
Scheduling on Heterogeneous Multicore Processors Using
Architectural Signatures

Daniel Shelepov

School of Computing Science
Simon Fraser University

Vancouver, Canada

dsa5@cs.sfu.ca

Alexandra Fedorova
School of Computing Science

Simon Fraser University
Vancouver, Canada

fedorova@cs.sfu.ca

ABSTRACT
Heterogeneous multicore architectures promise greater
energy/area efficiency than their homogeneous counterparts.
This efficiency can only be realized, however, if the operating
system assigns applications to appropriate cores based on their
architectural properties. While several such heterogeneity-
aware algorithms were proposed in the past, they were not
meant to scale to a large number of cores and assumed long-
lived threads due to reliance on continuous performance
monitoring of threads for core assignment purposes. We
propose a scheme that does not rely on dynamic performance
monitoring. Instead, the information needed to make an
appropriate core assignment decision is provided with the job
itself. This information is presented as an architectural
signature of the application, and is composed of certain
microarchitecture-independent characteristics. An architectural
signature is generated offline and can be embedded in the
application binary. In this paper we describe our preliminary
work on architectural signature framework. We present
architectural signatures that predict application’s sensitivity to
variations in core clock speed. We evaluate a scheduler
prototype that uses these signatures for scheduling on a
heterogeneous system composed of cores with various clock
frequencies.

Categories and Subject Descriptors
D.4 [Operating Systems]: Organization and Design, Process
Management

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Heterogeneous, Scheduling, DVFS, Architectural signatures,
Microarchitecture-independent, Sensitivity to changes

1. INTRODUCTION
Future multicore and many-core processors will consist of
heterogeneous cores that may expose a common ISA but differ
in features, size, performance and energy consumption [3,6,14].
A single processor will contain many small simple cores, and
several larger complex cores. Simple cores will be scalar, in-
order and might have a smaller cache and lower clock
frequency. Complex cores will be super-scalar, and may be
equipped with high-performance features such as out-of-order
instruction scheduling, aggressive pre-fetching or a vector unit.
Complex cores will be larger and consume significantly more
power. Heterogeneous architectures are motivated by their
potential to achieve a higher performance per watt than
comparable homogeneous systems [9,10], because each
application can run on a core that best suits its architectural
properties.
To realize this potential, however, the operating system must be
heterogeneity aware. That is, it must assign applications to run
on appropriate cores. Consider a workload consisting of a
scientific application characterized by high instruction level
parallelism (ILP), and a memory-bound job such as transaction
processing in a database. The scientific application will be
executing significantly faster on a complex core, whereas the
database application might show comparable performance on
both types of cores. In this scenario, assigning threads to cores
that are appropriate for them (the scientific application to a
complex core and the database application to a simple core) will
achieve significant power savings. Being able to make such
intelligent decisions at runtime is the goal of heterogeneity-
aware scheduling.
While heterogeneity-aware scheduling algorithms were
proposed in the past [4,7,9,10], they were targeted at small-scale
multicore systems and assumed long-lived threads. As we
explain in the next section, they relied on continuous
performance monitoring of threads to determine the optimal
assignment of threads to cores. As the number of cores per chip
increases [6], dynamic monitoring may become too time-
consuming and impractical.
We propose a new approach to scheduling on heterogeneous
multicore systems based on architectural signatures. An
architectural signature is a short summary of the application’s
architectural properties, such as its memory-boundedness,
available ILP, etc. The signature is generated off-line and
embedded in the application binary. The idea is that the

This research is supported by an NSERC USRA grant and by
Sun Microsystems.

operating system will determine the best thread-to-core
assignment simply by examining this signature, and without any
dynamic monitoring of applications’ performance.
In this study we begin exploring the signature approach to
scheduling. We describe how we generated architectural
signatures that predict application sensitivity to variations in
clock speed frequency. These signatures can be used by the
scheduler on a heterogeneous system where cores differ in their
clock frequency. The scheduler would assign insensitive
applications to low-frequency cores and sensitive applications to
high-frequency cores and thus maximize performance per watt.
We have built and evaluated a user-mode scheduler prototype
that determines appropriate cores for threads using signatures.
We found that architectural signatures are good predictors of
sensitivity to clock frequency and that the scheduler can
improve performance using them. In the future we plan to
extend our architectural signature framework to cover other
architectural parameters.
A potential drawback of the signature-based scheduling is that it
does not take into account dynamic phase behavior of the
application [12]. In our initial design, there is only one
signature associated with the application, while in reality the
application may contain many phases that have different
architectural properties and require different thread-to-core
mappings. Another limitation is that signatures are difficult to
adapt to varying input sets, which can sometimes drastically
change program performance. Potential benefits of this
approach, on the other hand, are (1) simpler implementation of
the scheduler, (2) greater scalability potential on many-core
systems, and (3) support for short-lived threads. It is the goal of
our research to investigate whether the simplicity and scalability
of the signature-based approach outweigh its drawbacks.
The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 presents the methodology for
generation of architectural signatures and describes how they
are used in the scheduler. Section 4 presents preliminary
evaluation of our algorithm via a user-level prototype on a
heterogeneous multicore system. Section 5 summarizes our
work and outlines the plans for future research.

