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ABSTRACT

Program comprehension is a necessary step for performing many
software engineering tasks. Dynamic analysis is effective in pro-
ducing execution traces that assist comprehension. Traces are rich
sources of information regarding the behaviour of a program. How-
ever, it is challenging to gain insight from traces due to their over-
whelming amount of data and complexity. We propose a generic
technique for facilitating comprehension by inferring recurring
execution motifs. Inspired by bioinformatics, motifs are patterns
in traces that are flexible to small changes in execution, and are
captured in a hierarchical model. The hierarchical nature of the
model provides an overview of the behaviour at a high-level, while
preserving the execution details and intermediate levels in a struc-
tured manner. We design a visualization that allows developers to
observe and interact with the model. We implement our approach
in an open-source tool, called Sabalan, and evaluate it through a
user experiment. The results show that using Sabalan improves
developers’ accuracy in performing comprehension tasks by 54%.
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1 INTRODUCTION

Program comprehension is an essential first step for many software
engineering tasks. Developers spend a considerable amount of
time understanding code. About 50% of maintenance effort is spent
on comprehension alone [16]. Unfortunately, code understanding
is challenging. To understand code, developers typically start by
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searching for clues in the code and the environment. Then they go
back and forth on the incoming and outgoing dependencies to relate
pieces of foraged information. Throughout the process, they collect

information they find relevant for understanding the code on an
“as-needed” basis [42]. However, developers often fail in searching
and relating information, and lose track of relevant information
when using such ad-hoc strategies [70]. Further, developers form
mental models of code, that are often inaccurate [60]. Thus, there
is a need for systematic and automated techniques for program
comprehension [46].

Dynamic analysis, which collects and utilizes data (traces) from
program execution [20], is a popular technique for program com-
prehension. However, due to the amount of information obtained
during the execution, the traces tend to become complex and over-
whelming, and thus difficult to understand [17, 80]. Existing tech-
niques target this problem, e.g., by summarizing traces [32], struc-
turing and visualizing collected data [2, 3, 29], or inferring system
specifications [61]. However, the first technique loses some of the
data that may still be valuable, and the rest become overwhelm-
ing for developers and are not flexible to small variations of data.
The problem can also be approached by finding patterns in the
execution. However, prior work in the area has predominantly
focused on generic and predefined design patterns, low-level archi-
tectural relations between program artifacts, or visualizations of all
details of execution [3, 13, 35, 43]. While useful, these approaches
do not capture the behavioural patterns that are neither defined nor
known prior to analysis, but form and recur (with small variations)
throughout the execution of a program. Even in more traditional
programming languages, patterns in execution do not repeat ex-
actly in the same manner or same sequence. Further, presence of
programming languages features such as dynamism, asynchrony
and non-determinism in the execution makes the analysis more
problematic and burdensome, and renders conventional techniques
ineffective. Hence, program comprehension through dynamic anal-
ysis still remains challenging [20].

In this paper, we propose a novel technique for program com-
prehension by inferring a model of execution motifs. Motifs are
abstract and flexible recurring patterns in program execution that
serve a specific purpose in the functionality of the program. The
term is inspired by sequence motifs, which are recurring patterns in
DNA sequences that have a biological function [24]. Our approach
discovers motifs from traces containing function executions and
events. Our proposed algorithm compares a trace obtained from an
interaction session against a database of previously-collected traces.
It iteratively examines segments of traces for detecting sequences
of function executions that may recur in execution. It is tolerant of
small variations in different manifestations of each motif, allowing
abstraction in inferred motifs. The algorithm discovers hierarchies
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Figure 1: I: A sample registration form. II: A) Sample execu-

tion trace, and B) hierarchy of inferred motifs. III: Dynamic

call graph of example

between motifs as they emerge from details of execution. The hier-
archical structure of inferred motifs reveals how higher-level key
points of execution are formed. It allows users to have an overview
of the trace, while still having access to all execution details as well
as all intermediate levels.

The main contributions of our work are as follows:
• We propose an automated approach for inferring a model
of program behaviour, which encompasses hierarchies of
abstract recurring motifs extracted from execution traces.
Our approach is inspired by techniques from bioinformatics,
where similar challenges arise in investigating similarities
in large sequences of DNA. The motifs facilitate program
comprehension by highlighting the main characteristics of
behaviour, and abstracting the details and variations of exe-
cution.
• We design and build a visualization technique for presenting
the motifs to developers, to provide assistance with program
comprehension. Our method is complementary to existing
tools and techniques, and is designed to be utilized alongside
existing programming environments.
• We implement our approach in a tool called Sabalan that
supports JavaScript-based web applications. Our tool is non
intrusive for generating traces, and infers models of recur-
ring motifs from execution trace in an automated manner.
• We evaluate our approach through a controlled experiment
conducted with 14 participants, on a set of real-world pro-
gram comprehension tasks. The results show that using Sa-
balan helps developers perform program comprehension
tasks 54% more accurately than other tools.

2 CHALLENGES AND MOTIVATION

To assist the process of searching, relating and collecting information,
many techniques collect execution traces, analyze them, and/or vi-
sualize the results for the developers. Despite providing the grounds
for precise analyses, dynamic traces become very large and cause
information overload. Further, they become very complex due to
dynamism, asynchrony and non-determinism in program execu-
tion. These challenges render large traces ineffective in assisting
program understanding.

1 <form>
2 Email: <input type="email" id="email">
3 Address: <input type="text" class="addr">
4 Occupation: <div class="dropdown" id="occupation">
5 <button class="dropbtn">
6 Choose one</button >
7 <div class="dropdown -content">
8 <a href="#">Academic </a>
9 <a href="#">Industry </a>
10 </div>
11 </div>
12 <input type="submit" value="submit">Submit </input >
13 </form>

Figure 2: Initial DOM state of the running example.

1 $("#email").addEventListener("change", validateEmail , false);
2 $(".addr").click(checkAddress);
3 $(".dropdown -content").addEventListener("change", occupation , ←↩

false);
4 function validateEmail () {
5 // do stuff
6 }
7 function checkAddress () {
8 // do more stuff
9 }

Figure 3: [Partial] JavaScript code of the running example.

