameters are actually more critical 
to application performance than clock speed.  In fact, the 

Table 3. Categories of clock speed sensitivities for benchmarks 
assuming a 4MB 16-way associative cache (high – highly 

sensitive, medium – moderately sensitive, low – insensitive).  
For reference, actual sensitivity categories are noted in 

parentheses for benchmarks where predicted categories were 
incorrect. 

ammp high lucas medium (low) 
applu low mcf low 
apsi high (medium) mesa high 
art high mgrid medium 

bzip2 high parser high 
crafty high perlbmk high 
eon high sixtrack high 

equake low swim low 
facerec high (medium) twolf high 
fma3d low (medium) vortex high (medium) 
gap medium vpr medium (low) 
gcc high wupwise medium 
gzip high   
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Figure 4. Predicted elasticity vs. measured elasticity, 
assuming a 4MB 16-way associative cache 
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evidence is strong that cache size is generally a more important 
factor than frequency.  Therefore, it is reasonable to expect the 
scheduler to first optimize core assignment by cache size and 
only then by clock speed.  This allows us to assume that the 
cache size and set-associativity are known before clock speed 
optimizing scheduling stage is entered.  

We hope to present results of this more general scheduling 
infrastructure in future work; meanwhile, in this paper we show 
the evaluation results of the signature-based scheme that is 
restricted to clock frequency elasticity. 

4. EVALUATION 
In this section we explore the benefits of heterogeneity-aware 
scheduling based on clock speed sensitivity.  The experiments 
we performed compare the default Linux scheduler with a 
heterogeneity-aware user-mode scheduler prototype that we 
have developed.      

Our heterogeneous machine (machine 3 from Table 1) is an 8-
core Intel Quad system.  There are four chips, each housing a 
pair of cores and a shared L2 cache.  We have used only one 
core per chip to prevent cache interference effects.  On these 
four cores we ran 8 SPEC CPU2000 benchmarks.  We provide 
heterogeneity by having the cores run at different frequencies, 
as allowed by DVFS settings (we report on specific frequency 
settings further in this section).  Benchmarks are run 
continuously, that is, after any benchmark terminates, it is 
immediately restarted.  We compare average completion times 
of benchmarks on a default Linux scheduler (version 2.6.18) vs. 
our prototype.  

The default scheduler utilizes natural affinity, meaning that a 
thread is migrated to a different core generally only if there is a 
workload imbalance.  Other than that, the scheduler is free to 
assign any thread to any core out of the four that we had enabled 
for the experiment. 

Our prototype works by statically binding benchmarks to cores 
while maintaining a set of invariants: 

a) All four cores have equal loads at all times. 

b) Benchmarks marked moderately sensitive always run on 
cores faster than or just as fast as cores running insensitive 
benchmarks. 

c) Benchmarks marked moderately sensitive always run on 
cores slower than or just as fast as cores running highly 
sensitive benchmarks. 

d) Every benchmark was bound to as many cores as possible 
without compromising invariants a-c. 

A binding scheme honoring these invariants was determined in 
advance and enforced using Linux taskset utility.  Benchmarks 
were free to migrate between the cores to which they were 
bound as determined by the default scheduler. 

The setup allows benchmarks to run under moderately realistic 
conditions, exposed to adverse effects such as bus contention, 
which are not taken into account by the sensitivity prediction 
framework.  Although benchmarks did exhibit clock sensitivity 
patterns that we expected, resource-sharing definitely caused 
perceivable noise.  For example, in one of our tests (not reported 

below), we saw swim showing higher clock speed sensitivity 
than would be suggested by its extremely low elasticity (-0.15).  
Instead, swim behaved comparably to mcf, which has an 
elasticity of about -0.50.  Deconstructing and predicting these 
effects might be an interesting area for future investigation, but 
we didn’t explore them any further in this round of experiments. 

We evaluated our scheduler using three workloads: a highly 
heterogeneous workload, a balanced workload and a uniform 
workload.  We expect to see the most performance gain with the 
heterogeneous workload and the least gain with the uniform 
workload.  

4.1 Highly heterogeneous workload 
In this experiment, we wished to explore the limits on 
performance gains achievable with the heterogeneity-aware 
scheduler on our heterogeneous (in terms of clock speed) 
system.  To this end, we have chosen two of the most sensitive 
benchmarks (eon and crafty) and two that are very insensitive 
(mcf and equake).  We ran two copies of each simultaneously 
for an average load of two threads per core.  On the system side, 
we provided two cores running at 2GHz and two cores running 
at 3GHz.  We ran the load for at least 2000 seconds on each 
scheduler to get the average completion times shown in Figure 
5.  Under the heterogeneity-aware scheduler, eon has shown a 
19.4% decrease in completion time, crafty has shown a 19.9% 
decrease, mcf has an increase of 15.6% and equake – an increase 
of 12.3%.  Aggregate completion time has decreased by 4.3%.  
It was calculated by taking a geometric average of benchmark 
completion times normalized to their completion times under 
the default scheduler. 

