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Abstract—We present a novel 3-D scalable compression method
for medical images with optimized volume of interest (VOI)
coding. The method is presented within the framework of inter-
active telemedicine applications, where different remote clients
may access the compressed 3-D medical imaging data stored
on a central server and request the transmission of different
VOIs from an initial lossy to a final lossless representation. The
method employs the 3-D integer wavelet transform and a mod-
ified EBCOT with 3-D contexts to create a scalable bit-stream.
Optimized VOI coding is attained by an optimization technique
that reorders the output bit-stream after encoding, so that those
bits belonging to a VOI are decoded at the highest quality possible
at any bit-rate, while allowing for the decoding of background
information with peripherally increasing quality around the VOI.
The bit-stream reordering procedure is based on a weighting
model that incorporates the position of the VOI and the mean
energy of the wavelet coefficients. The background information
with peripherally increasing quality around the VOI allows for
placement of the VOI into the context of the 3-D image. Perfor-
mance evaluations based on real 3-D medical imaging data showed
that the proposed method achieves a higher reconstruction quality,
in terms of the peak signal-to-noise ratio, than that achieved by
3D-JPEG2000 with VOI coding, when using the MAXSHIFT and
general scaling-based methods.

Index Terms—Embedded block coding with optimized trunca-
tion (EBCOT), medical image compression, scalable compression,
volume of interest coding, 3D-JPEG2000.

I. INTRODUCTION

OLUMETRIC medical images, such as magnetic reso-
V nance imaging (MRI) and computed tomography (CT) se-
quences, are becoming a standard in healthcare systems and an
integral part of a patient’s medical record. Such 3-D data usually
require a vast amount of resources for storage and transmission.
For example, a single MRI sequence of a human brain, with
slices of 512 x 512 pixels taken at 1 mm intervals, could easily
result in over 100 MB of voxel data.
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With the wide pervasiveness of medical imaging applications
in healthcare settings and the increased interest in telemedicine
technologies, it has become essential to reduce both storage and
transmission bandwidth requirements needed for archival and
communication of related data, preferably by employing loss-
less compression methods. Furthermore, providing random ac-
cess as well as resolution and quality scalability to the com-
pressed data has become of great utility. Random access refers
to the ability to decode any section of the compressed image
without having to decode the entire data set. Resolution and
quality scalability, on the other hand, refers to the ability to de-
code the compressed image at different resolution and quality
levels, respectively. The latter is especially important in interac-
tive telemedicine applications, where clients (e.g., radiologists
or clinicians) with limited bandwidth connections using a re-
mote image retrieval system may connect to a central server
to access a specific region of a compressed 3-D data set, i.e.,
a volume of interest (VOI). The 3-D image is then transmitted
progressively within the VOI from an initial lossy to a final loss-
less representation.

Several compression methods for 3-D medical images have
been proposed in the literature, some of which provide resolu-
tion and quality scalability up to lossless reconstruction [1]-[6].
These methods are based on the discrete wavelet transform
(DWT), whose inherent properties produce a bit-stream that is
resolution-scalable. Quality scalability is then achieved by em-
ploying bit-plane based entropy coding algorithms that exploit
the dependencies between the location and value of the wavelet
coefficients, such as the embedded zerotree wavelet coding
(EZW), the set partitioning in hierarchical trees (SPIHT),
and the embedded block coding with optimized truncation
(EBCOT) algorithms [7]-[9]. These compression methods,
however, do not provide VOI decoding capabilities, i.e., the
ability to reconstruct a VOI at higher quality than the rest of
the 3-D image.

Recently, a number of medical image compression methods
that support VOI coding have been proposed [10]-[13]. In [10],
the authors presented a compression method based on JPEG2000
that supports prioritized VOI coding based on the anatomical
tissues depicted in a 3-D medical image. The method employs
a one-dimensional DWT (1D-DWT) along the slice direction
with JPEG2000 encoding of the resulting transform slices. A
priority is assigned to each group of coefficients describing the
same spatial region at the same decomposition level according to
its intensity level in the spatial domain. The method also allows
for the definition of the relative importance of each sub-band in
the coding process. In [11], the authors introduced a 3-D medical
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image compression technique that supports VOI coding based
on 3-D sub-band block hierarchical partitioning (3D-SBHP), a
highly scalable wavelet transform based entropy coding algo-
rithm. A number of parameters that affect the effectiveness of
VOI coding are studied, including the size of the VOI, the number
of decomposition levels, and the target bit-rate. The authors also
discussed an approach to optimize VOI decoding by assigning a
decoding priority to the different wavelet coefficient bit-planes.
In [12], the authors summarized the features of various methods
for VOI coding, including the maximum shift (MAXSHIFT)
and general scaling-based (GSB) methods supported by the
JPEG2000 standard [14]. These particular methods scale up the
coefficients associated with a VOI above the background coeffi-
cients, by a scaling value. The MAXSHIFT method employs a
maximum scaling value so that VOI coefficients are completely
decoded before any background coefficients. The GSB method,
on the other hand, employs a lower scaling value so that VOI and
background coefficients are decoded simultaneously. In [13], the
authors presented a VOI coding method for volumetric images
based on the GSB method and the shape-adaptive wavelet trans-
form. The method extends the capabilities of the GSB method to
3-D images with arbitrarily-shaped VOIs and allows for coding
partial background information in conjunction with the VOL