In this section, we use a simple example to illustrate these chal-
lenges (Figures 1–3). We selected JavaScript for the examples since
it is the lingua franca of web development. It has been recently
voted as the most popular programming language on StackOver-
flow [75], and is the most used language on GitHub [45]. JavaScript
applications are highly dynamic, asynchronous and event driven,
and heavily interact with the Document Object Model (DOM) and
the server code [1]. These features can help demonstrate trace com-
plexity within small code segments. While our approach is general,
we use JavaScript in this paper to demonstrate it.

Overload by Information in Large Traces. The amount of in-
formation a trace carries matters due to the cognitive load that
understanding the trace imposes on developers [19], e.g., a study
found that one GB of trace data was generated for every two sec-
onds of executed C/C++ code [68]. For modern applications, which
are often distributed among many nodes with many components
involved, the traces become incomprehensible for developers very
quickly. Some techniques try to address the problem by reducing
the trace during/after its collection [12, 32, 68] by focusing on more
important entities, or filtering the details of the executions. These
techniques have been able to make traces more useful by decreasing
the information contained in the traces [37]. However, even with a
technique that creates a smaller trace, the trace is still not neces-
sarily understandable for developers, as some of the data might be
lost or missed by developers.

Complex and Hidden Dependencies. Revealing abstract and
higher-level patterns that highlight the key points of a program’s
behaviour can facilitate comprehension. The focus of the developer
can be guided through a hierarchy of recurring patterns of execu-
tion, while all collected information are still preserved for further
inquiry. However, extracting such patterns (motifs) is challenging
due to the dynamism, asynchrony and non-determinism in program
execution, expecially in JavaScript applications.
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First, there are many complex and hidden dependencies between
entities in the system, which can affect the execution. Understand-
ing the impact of a user action or asynchronous communication
with the server are examples of relations that are difficult, if not
impossible, to capture from merely analyzing the code or the call
graph. They act as media for connecting segments of execution
together, that otherwise would not be related in the code itself.
Further, for a part of behaviour to be distinguished as a motif, it
should recur during the execution. Different executions of what is
conceptually the same motif, may vary in details and thus may not
converge to reveal the same motif. The alterations are intensified
when programs have user interfaces, are distributed, or involve gen-
eral dynamism and asynchrony. However, such variations should
not prevent the analysis from recognizing the high-level blueprint
of the behavioural motif they all manifest. An analysis that is overly
dependent on execution details may not allow higher-level motifs
to reveal themselves.

Example. Consider the example shown in Figure 1, showing a
part of a form required for registering a user. Specific events on the
input fields of the form have handlers that validate the input before
the form can be submitted. verifyEmail() and checkAddress()
(lines 1–2 of Figure 3) are handlers for email and address fields of
part (A) of the form (lines 2–3 of Figure 2). The two function are
always executed together in a successful registration scenario, and
are a consistent part of the motif representing that scenario, due
to their placement in the DOM. However, this relation cannot be
inferred from the code (Figure 3) or the call graph (Figure 1.III).

Moreover, a successful submission requires proper submission of
all the fields. However, the form can change in section (B) of Figure 1
based on the input of occupation (lines 4–11 of Figure 2). If the user
chooses Student, a drop-down menu appears and the appearance,
content, and functionality of the form changes based on user’s input.
However, the conceptual purpose of submitting the form, and hence
the motif, remain the same. Should an analysis be too dependent
on exact execution details, these two executions will be considered
different. However, a more representative analysis should recognize
that regardless of occupation of the user, the essence of the motif is
the same and it should support both options. There is often neither
prior knowledge nor templates of the application-specific motifs.
Hence, a useful comprehensionmethod should accomodate a degree
of flexibility in inferring motifs, to allow abstract motifs to form
independently from unimportant contextual details.

3 OVERVIEW OF THE METHODOLOGY

For execution traces, such as the one depicted in Figure 1.II.A, our
goal is to infer a hierarchy of its recurring motifs, by utilizing the
knowledge of previous executions of the application. The model of
extracted motifs assists comprehension of the program behaviour
by facilitating the cycle of searching, relating, and collecting infor-
mation. Having our proposed approach, developers are able to gain
an overall understanding of the highlights of execution, manifested
as motifs, at a glance. Further, they would have the means to un-
derstand the details of such motifs, their hierarchies, and relations
upon inquiry (Figure 1.II.B). Our approach takes advantage of pre-
cision of dynamic analysis, but prevents developers from being
trapped and overwhelmed by the execution details.

Our proposed approach first instruments and intercepts the ap-
plication on the fly, to obtain traces. Having a knowledge-base
of previously collected traces and a query trace, our algorithm
then extracts motifs of different lengths within traces, and infers
hierarchies and relations of motifs. Our algorithm is inspired by
bioinformatics algorithms for aligning biological sequences. Finally,
our approach creates a behavioural model from the motifs and their
relations, which we visualize for developers.

Execution Traces. To obtain the traces required for the algo-
rithm,we instrument the applications and collect dynamic execution
information automatically. Our instrumentation allows our tech-
nique to intercept all function executions and collect their context-
sensitive information. It also intercepts all events that can occur
during the execution. Their added knowledge can assist the algo-
rithm in inferring conclusions about motifs and their causal and
temporal relations with (a)synchronous events. Next, our approach
eliminates low-level details included in the raw trace, such as aux-
iliary events, low-level and library method calls, and framework-
specific details. The pruned trace is then used as the input to the
algorithm. Note that our method is non intrusive, and preserves
the original behaviour of the application under investigation.

4 ALGORITHM FOR INFERRING MOTIFS

In this section, we propose our algorithm for detecting motifs in
order to create a higher-level model of behaviour. We define motifs
as abstract and hierarchical sequences of function executions that
recur throughout the lifetime of an application. While each motif
eventually supports concrete sequences of function executions, it is
by nature a composite element, and can represent more complicated
structures. We define a motif as an ordered set of two or more
members (m0 tomi ), which include [sub-]motifs, abstract entities,
and context-sensitive function executions. The confidence of amotif
in each of its members is representative of the manner that member
is observed within different executions of the motif, and is shown
as c0 to ci for all motif’s members, respectively.