2. RELATED WORK
The two most prominent heterogeneity-aware scheduling
algorithms were described by Becchi [4] and Kumar [10].
Becchi’s algorithm relied on continuous monitoring of
performance of each thread on each type of core to determine
the best thread-to-core assignment for the system. Kumar’s
algorithm used a similar approach as well as another technique,
where selected thread-to-core assignments were tried by the
operating system and then the best-performing assignment was
used thereafter.
While these algorithms demonstrated improved performance
over a heterogeneity-agnostic scheduler, they have several
drawbacks. When the number of different core types is large (as
may be the case on future many-core systems), monitoring of
individual threads or thread subsets may become infeasible.
The operating system will have to track too much information,
which may hurt performance. Furthermore, the amount of time
used for monitoring (before the optimal thread-to-core
assignment is determined) may become long, and so until the

monitoring is complete the system runs sub-optimally. Besides,
if threads are short-lived and determining the optimal core
assignment takes a long time, threads they may terminate before
the scheduler has had a chance to learn a good assignment.
There are several trade-offs to consider when comparing the
dynamic approaches used by Becchi and Kumar and our
signature-based approach. Dynamic approaches can adapt to
program phase changes (because they monitor performance
continuously) and may determine the optimal thread-to-core
assignment more efficiently, since they rely on real performance
measurements as opposed to modeling, which is inevitable with
a signature-based approach. On the other hand, dynamic
approaches are vulnerable to the drawbacks that we discussed
above. Our goal is to evaluate these tradeoffs and to develop a
better understanding of scheduling on heterogeneous multicore
systems.

3. METHODOLOGY
3.1 General Overview
A heterogeneous processor contains cores with different
capabilities. At the same time, the workload running on these
cores also might and often will be heterogeneous, meaning that
different applications will have different resource demands. A
scheduler managing tasks on such a heterogeneous system will
improve system performance if it is able to align the workload
with the cores in a way that will maximize the utilization of
resources on each core.
In essence, what the scheduler needs to know at runtime is how
each job’s performance changes depending on the availability of
architectural resources. The resources considered might be
cache size, clock frequency, issue width, a FPU, a vector unit, or
an intelligent branch predictor. One way to acquire this
information offline is to run the job on cores that differ along
those criteria and store the resulting performance data in a table-
or matrix-like form. This approach is unwieldy, because it
requires either many different cores to be available for testing,
or a simulator. In both cases, as the number of possible
permutations of different characteristics becomes large, this
method becomes infeasible due to cost or time constraints.
Another way is to let the programmer specify the architectural
signature of the job. This is unrealistic for most applications,
because it requires very deep understanding of program
behaviour, often at a level much lower than programmers are
comfortable with. A third strategy is to run a program, and
based on what it does figure out what resources it might benefit
from. This is the path we take.
A well-known way of tracing the behaviour of a program is
through binary instrumentation, which allows arbitrary code to
be executed during pre-defined points in program as it runs. In
our research we used Pin, a binary instrumentation framework
from Intel [11]. Pin is non-invasive, in that it does not require
any modifications of the target program for instrumentation
purposes. Besides providing many common binary
instrumentation tools, Pin allows custom toolkits to be built on
top of it, and one of such custom toolkits is Microarchitecture-
Independent Workload Characterization (MICA) by Hoste and
Eechhout [8]. MICA uses Pin to collect metrics such as opcode
(instruction) mix, memory access patterns, register access
patterns, the amount of inherent ILP and others. Although these

are specific to binaries for x86 architecture, they are
microarchitecture-independent, meaning that they do not imply
or rely on specific core characteristics. Thus, we need only one
system to generate all the data required for producing an
architectural signature for an application, and that signature will
be useful on any x86 system where that binary runs.
The binary instrumentation process itself is notoriously slow,
and we have seen run time increases on the order of tens of
thousand percent. Making a complete run of a program is likely
unacceptable as a means of generating an architectural stamp,
but it is possible that instrumenting over intelligently picked
intervals during the run can significantly cut down the time
required with little loss of accuracy. This problem, however, is
outside the scope of the paper.
The only remaining question is how to leverage
microarchitecture-independent job characteristics provided by
MICA to predict whether the job benefits from a larger cache,
an out-of-scalar core, etc. Each of such core features or
parameters requires its own separate prediction model. In this
paper, we study the architectural signature framework in the
context of varying clock speed (i.e. frequency). Our goal is to
generate architectural signatures that will help the scheduler
predict if an application’s performance is sensitive to the clock
frequency of the processor. We chose to study clock frequency,
because we can set up a real heterogeneous system using
dynamic voltage and frequency scaling (DVFS) feature on
general-purpose multicore machines. Studying other
architectural parameters is the subject of future work.