The main objective of this paper is to present a 3-D med-
ical image compression method with 1) scalability properties,
by quality and resolution up to lossless reconstruction and 2)
optimized VOI coding at any bit-rate. We are particularly inter-
ested in interactive telemedicine applications, where different
remote clients with limited bandwidth connections may request
the transmission of different VOIs of the same compressed 3-D
image stored on a central server. In this particular scenario, it
is highly desirable to progressively transmit the different VOIs
without the need to recode the entire 3-D image for each client’s
request. Furthermore, in order to improve the client’s experience
in visualizing the data remotely, it is also desirable to transmit
the VOI at the highest quality possible at any bit-rate, in con-
junction with a low quality version of the background, which
is important in a contextual sense to help the client observe the
position of the VOI within the original 3-D image [15]-[17]. In
this work, the VOl is a cuboid defined in the spatial domain with
possibly different values for the length, width and height.

The method presented in this paper employs a 3-D integer
wavelet transform (3D-IWT) and a modified EBCOT with 3-D
contexts to compress the 3-D medical imaging data into a lay-
ered bit-stream that is scalable by quality and resolution, up
to lossless reconstruction. VOI coding capabilities are attained
after compression by employing a bit-stream reordering proce-
dure, which is based on a weighting model that incorporates the
position of the VOI and the mean energy of the wavelet coeffi-
cients. In order to attain optimized VOI coding at any bit-rate,
the proposed method also employs after compression, an opti-
mization technique that maximizes the reconstruction quality of
the VOI, while allowing for the decoding of background infor-
mation with peripherally increasing quality around the VOI. The
proposed method is different from the method in [10], where
the VOI coding procedure is tissue-based, the relative impor-
tance of a specific sub-band is empirically assigned, and the
entropy coding of wavelet coefficients is performed using 2-D
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contexts. Our proposed method is also different from the VOI
coding method proposed in [11], where the background infor-
mation is only decoded after the VOI is fully decoded, which
prevents observing the position of the VOI within the original
3-D image. The proposed method also differs from the method
in [13], where the scaling value of the VOI coefficients is em-
pirically assigned and the shape information of the VOI must
be encoded and transmitted, which may result in an increase in
computational complexity as well as bit rate (due to shape en-
coding).

The novelties of the proposed method are threefold. First,
our method employs the 3D-IWT in conjunction with a modi-
fied EBCOT with 3-D contexts to exploit redundancies between
slices and improve the coding performance, while at the same
time creating a layered bit-stream that is scalable by resolution
and quality up to lossless reconstruction. Second, the bit-stream
reordering procedure is performed after encoding, thus allowing
for the decoding of any VOI without the need to recode the entire
3-D image. Third, the background information that is decoded
in conjunction with the VOI allows for placement of the VOI
into the context of the 3-D image and enhances the visualiza-
tion of the data at any bit-rate.

We test the performance of the proposed method on various
real 3-D medical images and compare it to 3D-JPEG2000 with
VOI coding, using the MAXSHIFT and the GSB methods.
Performance evaluation results show that, at various bit-rates,
the proposed method achieves a higher reconstruction quality,
in terms of the peak signal-to-noise ratio (PSNR), than those
achieved by the MAXSHIFT and GSB methods.

The remainder of the paper is organized as follows. In Sec-
tion II, we describe the proposed compression method. In Sec-
tion I1I, we present and discuss the experimental results. We give
the concluding remarks in Section I'V.