Had the range of allowed DVFS settings been more significant, 
the average reduction in completion time would be more 
dramatic.  We estimate that with a pairing 1.5 – 3GHz, the 
aggregate completion time decrease could almost double, and 
with pairing 1.0 – 3GHz, the decrease could more than triple the 
decrease that we observed in our experiment.  Thus clock speed 
sensitivity aware scheduling would be more important if the 
cores significantly differed in frequency.  Such larger frequency 
ranges may be found in future many-core systems [6]. 

4.2 Typical workload 
In this experiment, we wanted to test the scheduler under a more 
realistic balanced workload.  We picked 8 different 
benchmarks: three insensitive (mcf, fma3d and equake), two 
highly sensitive (gcc and eon), and three moderately sensitive 
(gap, wupwise and lucas).  Furthermore, two benchmarks were 
miscategorized by our sensitivity prediction model (according to 
the real elasticity we observed, fma3d should be moderately 
sensitive, and lucas insensitive), which is also a realistic 
occurrence.  This time we had one core running at each of 2.0, 
2.33, 2.67 and 3.0GHz.  The results of this experiment are 
shown in Figure 6.  We see that the aggregate completion time 
has decreased by 2.7% when using heterogeneity-aware 
scheduling, which shows that even under realistic milder 
conditions than in the first experiment, there is still a good 
opportunity for optimization.   

 



4.3 Uniform workload 
Finally, we wanted to test whether our heterogeneity-aware 
scheduler causes the performance to degrade when there is little 
or no opportunity for optimization.  For this setup, we have 
again used the cores clocked at 2.0, 2.33, 2.67 and 3.0GHz.  We 
also used four different benchmarks that have similar elasticity 
(ranging from -0.796 to -0.877).  Two of them (wupwise, mgrid) 
are categorized as moderately sensitive, and the other (apsi, 
facerec) as highly sensitive.  Each benchmark was run in two 
instances at any given moment.  Our scheduler attempted to 
optimize core assignment by moving moderately sensitive jobs 
to slower cores, but the performance loss that occurred as a 
result was comparable to gains observed by highly sensitive 
benchmarks, resulting in a marginal net slowdown of 0.4% (see 
Figure 7).  This suggests that a heterogeneity-aware scheduler is 
unlikely to seriously hurt overall performance of a homogenous 
workload.  That said, assignment inversion problems may occur 
when a more sensitive job is classified as less sensitive than 
another. 

5. SUMMARY 
We presented a signature-based framework for scheduling on 
heterogeneous multicore systems.  As a preliminary evaluation 
of the architectural signature framework we derived signatures 
for prediction of sensitivity to changes in core frequency, and 
demonstrated that the signatures are good predictors.  We also 
demonstrated (via a user-level prototype) that a signature-based 
scheduling algorithm improves performance over a 
heterogeneity-agnostic scheduler, and we expect the 
performance benefit to grow as cores become more 
differentiated from one another, and as we add more core 
features into the model. 
Our plans for future work include (1) implementation and 
evaluation of a heterogeneity-aware scheduling algorithm in a 
real operating system, (2) comparing it to dynamic algorithms 
and evaluating whether our algorithm’s lack of ability to track 
changes is a serious drawback, (3) extending our signature-
based framework to distinguish between a larger set of 
heterogeneous cores’ features.  In addition, the framework is 
theoretically extendable to take into account more complicated 
scenarios such as multithreaded applications or applications that 

are I/O bounded (rather than memory bounded).  These 
extensions, however, are not trivial to make, and likely require a 
more powerful microarchitecture-indepenedent characterization 
apparatus.  Therefore, they are outside of our immediate plans. 
Other studies have concluded that heterogeneous multicore 
systems are able to achieve superior performance/energy ratio 
compared to similar homogeneous systems.  However, this 
superior performance can only be realized when cores and 
applications running on them are assigned to match each other’s 
properties.  Therefore, any benefit is lost unless the operating 
system is heterogeneity-aware.  This interdependence of the 
software and hardware means that hardware manufacturers have 
little incentive to create heterogeneous systems.  This is a 
chicken-and-egg problem.  By taking this opportunity to 
develop heterogeneity aware-designs before the hardware is 
available, we are able to facilitate and influence its development 
and adoption.  
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