M = {⟨m0, c0⟩ . . . ⟨mi , ci ⟩|
∞
i=1} ,

mi ::= function execution
| sub-motif
| abstract entity

Our approach draws the attention of developers to the main
observed motifs, presumed to represent highlights of behaviour,
preventing their view to be obstructed by low-level details. The
underlying model still preserves details that can be demanded by
users as necessary.

4.1 Inspiration from Analyzing Biological

Sequences

In designing the algorithm, we were inspired by bioinformatics,
where there is a constant need to explore, compare, and analyze
large data sequences. Most relevant to our approach are sequence
alignment algorithms, which find similarities in sequences of DNA,
RNA, and protein by arranging and comparing them [31]. We begin
our core algorithm by using a heuristic for finding exact matches
between trace sequences. For comparison of the trace sequences,
we adapt the idea of BLAST (Basic Local Alignment Search Tool)
[4], a local sequence alignment algorithm which we modify to fit the
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domain of execution traces. We then expand the matches by maxi-
mizing similarities in their neighbouring entities in the traces. This
phase is accomplished using a dynamic programming algorithm in
order to allow more flexible and more abstract motifs. Throughout
this process, our method infers existing motifs and reveals their
relations and hierarchies. In this section, we use Algorithms 1 – 2
and Figures 4 – 5 to explain our algorithm. Our algorithm takes
the application (app) and its knowledge-base (ΣΣdb) as input and
returns the extracted motifs as output. Please note that we have
eliminated and/or merged many details for the sake of brevity. The
details can be found in the repository of our open-source tool [71].

4.2 Forming a Knowledge Base

Our algorithm requires a knowledge base of multiple previous
executions, i.e., a set of traces, named database (DB) traces (ΣΣdb),
which can initially be collected by executing the test suite, crawling,
or exploratory testing and exercising the application multiple times.
During each interaction session, our approach collects a trace, called
the query trace (Σq), which will be analyzed and compared against
all DB traces for finding its motifs. Each query trace is itself added
to the DB traces after the algorithm is finished. This part is depicted
in lines 2–4 of Algorithm 1. Parts A and B of Figure 4 display sample
DB traces and query trace of the running example (Figure 3).

4.3 Finding Exact Matches

Next, the algorithm finds all the exact matches of length k between
the query trace and the DB traces. We start by matches of length
2 (function pairs). We then increment the length of exact matches
iteratively and repeat the search at each iteration, until we have
found all exact matches. Two sets of exact matches of length 2
and 3 are shown in Figure 4, between 2 DB traces (part A) and
the query trace (part B). Lines 7–8 of Algorithm 1 iterate over the
query trace for finding matches of length k , and increment k at
each iteration. Lines 9–10 show that subsequences of length k are
extracted from the query trace at each iteration, and are compared
against all k-length subsequences of all DB traces to find matches.

4.4 Allowing Abstraction in Motifs

In the next step, we expand each match to progress towards finding
flexible and abstract motifs, that are tolerant of small alterations.
This technique decreases dependency on specific execution details,

Algorithm 1 Finding exact matches and expanding them
1: procedure ExtractPatterns(app , ΣΣdb ) ▷ app : application under analysis, ΣΣdb :

algorithm knowledge base (DB traces)
2: modifiedApp← instrument(app)
3: rawTrace← intercept(modifiedApp)
4: Σq ← prune(rawTrace)
5: k ← 2
6: motifs← ϕ
7: for i← k; i ≤ Σq .length; i ++ do

8: for j← 0; j ≤ Σq .length - k; j ++ do

9: subQ ← extractSubTrace(k, Σq, i, j )
10: matches← exactDbMatches(ΣΣdb , i, subQ)
11: for m← 0; matches.length; m ++ do

12: for n← 0; n < matches[m].length; n ++ do

13: dir← initialExpansionDirection()
14: ΣI ← 

qIstar t qIend
dbIstar t dbIend


15: if expandable(Σq , ΣΣdb[m]), ΣI then
16: subDb ←matches[m][n]
17: expandedQ← Σq .expand(subq , ΣIq , dir)
18: expandedDb← ΣΣdb[m].expand(subdb , ΣIdb , dir)
19: dir← dirExpansion(toggle: true, ΣΣdb[m], Σq , ΣI )
20: k.increment()
21: motif← compare(expandedQ, expandedDb, k)
22: matches.push(motif, k)
23: motifs.add(motif)
24: ΣI ← adjustExpansionIndices(dir)
25: end if

26: end for

27: end for

28: end for

29: end for

return motifs
30: end procedure

provides a higher-level overview of the semantics of the application,
and permits flexible motifs of variable length that may include gaps.

At this stage, our algorithm iteratively performs the following
steps. First, it selects two matches from existing matches, which
were determined as the result of previous step (Figure 4). Then,
it iteratively expands the query and DB matches from both direc-
tions, while gradually incrementing the length of the motif under
investigation (Lines 11–27 of Algorithm 1). Figure 4 also shows an
expanded match of two [partially] different sequences, for measur-
ing their similarities (Figure 4. A). This phase continues until the
accumulated penalty of gaps interrupts expansion of the motif.

Next, the algorithm finds a [sub-]sequence of those matches that
have the maximum similarity. At this step, we adapt a dynamic
programming algorithm called Smith-Waterman for finding patterns
in two molecular sequences [74]. This algorithm quantifies the
sequence alignment process by assigning scores for matches and
mismatches, and penalties for gaps. Aligned sequences are then
found by searching for the highest scores in scoring matrices. To
adapt this algorithm to our domain and compare similarities of
two traces, we propose a similarity matrix that determines the
similarity of two members in traces. The similarity of the traces are
determined by a combination of similarities of all their members,
based on a dynamic programming heuristic.