II. PROPOSED COMPRESSION METHOD

The proposed compression method is depicted in Fig. 1. We
first apply a 3D-IWT with dyadic decomposition to an input
3-D medical image. This transform maps integers to integers
and allows for perfect invertibility with finite precision arith-
metic, which is required for perfect reconstruction of a signal
[18]. In this work, we employ the bi-orthogonal Le Gall 5/3
wavelet filter, implemented using the lifting step scheme [19].
Each level of decomposition, r, of the transform decomposes the
3-D image input into eight 3-D frequency sub-bands denoted as
LLLr, LLHr, LHLr LHH7, HLLr, HLH7, HHL», and HHHr.
The approximation low-pass sub-band, LLL, is a coarser version
of the original 3-D image, whereas the other sub-bands repre-
sent the details of the image. The decomposition is iterated on
the approximation low-pass sub-band.

We then group the wavelet coefficients into 3-D groups and
compute the mean energy of each group. We encode each group
of coefficients independently using a modified EBCOT with
3-D contexts to create a separate scalable layered bit-stream for
each group. The coordinates of the VOI in the spatial domain,
in conjunction with the information about the mean energy of
the grouped coefficients, are then used in a weight assignment
model to compute a weight for each group of coded wavelet
coefficients. These weights are used to reorder the output bit-
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Fig. 1. Block diagram of the proposed scalable lossless compression method. 3D-IWT: three-dimensional integer wavelet transform. EBCOT: embedded block

coding with optimized truncation.

stream and create an optimized scalable layered bit-stream with
VOI decoding capabilities and gradual increase in peripheral
quality around the VOI. At the decoder side, the wavelet coef-
ficients are obtained by applying the EBCOT decoder. Finally,
an inverse 3D-IWT is applied to obtain the reconstructed 3-D
image. The decoder can also truncate the received bit-stream to
obtain a 3-D image at any bit-rate.

It is important to mention that the proposed method attains
VOI decoding capabilities after the 3-D medical imaging
data is coded. This is particularly advantageous in interactive
telemedicine applications, where different clients may request
different VOIs of the same compressed 3-D image stored on a
central server. The server may then transmit different versions
of the same compressed bit-stream by simply performing the
bit-stream reordering procedure for each requested VOI, thus
saving time in recoding the entire 3-D image for each client’s
request. Moreover, if a client requests a different VOI while
transmission of a compressed bit-stream is taking place, the
server only needs to update the coefficient weights according
to the newly requested VOI and reorder the untransmitted
portion of bit-stream, which also saves time in recoding and
retransmitting the entire 3-D image. Note that the bit-stream
reordering procedure can take place before transmission since
the decoder is capable of decoding any bit-stream regardless
of the order it is transmitted (due to the fact that code-cubes
are encoded independently). Alternatively, the bit-stream re-
ordering procedure may also be performed at the client side
once the image has been fully transmitted. In this particular
scenario, the main advantage of the proposed method lies on
saving time in recoding the entire 3-D image for different VOIs.

There are three key techniques in the proposed compression
method. The first is the modified EBCOT. The second is the
weight assignment model. The last is the creation of an opti-
mized scalable layered bit-stream. We will discuss them in the
next subsections.

A. Modified EBCOT

EBCOT is an entropy coding algorithm for 2-D wavelet-
transformed images, which generates a bit-stream that is
both resolution and quality scalable [9]. EBCOT partitions
each sub-band in small group of samples, called code-blocks,
and generates a separate scalable layered bit-stream for each
code-block. The algorithm is based on context adaptive binary

arithmetic coding and bit-plane coding, and employs four
coding passes to code new information for a single sample c in
the current bit-plane p. The coding passes are 1) zero coding
(ZC), 2) run-length coding (RLC), 3) sign coding (SC), and 4)
magnitude refinement (MR). A combination of the ZC and RLC
passes encodes whether or not sample ¢ becomes significant in
the current bit-plane p. A sample c is said to be significant in
the current bit-plane p if and only if |c| > 2P. The significance
of sample c is coded using ten different context models (nine
for the ZC pass and one for the RLC pass), which exploit the
correlation between the significance of sample ¢ and that of its
immediate neighbors. If sample ¢ becomes significant in the
current bit-plane p, the SC pass encodes the sign information of
sample c using five different context models. The MR pass uses
three different context models to encode the value of sample ¢
only if it is already significant in the current bit-plane p.

We may employ EBCOT to code the wavelet coefficients on
a slice-by-slice basis. However, in our compression method,
the input samples to the entropy coding algorithm are 3D-IWT
wavelet coefficients rather than 2D-IWT wavelet coefficients.
Therefore, coding 3D-IWT wavelet coefficients on a slice-by-
slice basis makes EBCOT less efficient since the correlation be-
tween coefficients is not exploited in three dimensions. Conse-
quently, a modified EBCOT algorithm is needed to overcome
this problem, which we solve by partitioning each 3-D sub-band
into small 3-D groups of samples (i.e., wavelet coefficients),
which we call code-cubes, and coding each code-cube indepen-
dently by using a modified EBCOT with 3-D contexts.