3.2 Measuring Clock Speed Sensitivity
In general, program performance does not scale linearly with
clock frequency of the underlying core. This is because besides
performing computational tasks, a process also makes memory
requests, which take a relatively long time and are somewhat
independent of the core’s speed. Since different programs
exhibit different memory access behaviour, their performance
(which in this paper we tie to completion time) scales with clock
frequency at different rates. This observation is key to
differentiating tasks according to their clock speed sensitivity.
Our first step is to define a metric for clock speed sensitivity.
Towards that end, we picked a set of 25 benchmarks from SPEC
CPU2000 suite1 and ran those individually using different

1 All SPEC CPU2000 benchmarks were utilized, except galgel,

which we could not get to run correctly on our test platform.

frequency settings on our DVFS-enabled machines (see Table 1
for specifications of these machines). DVFS presents an
especially convenient way to measure effects of clock speed
changes, because any change in completion time can be
attributed exclusively to a difference in core frequency.
As expected, different benchmarks exhibited different speedups
when running on a faster core. Figure 1 illustrates the increase
in completion time of some benchmarks when run on 1.6GHz as
opposed to 1.87GHz on machine 1. Benchmarks such as eon
and art react strongly to changes in frequency, while mcf and
equake do not. To put a number on this behaviour, we have
borrowed the arc elasticity formula from economics to define
clock speed elasticity of completion time, which will be used as
our clock speed sensitivity metric. Elasticity of a function is its
sensitivity to a change in a variable. Rigorously speaking, if T
is completion time and F is clock frequency, we have:

21

21

12

12
, *

TT
FF

FF
TTE FT +

+
−
−

=

which is calculated on some region [F1, F2]. In plain terms, we
can view elasticity as the ratio of a relative change in T over a
relative change in F.
As an example, let us say that vpr completes in 58.17 seconds
running on a core at 1.87GHz, and takes 65.33 seconds when
the frequency is set at 1.6GHz. The elasticity on [1.6, 1.87] is
then calculated as follows:

75.0
17.5833.65

6.187.1*
87.16.1

17.5833.65
−≈

+
+

−
−

=E

Also note that elasticity generally ranges from -∞ to +∞, with
negative values representing an inverse relationship that we
expect to see in our scenario (completion time decreases
following increases in clock speed). Higher magnitude indicates
higher sensitivity of performance to changes in clock speed, and
vice versa (elasticity of 0 would indicate that performance does
not at all depend on clock speed over the range specified). As a
base point, an elasticity of -1 means that a change of clock
speed by a certain factor will decrease the completion time by
the same factor.
Using this definition, we have gathered the elasticity data, a
sampling of which is available in Table 2.
Of interest are the results for machine 2, which has a
significantly smaller L2 cache than the other two machines. We

Table 1. Machines used for gathering elasticity data
CPUs Caches DVFS settings

used (GHz)

1 Intel Xeon E5320
(Clovertown), 4 cores

L1I 4x32K (8-way),
L1D 4x32K (8-way),
L2 2x4MB (16-way)

1.6, 1.87

2 Intel Pentium 4
(Northwood), 2 cores

L1D 2x8K (4-way),
L2 2x512K (8-way)

2.1, 2.8

3 Intel Xeon X5365
(Clovertown), 8 cores

L1I 8x32K (8-way),
L1D 8x32K (8-way),
L2 4x4MB (16-way)

2, 2.33, 2.67, 3

*All machines run Linux 2.6.xx (Redhat)

1

1.05

1.1

1.15

1.2

mcf

eq
ua

ke vp
r

ga
p

vo
rte

x
gc

c
pa

rse
r

mes
a

cra
fty tw

olf gz
ip art eo

n

re
la

vi
te

 c
om

pl
et

io
n

tim
e

Figure 1. Relative slowdown of selected benchmarks when
run on 1.6GHz compared to 1.87GHz

can see that a smaller cache causes elasticity values to converge.
This indicates that clock speed sensitivity is heavily dependent
on cache size, a microarchitecure-dependent variable.
Therefore, in our approach we will calculate several sensitivity
values for common cache configurations and have the OS select
the appropriate one at scheduling time. If we have a
heterogeneous system where the cores differ only in their
frequencies, the OS will pick the sensitivity value for the cache
size used on these cores. If, however, we use a heterogeneous
system where the cores also differ in their cache sizes, the OS
will first try to pick a core with an appropriate cache size for a
job to run on, and then optimize the clock speed. Otherwise any
clock-speed benefit might be nullified by a severely limiting
cache size.
More details on this scheme will be provided in the following
sections, but for now the goal is to construct a model for
predicting clock speed sensitivity for different cache sizes, using
microarchitecture-independent job characteristics gathered with
MICA.