Similarity Matrix. We propose a similarity measure for quanti-
fying the similarities between function executions in traces. Our
comparison is based on two metrics, function names and parame-
ters. We devise three scores for comparison: strong match, weak
match, and mismatch (leading to a carryover penalty). If two func-
tions match in terms of names and parameter numbers they are a
strong match. The match is weak if only the names are equal (and
not parameter numbers). The reason for considering parameter
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count as a separate metric is the nature of JavaScript, where a func-
tion call does not need to be faithful to the function signature in
terms of arguments (known as function variadicity). Two function
executions do not match if both metrics are different. The strong
and weak matches are assigned positive scores, while the mismatch
is assigned a negative score as it can represent gaps in the motif,
which can accumulate and disrupt a motif. The base scores for
matches and penalties are determined using empirical data.

Moreover, our matrix needs to support comparison of motifs, to
accommodate another extension of the original algorithm, which
permits hierarchies between motifs. The function execution mem-
bers of a motif are compared as explained above. Should a motif
contain an abstract node, then all valid executions of the abstract
node should be compared with the other sequence. Throughout the
process of comparing motifs, our algorithm infers hierarchies and
abstractions of motifs should they exist, as explained below.

Then, we perform our adaptation of the Smith-Waterman al-
gorithm on the two expanded sequences, as shown in line 2 of
Algorithm 2, which creates a scoring mechanism for comparing
the two sequences based on a one-by-one comparison of all their
entities, based on our similarity matrix. The result is a scoring
matrix of overall scores of comparing two sequences (Mk+1,k+1).
This process is shown for the two sequences of the running exam-
ple from the previous step in Figure 5.A–C. To find the common
motif in these sequences, we find the sub-sequences that hold the
highest collective similarity as a group. We start by finding the
highest score in the matrix (line 3 of Algorithm 2, Figure 5.D), and
then trace the matrix back, determining the aligned motif at this
stage (lines 4–10 & Figure 5.E). For navigating the motif back in
the matrix, our dynamic programming algorithm chooses the maxi-
mum neighbouring score at each step (line 5). Based on the selected
neighbour, the algorithm determines whether that motif member
comes from one or both of sequences, and whether an abstract
entity should be injected to show different alternatives of the motif.
The motif’s confidence in that member is then updated based on

Algorithm 2 Inferring motifs
1: procedure Compare(S1, S2, k ) ▷ S1, S2 : two trace sequences, k : sequence length
2: Mk+1,k+1 ← SmithWaterman(S1, S − 2, k )
3:

〈
imax , jmax

〉
← maxScoreLocation(Mk+1,k+1 )

4: while imax > 0 and jmax > 0 do
5: dir ← maxNeighbour(imax , jmax )
6: if dir == diag then motif.insert(abstract(S1[imax ], S2[jmax ]))
7: elsemotif.insert(function(S1[imax ] == S2[jmax ]))
8: end if

9:
〈
imax , jmax

〉
← backTrack(Mk+1,k+1, S1, S2, dir )

10: end while

11: if S2 .type == motif then buildHierarchy(S2 , motif)
12: end if

return motif
13: end procedure

how it is selected (lines 6–7 of Algorithm 2). The inferred motif of
the running example (Figure 5.F) has five members, one of which
is abstract. The abstract member was advised to enable the motif
to support both sequences shown in Figure 5.A, which have the
same functionality (registration), but are executed in a slightly dif-
ferent manner. The abstract member demonstrates that observing
the studentForm function in the motif is arbitrary, and the motif
can either be observed either with five total members including the
function, or with only four members which do not include function.

4.5 Inferring Hierarchies of Motifs

In the next step, we devise another extension to the original algo-
rithm, which enables us to infer and reveal hierarchical relations
between motifs. By definition, our motifs are composite entities,
which can contain other motifs as their members. During the anal-
ysis, our algorithm may encounter cases where (1) the match that
is being compared is a motif itself, and (2) the expansion leads to
discovery of a new motif. In such cases, a hierarchical relation is
added between the two motifs. This means that not only the [sub-
]motif was observed independently within the execution, but it
also contributes to the formation of the new and larger motif. Our
analysis follows a bottom-up approach, starting with function exe-
cutions as building blocks of the trace. It iteratively works the way
up to higher-level and more abstract motifs that allow flexibility
in execution. At each iteration of the algorithm, new motifs can
be revealed which may have hierarchical relations with existing
motifs. As such motifs emerge, our algorithm captures the process
of their formation and hierarchies in a model (Section 5).

In the running example, we first find an exact match with k = 3,
which is a motif itself, but with no abstraction (Figure 4). Later,
during expansion, we find that this motif is a member of a larger
motif (Figure 5.F) with two other members (an abstract member
and a function execution). The algorithm creates a hierarchy (line
11 of 2), which then manifests in the model (Figure 6), as an edge
from the new abstract motif (node 1) to the sub-motif (node 2).

5 CREATING AND VISUALIZING THE MODEL

In this section, we explain our methodology for inferring the hier-
archical model of behavioural motifs and visualizing it.
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Figure 6: Sample model of the running example. The root

node (1) is the highest-level inferred motif. Node 2 is a sub-

motif of node (1), marked by the hierarchical edge between

the two. Node 3 is abstract allowing variations of its child

node to occur in themotif. The leaves of (nodes 4–8) are con-

crete function executions in the trace.

5.1 Creating the Motif Model

As mentioned above, during the process of extracting motifs, our
approach infers the hierarchies and other potential relations be-
tween them. Such structural relations are preserved in a model,
represented as a directed acyclic graph (DAG), which evolves as
the algorithm proceeds, as explained below.

Vertices. Vertices of the graph can be functions, motifs, abstract
entities, or dependent vertices. Function vertices are atomic nodes
representing specific and context-sensitive function executions.
Motif vertices are semantically composite classes. Each motif con-
ceptually contains an ordered set of its members. Abstract vertices
are the model’s means for supporting flexibility in motifs. Should
there be alterations in different observations of a motif, an abstract
node is used for accommodating all valid cases. Dependent vertices
hold additional attributes of other types of vertices. and exist only
to provide more information about other vertices. e.g., an event
contributing to a function execution is shown as a dependent vertex.

Edges. The vertices of the graph are connected through directed
and ordered edges. The edges are responsible for connecting motifs
to their members. The direction of an edge is from a motif node
to its members, which are ordered based on the time they were
observed in traces. The edges also represent the confidence of the
algorithm in the respective member (strong or weak), based on the
manner of observation of the member. Edges may contain other
special attributes, depending on its type and the purpose it serves
in the model. For instance, the “edge exclusion” property is used to
show that only one of the variations of an abstract node is valid at
a given time.

Figure 6 represents the model of the running example of Figure 1.
The root of the DAG (node 1) is a motif representing registration. It
consist of three members: a sub-motif (2), an abstract node (3), and
a function execution (8). The first member is a motif itself, which
contains a sequence of three functions from the trace, marked 4–6.
The strong edge to the sub-motif (and from there to its children)
shows the high confidence of the algorithm in the sub-motif. Node
3 is an abstract node, acting as a place holder for valid versions of
the node, manifested in its children. This node exists due to the
variation in two observations of the motif (Figure 5.A). In the case
of our example, the exclusive type of the child (7) edge demonstrates

A B
E

DC

DB Motifs

Figure 7: A [modified] screenshot of visualization. (A):

Query trace. (B): Inferred motifs depicted on the table. (C):

Motif hierarchies. (D):All motifs. (E): Code panel displaying

selected function/motif code.

that occurrence of this node is optional in the motif (studentForm
is observed or not). Further, the weak edge type displayed the al-
gorithm low confidence in this node. Node 8, the final member of
1, is an execution of function submit. All leaves of the DAG are
concrete function executions from the trace. Nodes at higher levels
of a graph involve abstractions and hierarchies, to represent the
incremental process of emergence of motifs from details of trace.

Motif Relations. The hierarchies that form between motifs are
one type of relations that are preserved through the model. The
algorithm also discovers other types of relations between motifs,
such as temporal or causal relations. The integration of all these
relations depicts how semantics of the program are shaped from
bottom (small specific motifs) to the top (larger and more abstract
motifs representing key points of behaviour). The motifs may be
semantically related in manners that are not quite obvious from the
code. For instance, motif m1 may cause motif m2, or they may be
ordered (but not dependent) due to the design and the architecture
of the system. Querying the model allows us to reveal patterns of
motifs themselves and even discover patterns that are not known
to the developer, are created unintentionally, or are imposed on the
system by other factors such as third-party frameworks.

5.2 Visualizing the Model

Finally, we visualize themotifs to further assist program comprehen-
sion by taking advantage of information visualization techniques.
Our web-based visualization provides two main views for display-
ing (1) the motifs recorded in a specific query trace, and (2) all
motifs discovered in the behaviour (DB traces).

Trace Motifs. To allow developers to focus only on a part of
behaviour that is of interest to them, this view displays motifs
that are found within the query trace, freshly recorded from an
interaction session (Figure 7, A and B). Section (A) of the figure
displays the pruned query trace, where time proceeds from top to
bottom. Section (B) displays the motifs, distinguished by colour and
index. The saturation of each cell of a motif displays the motif’s
confidence in that member. Each motif may recur multiple times in
the same trace, or may contain hierarchies of motifs (Figure 7C).

AllMotifs.The second view ismeant to provide a global overview
of application behaviour by displaying all its motifs, extracted from
all DB traces (Figure 7D). These motifs may display system use-
cases, feature implementations, or other higher-level sequences
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that somehow describe the functionality of the system. They do not
conform to a single trace, and thus each motif has its own separate
trace. In both views, hovering the mouse over each entity displays
more information regarding that entity in the tooltip. Clicking on
an entity displays its respective code (function or motif) on the code
panel (Figure 7E). Displaying only the code relevant to the motif,
allows developers to only focus on their specific task, without the
added burden of understanding the whole application.

6 IMPLEMENTATION: SABALAN

We implemented our approach in an open-source tool, called Sa-
balan. The entire tool is implemented in JavaScript. We create our
own Express.js server for implementing the algorithm, the instru-
mentation unit, and the visualization.We develop the bioinformatics-
inspired algorithms from scratch for execution traces. We use a
proxy to automatically inspect applications [38]. For instrumenting
the code, we create an AST of the code, modify it, and serialize it
back into JavaScript [25–27]. Sabalan is publicly available [71].

7 EVALUATION

We empirically evaluate our approach by investigating the char-
acteristics of the extracted motifs, as well as the usefulness of our
approach for developers and its overhead through the following
research questions.
RQ1. What are the characteristics of typical motifs inferred by Sa-

balan from execution traces?
RQ2. Does using Sabalan improve developers’ performance for

common comprehension tasks?

7.1 Motif Characteristics

To address RQ1, we performed our analysis on seven JavaScript
applications, listed in Table 1.
Design. We selected seven open-source JavaScript applications
from GitHub (Table 1). These applications cover various software
domains and were selected based on their popularity and usage.
Based on each application’s specifications, we selected a method for
collecting its traces (running the test suite or designing scenarios
for exploratory testing). We provided the traces (DB and query) as
input, and analyzed their extracted motifs and investigated their
main characteristics. We measured the number of unique motifs
inferred from all traces for each application, calculated their lengths,
and analyzed their hierarchies. We registered the size of DB traces
in terms of number of different traces as well as the size of a trace.
Results and Discussion. The results of the analysis are depicted
in Table 1. The second column displays the number of lines of code
for each application, while the third column contains the number
of motifs found in the applications. The next column represents
the number of DB traces collected for each application. Column
five, shows the average size of traces of each application, collected
by Sabalan in one-minute interaction sessions. Note that our tool
performs a level of filtering while logging execution details. Column
six shows the average trace size collected by Google Chrome’s Java-
Script profiling and Timeline. It can be seen that the average trace
size using Sabalan is 77 KBs, while without Sabalan there is an
average of 96 MBs of data for the same interaction session. These
values emphasize the extent of the information contained in the

Table 1: Characteristics of traces and inferred motifs

Motif Length

Application LOC # of

M.

#of

DB

Trace

size

(KB)

Raw

Trace

(MB)

Avg Min Max # of

unq

H.