3.3 Predicting Clock Speed Sensitivity
As we have mentioned in Section 3.2, memory access patterns
of a job can be used to explain its clock speed sensitivity. One
of the most easily interpreted memory access metrics is the
cache miss rate. Intuitively, the more misses there are in a
cache, the more time is the CPU stalled, and the less benefit
there is in having a higher core frequency. L2 miss rate can be
especially telling, due to ever-growing performance gap
between the CPU and main memory. This is why we chose L2
cache miss rate estimation as our means of calculating clock
speed elasticity.

Figure 2 shows how we derive elasticity values that are
presented to the OS scheduler. As shown, elasticity is computed
as the linear function of the L2 cache miss rates. The
microarchitecture-independent linear function is derived offline
using linear regression and L2 cache miss rates are also
estimated offline using the microarchitecture-independent
metrics collected with MICA. We now explain how we estimate
the L2 cache miss rates.

Estimating cache miss rates without directly simulating a
memory hierarchy is a challenging problem. Berg and
Hagersten suggest tracking reuse distances of memory
references to estimate miss rates [5]. We opt for a similar
approach with some modifications, necessitated by the fact that
reuse distances computed by MICA are defined somewhat
differently than those used by Berg and Hagersten2.

For any memory address we consider, let’s call the previous
access to that location the initial reference and the current
access to it the final reference. The reuse distance of the current
access is then the number of distinct memory locations touched
between the initial and the final references. A large reuse
distance indicates a high chance of a cache miss, because many
other cache blocks would have been requested and possibly
brought into the cache since the initial reference, and the chance
that the cache block we need is still resident in the cache is
decreased.

In MICA the reuse distance is calculated according to the
number of unique 64-byte blocks touched since the last
reference to the same block. MICA is able to categorize
memory accesses into 20 buckets according to their reuse
distance. There is one bucket for reuse distance of 0 (meaning
that the last block touched was the same block), one for cold
references (the block was touched for the first time since the
start of execution), one for distances larger than 2^17, and
seventeen buckets for distances between consecutive powers of

2 MICA calculates a reuse distance based on the number of

unique intervening references before the reuse of the same
location, while Berg and Hagersten count all intervening
references.

Table 2. Measured elasticity values of selected benchmarks
 machine 1,

[1.6, 1.87GHz]
machine 2,
[2.1, 2.8GHz]

machine 3,
(average)

mcf -0.486 -0.821 -0.512
equake -0.557 -0.808 -0.499
vpr -0.752 -0.776 -0.727
gap -0.818 -0.790 -0.858
vortex -0.896 -0.789 -0.895
gcc -0.917 -0.798 -0.937
parser -0.971 -0.797 -0.968
mesa -0.981 -0.799 -0.968
crafty -0.988 -0.814 -1.004
twolf -0.991 -0.780 -1.005
gzip -1.000 -0.774 -0.989
art -1.023 -0.785 -1.007
eon -1.074 -0.904 -1.000
*Values for machine 3 were calculated by averaging elasticity values
on regions [2, 2.33GHz], [2, 2.33GHz] and [2, 2.33GHz].

Figure 2. Dataflow diagram of our scheduling framework:

(1) L2 miss rates for common cache configurations are
estimated using reuse distances (2) For each cache

configuration, an elasticity value is estimated from L2 miss
rate (3) Elasticities are made available to the scheduler

(4) The scheduler places the program in a sensitivity
category based on elasticity

Reuse distances

and other µarch.-indep.
metrics gathered with Pin
and MICA

L2 miss rates

estimated from reuse
distances, 24 values

Elasticity values

24 values, one per unique
cache configuration

Linear elasticity model

Clock speed elasticity as a
function of L2 miss rate

Elasticity value

based on existing cache
configuration

Sensitivity category

Categories: highly
sensitive, moderately
sensitive, insensitive

OFFLINE PROFILING MODEL DERIVATION

OFFLINE ANALYSIS

SCHEDULING TIME

1

2

3

4

2 from 0 to 17. Each memory reference is reported in exactly
one bucket, so at the end of the run (or an interval), we are able
to see how many memory accesses fell into each bucket:

B∞ = # of cold references

B0 = # of accesses with reuse distance 0

B(131073, ∞) = # of accesses with reuse distance more than 217

B(1, 2), B(3, 4), B(5, 8),.. B(65537, 131072) – buckets for references
with reuse distances that fall into corresponding ranges

Our approach is then to estimate the number of misses based on
bucket values:

m(B) = # of misses generated by accesses from bucket B

References from B0 are unlikely to trigger any cache misses,
because a reuse distance of 0 implies that there was no
opportunity to evict the cache line. It can still be evicted by a
co-runner thread, in a context switch or by an overzealous
prefetcher, but we ignore these cases for the sake of simplicity.
Instead, we consider accesses from B0 to always hit in the cache.