Phormer 6000 13 20 84 86 4 2 11 4
same-game 229 4 7 255 143 3 2 4 0
simple-cart 9238 4 19 45 67 4 2 8 3
browserQuest 36206 17 15 67 125 5 3 9 2
adarkroom 15612 6 15 41 40 4 2 6 2
doctored.js 3534 4 10 16 102 3 2 5 1
hextrix 5154 7 16 30 110 4 2 6 2
Average 10853 8 14.5 77 96 4 2 7 2

raw traces, even for modest-sized applications, which makes it
challenging for developers to analyze them. However, using our
approach, developers have an average of 8 recurring high-level
motifs for each interaction session, each with an average length
of 4 (columns 7–9), to guide them through the understanding of
the behaviour. The last column displays the number of unique
hierarchical relations between unique inferred motifs. The numbers
show the existence of hierarchies of motifs. Further assessment
of the structures of model graphs depict the bottom-up formation
of higher-level key points of behaviour based on smaller motifs
through such hierarchies.

There are a few cases in the results where the algorithm was not
able to find many (meaningful) motifs, or any hierarchies. Upon
further investigation, we found that these applications rely heavily
on external and graphic libraries, which we had disabled in our
analysis. These features can be activated in the future if needed.

An important factor that can impact the efficacy of the algorithm
is the requirements of the DB traces. The number of initial traces in
the knowledge base, their coverage of the application’s functional-
ity, and their similarities (or differences), are factors that can impact
the quantity and quality of the final motifs. We aimed to maximize
the features we covered with the DB traces. We stopped collecting
new DB traces when we observed that adding a trace did not affect
the inferred motifs (average of 14.5 DB traces per application).

7.2 Controlled Experiment

Next, we conducted a controlled experiment to assess the effective-
ness of our technique for developers in practice and address RQ2.
We divided the participants into control and experimental groups.
The experimental group used our approach, while the control group
used the tool of their choice. The participants accomplished a set
of comprehension tasks, and their performance was measured. The
tasks were designed based on common software comprehension
activities [63]. We defined the performance of a developer by the
combination of time and accuracy of completing the tasks. Our
hypothesis was that using our approach would enhance develop-
ers’ performance in understanding the overall behaviour, main
use-cases, and recurring motifs of a web application.

7.2.1 Experiment Planning. The goal of our experiment is to
investigate the following research questions.
RQ2.1. Does using Sabalan decrease task completion duration for

common comprehension tasks?
RQ2.2. Does using Sabalan increase task completion accuracy for

common comprehension tasks?
RQ2.3. Is Sabalan better suited for certain types of comprehension

tasks?
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Table 2: Comprehension tasks used in the study.

Task Description Activity

T1.A Understanding all common usecases A1, A7, A9
T1.B Determining the most used scenarios A6, A7
T2.A Locating the implementation of a feature for reuse A1, A3
T2.B Estimating the quality of said implementation A4, A5, A8
T3 Understanding the addition of a new feature A1, A2, A3

Variable Selection. Our design involved one independent variable
(IV), the variable we controlled, which was the type of tool used,
i.e., a nominal variable with two levels. We refer to the first level
as Sabalan, since they had to use our tool. The second level repre-
sented usage of other tools, which we refer to as other. Our goal
was to measure developers’ performance in completing the tasks.
We quantified it using two variables, task completion duration and
accuracy (both continuous), that were our dependent variables (DV).
Selection of Object.We chose Phormer photo gallery application
as our object [66], which has about 6,000 lines of code and over
43,000 downloads. It is an open-source PHP-based application that
allows users to store photos, categorize and rate them, and view
a slideshow. Since we had allocated limited time for each session,
we had to choose an application that is simple, and yet exhibits
realistic motifs in its behaviour - these criteria are met by Phromer.
Selection of Subjects. We recruited 14 participants for our exper-
iment. They were all graduate students in computer science and
engineering, and many of them had professional software devel-
opment experience. The participants consisted of 2 females and
12 males, aged between 23 and 35. Knowledge of programming
and familiarity with web development (and particularly JavaScript)
were our only requirements for picking the participants. Overall,
our participants had 1–10 years of web development and 1–18 years
of software development experience, respectively.
Experimental Design. Our experiment had a “between-subject”
design. To avoid the carryover effect, we divided our participants
into two groups. The experimental group were given access to
Sabalan for performing the tasks, while the control group used
Google Chrome’s Developer Tools (i.e., DevTools) for completing
the session. All our participants were familiar with DevTools ac-
cording to their answers to the pre-questionnaire form and chose to
use it during the experiment. No member of the experimental group
were familiar with Sabalan prior to the study session. To avoid
bias in favour of one of the groups in terms of their proficiency
levels, we collected historical data about our participants prior to
scheduling the sessions. We assigned each participant a proficiency
score, based on a combination of metrics, including their experience
with software development, knowledge of JavaScript, and how they
perceived their own expertise. We balanced the proficiency levels
in both experimental and control groups.
Experiment Tasks.We designed five comprehension tasks, out-
lined in Table 2, based on common program comprehension activi-
ties proposed by Pacione et al. [63]. As the name suggests, these
activities represent fine-grained activities that developers need to
perform for understanding software, regardless of the language and
the platform used. Table 2 shows how each of our tasks covers one
or more activities - all activities are covered in our design. Moreover,
each task also included a mini questionnaire, which asked about
how participants perceived the difficulty of the task, the required
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Figure 8: Notched box plots of accuracy results. Green plots

display experimental (Sabalan) group, and gold plots dis-

play the control group. Higher values are better.

time, and the required expertise level for accomplishing the task.
We have made all the tasks and datasets publicly available [71].