Similarly, we consider references in B∞ to be compulsory cache
misses. Thus we have

m(B0) = 0

m(B∞) = B∞

The other 18 buckets are left to consider. We build on the
assumption that memory accesses that have similar reuse
distance should have similar chances of triggering a cache miss:

)(*)(BpBBm =)1(

where p(B) is the bucket-specific cache miss rate.

We don’t want to deal with ranges of reuse distances, so for the
sake of simplicity, we consider all references in a bucket B(x, y) to
have the same reuse distance, which we define as

3
4)(),(

xBr yx =)2(

For example, r(B(65537, 131072)) = 4 / 3 * 65537 = 87164.

As we consider the possible values of p(B), the problem of
different cache sizes comes into view. A memory read with a
certain reuse distance might likely to trigger a miss in a cache of
one size, but not to trigger it in a larger cache. After an
investigation, we were convinced that the size, as well as degree
of associativity of the L2 cache, had to be considered for further
analysis. Thus our model splits into several branches, each
assuming a common set associativity (we chose powers of two
from 4 to 32) and a common L2 cache size (powers of two from
512K to 16MB). Final sensitivities for all these variants (there
are 24 of them) are made available to the scheduler, so it can
pick the appropriate sensitivity value at scheduling time.

After we know the cache size and set associativity, we can make
estimations of p(B) values. Let’s consider a memory access
with reuse distance r and an S-way associative cache of N lines
with LRU replacement. The cache line we’re interested in has
S-1 neighbours in its set, and at the time of the initial reference,
it is the most recently used cache line of the set. Notice that if

there are requests to S or more unique locations that map into
this set, our cache line must be evicted as it will be the least
recently used by the Sth request.

The total number of sets in the cache is N / S. Assuming
uniform distribution of memory references across the address
space, the probability of a request being mapped into any
particular set is 1 / (N / S) = S / N. The probability that it maps
into any other set is similarly (N – S) / N. With this knowledge,
we can calculate the probability of exactly i requests out of r
falling into the same set:

iri

N
SN

N
S

i
r −

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
**)3(

By evaluating expressions (3) for all i’s from 0 to S-1, we can
find the probability of having fewer than S requests out of total r
mapped into any one set with this formula:

∑
−

=

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛1

0
**

S

i

iri

N
SN

N
S

i
r

)4(

The complement of that, 1 – (4) is the probability of there being
S or more requests in the set, or, in other words, the probability
of our cache line being evicted after r unique cache blocks are
requested. Using this fact, we can find p(B) for a given cache
configuration:

∑
−

=

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

1

0

)(

**
)(

1)(
S

i

iBri

N
SN

N
S

i
Br

Bp)5(

Now it is easy to find m(B) for all buckets, using equations (1),
(2) and (5). Adding together all twenty m(B) values allows us to
estimate the total number of misses occurring.

We have also found it beneficial to scale the resulting sum by a
certain factor L, which is defined as a function of the cache size
(N) and the total working set (W) of the program:

⎪⎩

⎪
⎨
⎧

≤

−
>

=
0:

:

NW
W

NWNW
L)6(

The total working set is simply how much memory the
application ever touches during runtime. It this case, W is the
number of unique 64-byte blocks touched by the application,
and is available as one of MICA metrics.

Scaling by L ensures that the miss rate is going to further
decrease as the working set size decreases (and the miss rate
will drop to zero whenever the whole working set fits
completely into the cache).

By dividing the result by the total number of retired instructions,
we arrive at the final L2 miss rate value:

nsinstructio retiredof#
m(B)*L

 rate miss ∑=

Although this estimation assumes an LRU cache, caches with
random replacement policies are known to have miss rates on
average within a small factor of comparable LRU cache miss
rates [13].

The metric used is fairly naïve in that it does not take into
account some of the more complicated cache behaviour, such as
prefetching. In fact, after collecting miss rate data explicitly on
one of our test machines, we have found that in several cases the
actual miss rates observed are significantly lower than
estimated. Nevertheless, the metric does correlate quite well
with observed clock speed elasticity, which is its primary
purpose (see Figure 3).

We use linear regression to construct a function describing the
relationship between the L2 cache miss rate and elasticity.
Constructed once, this function can be used without any further
direct elasticity measurements. Instead we use it to estimate
elasticity for particular cache parameters. Figure 4 compares
estimated elasticities with those that were actually observed for
a 16-way 4MB cache. The average absolute error in estimated
elasticity values was about 0.075. In general, the metric does a
very good job at separating highly elastic applications from
inelastic ones.

We are still investigating whether a single miss rate vs.
elasticity function could be used across all caches, or if it needs
to be constructed for each cache configuration separately.

3.4 Using Architectural Signatures in the
Scheduler
As shown in Figure 2, each application has embedded in its
binary 24 elasticity values, one for each cache configuration
with sizes ranging from 512KB to 16MB and associativities
ranging from 4 to 32. To pick the right value, the scheduler has
to know the cache size and set associativity before selecting the
correct value. This information can be obtained by the
scheduler by reading a model-specific register (MSR) on the
underlying processing cores.

The scheduler places applications into three categories
according to their elasticities: highly sensitive, moderately
sensitive and insensitive. Jobs that have elasticity smaller than

-0.9 are considered highly sensitive, jobs with elasticity larger
than -0.75 are considered insensitive, and the rest are considered
moderately sensitive. This ternary scheme is simple and retains
enough information to aid scheduling. Although the boundaries
between the categories are determined mostly arbitrarily at this
point, this division could be made more meaningful given
statistical information on distribution of elasticities across
applications. Alternatively, the scheduler could determine
appropriate placement at scheduling time. In any event, for the
purposes of testing we selected the scheme described, and
resulting categories for our benchmarks are summarized in
Table 3. While in this paper we consider only clock frequency
elasticity, in the future we envision a framework where
application signatures are used to estimate the performance
effect of several core features. Besides clock frequency, these
might be cache size, issue width, the number of present FPUs,
and others. Some of these parameters are actually more critical
to application performance than clock speed. In fact, the

Table 3. Categories of clock speed sensitivities for benchmarks
assuming a 4MB 16-way associative cache (high – highly

sensitive, medium – moderately sensitive, low – insensitive).
For reference, actual sensitivity categories are noted in

parentheses for benchmarks where predicted categories were
incorrect.

ammp high lucas medium (low)
applu low mcf low
apsi high (medium) mesa high
art high mgrid medium

bzip2 high parser high
crafty high perlbmk high
eon high sixtrack high

equake low swim low
facerec high (medium) twolf high
fma3d low (medium) vortex high (medium)
gap medium vpr medium (low)
gcc high wupwise medium
gzip high

-1.1

-0.9

-0.7

-0.5

-0.3

-0.1

-1.1 -0.9 -0.7 -0.5 -0.3 -0.1

real elasticity

pr
ed

ic
te

d
el

as
tic

ity

sw im
equake

mcf

lucas
applu

vpr

fma3d

w upw ise

apsi

gap

mgrid

gcc

Figure 4. Predicted elasticity vs. measured elasticity,
assuming a 4MB 16-way associative cache

-1.1

-0.9

-0.7

-0.5

-0.3

-0.1

0 5 10 15 20

L2 miss rate, per 1000 inst.

cl
oc

k
fr

eq
ue

nc
y

el
as

tic
ity

equakemcf

vpr fma3d

gcc

apsi w upw ise
gap mgrid

applu

lucas

sw im

Figure 3. Estimated L2 cache miss rate vs. measured elasticity

(assuming a 4MB 16-way associative cache)

evidence is strong that cache size is generally a more important
factor than frequency. Therefore, it is reasonable to expect the
scheduler to first optimize core assignment by cache size and
only then by clock speed. This allows us to assume that the
cache size and set-associativity are known before clock speed
optimizing scheduling stage is entered.

We hope to present results of this more general scheduling
infrastructure in future work; meanwhile, in this paper we show
the evaluation results of the signature-based scheme that is
restricted to clock frequency elasticity.

4. EVALUATION
In this section we explore the benefits of heterogeneity-aware
scheduling based on clock speed sensitivity. The experiments
we performed compare the default Linux scheduler with a
heterogeneity-aware user-mode scheduler prototype that we
have developed.

Our heterogeneous machine (machine 3 from Table 1) is an 8-
core Intel Quad system. There are four chips, each housing a
pair of cores and a shared L2 cache. We have used only one
core per chip to prevent cache interference effects. On these
four cores we ran 8 SPEC CPU2000 benchmarks. We provide
heterogeneity by having the cores run at different frequencies,
as allowed by DVFS settings (we report on specific frequency
settings further in this section). Benchmarks are run
continuously, that is, after any benchmark terminates, it is
immediately restarted. We compare average completion times
of benchmarks on a default Linux scheduler (version 2.6.18) vs.
our prototype.

The default scheduler utilizes natural affinity, meaning that a
thread is migrated to a different core generally only if there is a
workload imbalance. Other than that, the scheduler is free to
assign any thread to any core out of the four that we had enabled
for the experiment.

Our prototype works by statically binding benchmarks to cores
while maintaining a set of invariants:

a) All four cores have equal loads at all times.

b) Benchmarks marked moderately sensitive always run on
cores faster than or just as fast as cores running insensitive
benchmarks.

c) Benchmarks marked moderately sensitive always run on
cores slower than or just as fast as cores running highly
sensitive benchmarks.

d) Every benchmark was bound to as many cores as possible
without compromising invariants a-c.