7.2.2 Experimental Procedure. The procedure of the experimen-
tal sessions consisted of three main phases.
• Pre-study.We required all participant to fill a pre-questionnaire
form to gather some demographic data about them. Further,
we used the data regarding their experience, programming
habits, and self-perceived expertise level, to assign partici-
pants’ expertise scores. The score allowed us to fairly balance
the expertise levels in both experimental and control groups.
• Training. At this step, the experimental group were given
a tutorial on Sabalan, which they were encountering for
the first time. Then both groups were given some time to
familiarize themselves with the setting of the experiment.
We then started the tasks when the participants were ready.
• Tasks.During this phase, the participants completed the five
comprehension tasks summarized in Table 2. Based on our
design, we wanted to measure both duration and accuracy

of completing the tasks. To measure time, we prepared each
task on a separate sheet of paper. We started a timer when we
handed a task sheet to a participant, and asked her to return
it to us (with the answer) as soon as she had completed the
task, which is when we stopped the timer. This allowed us
to record the time they spent on each task. We evaluated the
accuracy of each task later, based on rubrics we had prepared
prior to conducting the experiment.
Moreover, we wanted to gather some data regarding how
the participants perceived the tasks. Thus, we provided them
with a set of meta tasks, that questioned them about the per-
ceived difficulty, time-consumption, and required expertise
level for each task. Finally, the participants filled a post-
questionnaire form regarding their experience in the study.

7.2.3 Results. We first ran the Shapiro-Wilk test on all collected
data sets, to determine if they were normally distributed. For nor-
mally distributed data of accuracy we used two-sample t-tests. The
duration data did not pass the normality test and thus we used the
Mann-Whitney U test for it.

For the accuracy, the results of running the tests showed a sig-
nificant difference, with a high confidence, for the experimental
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group using Sabalan (Mean=87.8%, STDDev=11.6%), compared
to the control group using Chrome DevTools (Mean=50.5%, STD-
Dev=11.6%); (p−value = 6.2e−05). The accuracy results are shown
in Figure 8. Overall, using Sabalan increased developers’ accuracy

in performing comprehension tasks by an average of 54%, over other

tools. (RQ2.1). We further analyzed the impact of using Sabalan
in accuracy of individual tasks. The results of running the statis-
tical tests showed significant difference in favour of Sabalan for
all tasks, expect T3. The accuracy of results of T1A through T2B
were significantly higher using Sabalan. The results for task T3,
although not statistically significant, were on average 23% more
accurate when participants used Sabalan.

For the times, the collected task completion duration data were
comparable for participants of both experimental and control groups.
Running the tests did not reveal any statistically significant differ-
ence in task duration between the two groups (RQ2.2). Finally, we
analyzed the collected data from the questionnaire form partici-
pants filled regarding each task. They perceived the difficulty of
tasks from 2.15 to 2.54, based on a 5-point Likert scale, which shows
an average level of difficulty for all tasks. We compared the diffi-
culty of each task as perceived by participants with the results of
duration and accuracy of the same task. We found no correlation
between the perceived difficulty of a task by participants and how
they perform the task (using the Pearson correlation coefficient).

7.3 Discussion

The results of the experiment revealed that Sabalan improves de-
velopers’ performance in comprehension by significantly increasing
their accuracy by 54% (RQ2.1). The results however did not show a
significant difference for duration (RQ2.2).
Domain Knowledge and Use-cases. One of the first steps to-
wards program understanding is general understanding of its do-
main and overall dynamic behaviour by identifying the compo-
nents that provide a solution to the domain. Our results show that
Sabalan significantly increases the accuracy of such tasks (T1).
This task consisted of two main parts, understanding the overall
behaviour and use-cases of the experimental object (T1.A), and
deciding on their importance (T2.B). Using Sabalan significantly
improved the accuracy of these two tasks by 49% and 78%, respec-
tively. The results show that using Sabalan not only provides a
more accurate overview of an application’s behaviour compared
to ad-hoc approaches, but also helps developers obtain a better
understanding of the importance and usage of the main system
components and their interactions (RQ2.3).
Feature Location. Feature location is one of the main tasks per-
formed during program comprehension, and has many applications,
such as reuse and testing. Our results show that using Sabalan sig-
nificantly improved the accuracy of feature location (RQ2.1, RQ2.3).
The experimental group were able to find components involved in
the implementation of a feature and infer their relations 42% more
accurately than the control group (T2.A). They were also 42% more
accurate in estimating the quality of the implementation of the said
feature (T2.B). Investigating the answers revealed that the control
group missed many connections in the code that lead to discovery
of different parts of the implementation and thus failed to create
a complete and accurate model of the involved code. Due to their

incomplete understanding of the feature, the control group was not
able to estimate and measure the quality of the respective part of
application as well. The experimental group, however, could assess
the quality based on the more accurate model of the behaviour that
extracted the feature as a behavioural motif (RQ2.3).
Software Change and Root-Cause Detection. The last task (T3)
involved understanding the system in order to make a change, by
finding the root cause of a particular observed behaviour. The exper-
imental group were able to perform the task 23% more accurately
with Sabalan, although the results were not statistically sigifnifi-
cant (RQ2.1). Using Sabalan, they were able to focus on a much
smaller part of the code that was relevant to the feature that needed
change. However, because we do not have debugger support within
Sabalan, using common debugging techniques such as setting
breakpoints and watching variables in such tasks required the par-
ticipants to frequently switch between the visualization and the
application. We plan to integrate our prototype with a debugger
such as Chrome DevTools in the future.
Accuracy over Speed. The results did not show any significant
difference for task completion duration in favour of Sabalan. We
believe this is not a significant issue due to three reasons. First,
accuracy of performing a task is more important than its speed
[2]. The significant improvement of task completion accuracy with
Sabalan (54%), and the test’s high confidence in the result, em-
phasize the challenges of comprehending traces, as well as the
usefulness of Sabalan in improving developers’ performance for
completing said tasks. Investigating the answers further, we found
that many participants in the control group had finished the tasks,
assuming they had the right answers. While in fact, they were not
even aware that they are missing crucial parts of the answer, which
resulted in them having lower accuracy than Sabalan users. Next,
we believe that the unfamiliarity of our participants with Sabalan
might have caused them to spend more time trying to use it. This
theory is strengthened when we analyze individual tasks results.
We observed that the experimental group had the worst speed ratio
compared to the control group for the first task (T1.A), after which
they quickly improve and surpass the control group in later tasks.
Finally, dividing the locus of attention may have also played a role
in the results. While the control group only focused on the browser,
the Sabalan group had to switch back and forth between the appli-
cation and the tool. We believe this can be solved by extending the
tool or integrating it into an existing programming environment.
Participants’ Perception of Tasks vs. Performance Reality.