A binding scheme honoring these invariants was determined in
advance and enforced using Linux taskset utility. Benchmarks
were free to migrate between the cores to which they were
bound as determined by the default scheduler.

The setup allows benchmarks to run under moderately realistic
conditions, exposed to adverse effects such as bus contention,
which are not taken into account by the sensitivity prediction
framework. Although benchmarks did exhibit clock sensitivity
patterns that we expected, resource-sharing definitely caused
perceivable noise. For example, in one of our tests (not reported

below), we saw swim showing higher clock speed sensitivity
than would be suggested by its extremely low elasticity (-0.15).
Instead, swim behaved comparably to mcf, which has an
elasticity of about -0.50. Deconstructing and predicting these
effects might be an interesting area for future investigation, but
we didn’t explore them any further in this round of experiments.

We evaluated our scheduler using three workloads: a highly
heterogeneous workload, a balanced workload and a uniform
workload. We expect to see the most performance gain with the
heterogeneous workload and the least gain with the uniform
workload.

4.1 Highly heterogeneous workload
In this experiment, we wished to explore the limits on
performance gains achievable with the heterogeneity-aware
scheduler on our heterogeneous (in terms of clock speed)
system. To this end, we have chosen two of the most sensitive
benchmarks (eon and crafty) and two that are very insensitive
(mcf and equake). We ran two copies of each simultaneously
for an average load of two threads per core. On the system side,
we provided two cores running at 2GHz and two cores running
at 3GHz. We ran the load for at least 2000 seconds on each
scheduler to get the average completion times shown in Figure
5. Under the heterogeneity-aware scheduler, eon has shown a
19.4% decrease in completion time, crafty has shown a 19.9%
decrease, mcf has an increase of 15.6% and equake – an increase
of 12.3%. Aggregate completion time has decreased by 4.3%.
It was calculated by taking a geometric average of benchmark
completion times normalized to their completion times under
the default scheduler.

Had the range of allowed DVFS settings been more significant,
the average reduction in completion time would be more
dramatic. We estimate that with a pairing 1.5 – 3GHz, the
aggregate completion time decrease could almost double, and
with pairing 1.0 – 3GHz, the decrease could more than triple the
decrease that we observed in our experiment. Thus clock speed
sensitivity aware scheduling would be more important if the
cores significantly differed in frequency. Such larger frequency
ranges may be found in future many-core systems [6].

4.2 Typical workload
In this experiment, we wanted to test the scheduler under a more
realistic balanced workload. We picked 8 different
benchmarks: three insensitive (mcf, fma3d and equake), two
highly sensitive (gcc and eon), and three moderately sensitive
(gap, wupwise and lucas). Furthermore, two benchmarks were
miscategorized by our sensitivity prediction model (according to
the real elasticity we observed, fma3d should be moderately
sensitive, and lucas insensitive), which is also a realistic
occurrence. This time we had one core running at each of 2.0,
2.33, 2.67 and 3.0GHz. The results of this experiment are
shown in Figure 6. We see that the aggregate completion time
has decreased by 2.7% when using heterogeneity-aware
scheduling, which shows that even under realistic milder
conditions than in the first experiment, there is still a good
opportunity for optimization.

4.3 Uniform workload
Finally, we wanted to test whether our heterogeneity-aware
scheduler causes the performance to degrade when there is little
or no opportunity for optimization. For this setup, we have
again used the cores clocked at 2.0, 2.33, 2.67 and 3.0GHz. We
also used four different benchmarks that have similar elasticity
(ranging from -0.796 to -0.877). Two of them (wupwise, mgrid)
are categorized as moderately sensitive, and the other (apsi,
facerec) as highly sensitive. Each benchmark was run in two
instances at any given moment. Our scheduler attempted to
optimize core assignment by moving moderately sensitive jobs
to slower cores, but the performance loss that occurred as a
result was comparable to gains observed by highly sensitive
benchmarks, resulting in a marginal net slowdown of 0.4% (see
Figure 7). This suggests that a heterogeneity-aware scheduler is
unlikely to seriously hurt overall performance of a homogenous
workload. That said, assignment inversion problems may occur
when a more sensitive job is classified as less sensitive than
another.