There were no correlations between the difficulty of a task as per-
ceived by participants, and their measured performance scores. All
participants deemed all tasks to be of moderate difficulty. However,
the control group scored significantly lower accuracy marks for all
tasks. This shows that their interpretation of the task requirements
did not match the reality of the task they had just performed. The
results confirm the challenging nature of trace comprehension.
Performance Overhead. We used the experimental object of our
user study, Phormer, to obtain data regarding the additional over-
head of our approach, in 10 one-minute interaction sessions. We
measured three sources of potential performance overhead into ac-
count. The overhead caused by instrumentation phase, the imposed
overhead on execution of instrumented code and data collection,
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and the overhead of analysis of traces and motif extraction, which
were respectively measured as 1.2, 0.1, and 2.1 seconds on average.
This is negligible for all practical purposes, and is barely noticeable
during the interaction with the application. Thus, the performance
overhead of Sabalan was entirely acceptable for this application.

7.4 Threats to Validity

The external threats of conducting an experiment such as ours,
typically arise from representativeness of tasks, participants, and
object selected for the experiment. We mitigated the threat of task
selection by designing our tasks so that they covered all common
comprehension activities in Pacione et. al. [63], which are represen-
tative of routine comprehension tasks. A valid concern is regarding
the representativeness of the participants of the developer popula-
tion, since we recruited students. We tried to address this concern
by recruiting only graduate students who had prior experience with
JavaScript, many of whom had experience working in industry. To
address the threat of representativeness of the experimental object,
we chose an open source JavaScript application Phormer, [66] with
about 6,000 lines of code and over 43,000 downloads at the time
of conducting the study. An internal threat that concerns our
method is the bias towards assigning participants into control and
experimental groups, or the population-selection problem, which
we addressed by balancing the expertise levels between the two
groups. Other threats can arise due to the possible bias of the exam-
iner (us) regarding the measurement of both duration and accuracy
of task completion. We mitigated the time measurement threat by
designing a method for time measurement that both the partici-
pant and the examiner agreed upon, namely physically exchanging
the task sheet between the participant and the examiner. We mit-
igated the bias towards measuring accuracy by creating a rubric
prior to conducting the experiments, and abiding by the rubric for
marking the tasks in order to address this threat. The final threat
we address is the tool used in the experiment. We chose Google
Chrome’s Developer Tools, which is very popular for client-side
web development, and all our participants were previously familiar
with it (based on the pre-questionaire they filled out).

8 RELATEDWORK

Trace Analysis andVisualization. Several papers assist program
comprehension through dynamic analysis and visualization. Their
proposed techniques allow users to explore large traces [69], or
perform reduction, compaction and pruning techniques on traces
[12, 32–34, 68]. A popular trend is using standard visual protocols,
such as UML diagrams [13, 22, 76]. Others propose more customized
visualization techniques through synchronized views [17], provide
program’s landscape focusing on communications [29], allow user
interactions with the visualization [65], visualize similarities in
traces [18], or present many other techniques for representing the
traces [10, 21, 28, 39–41, 48, 69, 72, 77]. Extravis [17] is the first such
technique that was quantitatively measured in a user study [19],
followed by others [11, 61]. Another group of methods capture and
analyze low-level information in traces using techniques such as
extracting behavioural units described in usecase scenarios [78],
profiling [43], dividing the trace into segments [67], identifying
feature-level phases by defining an optimization problem [7], or

similar methods [15, 23, 64]. Heuzeroth et al. [35, 36] propose to
find patterns in execution. Others aim at providing higher-level
representations of trace [2, 3, 80]. However, unlike our approach,
these approaches do not infer a hierarchical behavioural model,
which reveals the key points of behaviour, while still preserving the
details, and permitting users to navigate them on demand. Further,
our approach infers abstract motifs, which reduces the dependency
of our analysis on details, without losing the data.
Feature Location, Capture &Replay.Many papers have focused
on feature location [55, 57, 81]. Record and replay tools aid under-
standing and debugging [6, 14, 28, 56, 58, 59, 79] by providing a
deterministic replay of UI events without capturing their conse-
quences. Tracing techniques [5, 37, 62] collect traces of JavaScript
selectively. Some papers focus on visualization for helping program
understanding [5, 62, 81]. However, these methods are committed
to preserving the exact sequence of events and replaying them.
Their analyses do not permit abstraction of implementation details
and inferring higher-level motifs. They are not concerned with cre-
ating a behavioural model and providing a hierarchical overview
of execution for assisting comprehension, unlike our work.
Specification Mining. Assisting comprehension by mining soft-
ware specifications from traces has been well explored [11]. Many
methods have assessed [49] or improved the performance of miners,
by pruning and clustering traces [50], supporting equivalent states
[53, 73], or finding inconsistencies in resource utilizations [61]. Oth-
ers compare different model inference techniques [44], synergize
or combine them [47, 52, 54], or facilitate declaration of algorithms
[8, 9]. Other work uses Markov models and analyzes them using
model checking [30]. Unlike our approach, these techniques do
not provide a hierarchical model of abstract recurring motifs of
program execution. Specification mining has been improved with
novel use of object hierarchies [51]. However, this technique only
supports existing hierarchies between Java classes and packages,
and not application-specific motifs, which are not defined or speci-
fied prior to analysis. Unlike these approaches, our algorithm allows
our analysis to abstract out the low-level details and tolerate small
changes, which allows recurring motifs of behaviour to emerge.

9 CONCLUDING REMARKS

In this paper, we proposed a generic technique for inferring a hier-
archical model of application-specific motifs from execution traces.
Our motifs, inspired by bioinformatics algorithms, are recurring
abstract patterns of execution that abstract out alterations and are
closer to the higher-level features of a system. We designed a visual-
ization for our technique that allows users to observe and query the
motifs for program understanding. Our technique is implemented
in a tool called Sabalan, which is publicly available. The results
of our user experiment showed that using the systematic analysis
of Sabalan enabled participants to perform comprehension tasks
54% more accurately than other state of art tools.
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