5. SUMMARY
We presented a signature-based framework for scheduling on
heterogeneous multicore systems. As a preliminary evaluation
of the architectural signature framework we derived signatures
for prediction of sensitivity to changes in core frequency, and
demonstrated that the signatures are good predictors. We also
demonstrated (via a user-level prototype) that a signature-based
scheduling algorithm improves performance over a
heterogeneity-agnostic scheduler, and we expect the
performance benefit to grow as cores become more
differentiated from one another, and as we add more core
features into the model.
Our plans for future work include (1) implementation and
evaluation of a heterogeneity-aware scheduling algorithm in a
real operating system, (2) comparing it to dynamic algorithms
and evaluating whether our algorithm’s lack of ability to track
changes is a serious drawback, (3) extending our signature-
based framework to distinguish between a larger set of
heterogeneous cores’ features. In addition, the framework is
theoretically extendable to take into account more complicated
scenarios such as multithreaded applications or applications that

are I/O bounded (rather than memory bounded). These
extensions, however, are not trivial to make, and likely require a
more powerful microarchitecture-indepenedent characterization
apparatus. Therefore, they are outside of our immediate plans.
Other studies have concluded that heterogeneous multicore
systems are able to achieve superior performance/energy ratio
compared to similar homogeneous systems. However, this
superior performance can only be realized when cores and
applications running on them are assigned to match each other’s
properties. Therefore, any benefit is lost unless the operating
system is heterogeneity-aware. This interdependence of the
software and hardware means that hardware manufacturers have
little incentive to create heterogeneous systems. This is a
chicken-and-egg problem. By taking this opportunity to
develop heterogeneity aware-designs before the hardware is
available, we are able to facilitate and influence its development
and adoption.

6. REFERENCES
[1] Intel® 64 and IA-32 Architectures Optimization

Reference Manual. Intel Corporation, 2007

[2] Intel® 64 and IA-32 Architectures Software Developer's
Manual. Intel Corporation, 2007

[3] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, and P.
Husbands. The Landscape of Parallel Computing
Research: A View From Berkeley. UC Berkeley Technical
Report UCB/EECS-2006-183, 2006

[4] M. Becchi and P. Crowley. Dynamic Thread Assignment
on Heterogeneous Multiprocessor Architectures. In
Proceedings of the Conference on Computing Frontiers,
2006

[5] E. Berg and E. Hagersten. StatCache: A probabilistic
approach to efficient and accurate data locality analysis.
In Proceedings of International Symposium on
Performance Analysis of Systems And Software, 2004

[6] S. Borkar. Thousand Core Chips—A Technology
Perspective. In Proceedings of the DAC, 2007

[7] Alexandra Fedorova, D. Vengerov, and Daniel Doucette.
Operating System Scheduling On Heterogeneous

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

gc
c

ga
p

eo
n

fm
a3

d

m
cf

eq
ua

ke

w
up

w
is

e

lu
ca

s

ge
om

et
ric

 m
ea

n

re
la

tiv
e

ch
an

ge
 in

 c
om

pl
et

io
n

tim
e

Figure 6. Heterogeneity-aware scheduler

performance compared to default
scheduler under a balanced workload

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

w upw ise mgrid apsi facerec geometric
mean

re
la

tiv
e

ch
an

ge
 in

 c
om

pl
et

io
n

tim
e

Figure 7. Heterogeneity-aware
scheduler performance compared to

default scheduler under a homogeneous
workload

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

eon crafty mcf equake geometric
mean

re
la

tiv
e

ch
an

ge
 in

 c
om

pl
et

io
n

tim
e

Figure 5. Heterogeneity-aware scheduler

performance compared to default
scheduler under a very heterogeneous

workload

Multicore Systems. In Proceedings of the the PACT'07
Workshop on Operating System Support for
Heterogeneous Multicore Architectures, 2007

[8] K. Hoste and L. Eechhout. Microarchitecture-Independent
Workload Characterization. IEEE Micro Hot Tutorials,
27(3):63-72, 2007

[9] R. Kumar, K. Farkas, N. Jouppi, R. Parthasarathy, and
Dean M. Tullsen. Single-ISA Heterogeneous Multi-Core
Architectures: The Potential for Processor Power
Reduction. In Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, 2003

[10] R. Kumar, Dean M. Tullsen, Parthasarathy Ranganathan,
N. Jouppi, and K. Farkas. Single-ISA Heterogeneous
Multicore Architectures for Multithreaded Workload
Performance. In Proceedings of the 31st Annual
International Symposium on Computer Architecture, 2004

[11] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace, V. Reddy, and K. Hazelwood. Pin:

Building Customized Program Analysis Tools with
Dynamic Instrumentation. In Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language
Design and Implementation, 2005

[12] Timothy Sherwood, Erez Perelman, Greg Hamerly, and
Brad Calder. Automatically Characterizing Large Scale
Program Behavior. In Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2002

[13] Alan Jay Smith. Cache memories. ACM Computing
Surveys, 14(3):473–530, September 1982

[14] Burton Smith. Many-Core Operating Systems. In
Proceedings of the Workshop on the Interaction between
Operating Systems and Computer Architecture
(WIOSCA), in conjunction with ISCA-34, Keynote Speech,
2007