In this work, code-cubes are comprised of a X a X a samples
and describe a specific region of the 3-D image at a specific de-
composition level. We employ a pyramid approach to define the
size of code-cubes across the different decomposition levels. In
this approach, a code-cube of size a X a X a samples and posi-
tion {x,y, z} at decomposition level r is related to a code-cube
of size a/2 x a/2 x a/2 samples and position {z,y, 2} at de-
composition level  + 1, where = 1 is the first decomposition
level. Fig. 2 shows the 3D-IWT sub-bands of a 3-D image after
two levels of decomposition in all three dimensions with a single
code-cube in sub-bands HHH, and HHH; . It can be seen that by
employing a pyramid approach to define the size of code-cubes,
it is possible to access any region of the 3-D image at any reso-
lution, which is essential for VOI coding. In this work, we limit
the code-cube dimension, a, to be a power of 2, with a > 23,
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Fig. 2. 3D-IWT sub-bands of a 3-D image after two levels of decomposition in
all three dimensions with a single code-cube in sub-bands HHH; and HHH.,.

©)
©
©
®
@)
®
®®
©

slice z-1 slice z slice z+1

Code-cube in sub-
and HHH; of axaxa
samples

© Sample ¢

@ Horizontal neighbor
() Vertical neighbor
(© Diagonal neighbor
@ Temporal neighbor

Fig. 3. The immediate horizontal, vertical, diagonal and temporal neighbors of
sample ¢ located in slices z, slices z — 1 and z + 1.

We code each code-cube independently using a modified
EBCOT with 3-D contexts that exploit inter-slice correlations.
Coding wavelet coefficients by extending 2-D context modeling
to 3-D has been extensively used to improve coding efficiency
[1], [2], [20], [21]. Here, we propose a 3-D context model,
based on the four coding passes previously discussed, that in-
corporates information from the immediate horizontal, vertical,
diagonal and temporal neighbors of sample ¢ located in slices
2,z — 1l and z + 1, as illustrated in Fig. 3.

During the ZC pass, we code whether or not sample c be-
comes significant in the current bit-plane p. As explained by
Taubman in [9], the significance of sample ¢ is highly depen-
dent upon the value of its immediate horizontal, vertical and
diagonal neighbors. Here, in order to exploit interslice corre-
lations, we also employ the information about the significance
of the immediate temporal neighbors to code the significance
of sample c. Let i denote the number of significant horizontal
neighbors, with 0 < h < 2. Let v denote the number of signifi-
cant vertical neighbors, with 0 < v < 2. Similarly, let d denote
the number of significant diagonal neighbors, with 0 < d < 4;
and let ¢ denote the number of significant temporal neighbors,
with 0 < ¢ < 2. The proposed 3-D context assignment for the
ZC pass is summarized in Table I. Note that this 3-D context
assignment emphasizes on the neighbors which are expected to
present the strongest correlation in a particular sub-band. For
example, we expect the strongest correlation amongst horizon-
tally adjacent samples in sub-bands LLL, LLH, LHL, and LHH;
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therefore, the proposed 3-D context assignment emphasizes on
horizontal neighbors for these sub-bands.

For the SC pass, we expect that the sign information of sample
¢ exhibit some correlation with that of its temporal neighbors,
in addition to the correlation exhibited with its vertical and hori-
zontal neighbors, as explained in [9]. Therefore, in this pass, we
employ the sign and significance information of the temporal,
vertical and horizontal neighbors to code the sign information
of sample c. Let X (c¢) denote the sign bit of sample ¢, so that
X(¢) = 1if ¢ > 0; otherwise X (¢) = 0. Let h, denote the sign
information of the horizontal neighbors, with h; = 0 if both hor-
izontal neighbors are insignificant or both are significant with
different sign, hs = 1 if at least one horizontal neighbor is posi-
tive, and hy = —1 if at least one horizontal neighbor is negative.
Let us define v, and ¢, in a similar fashion for the sign informa-
tion of the vertical and temporal neighbors, respectively. The
proposed 3-D context assignment for the SC pass is summa-
rized in Table II. Note that this 3-D context assignment exploits
the fact that the distribution of X (¢) given any particular neigh-
borhood should be identical to the distribution of — X (¢), given
the dual neighborhood with the signs of all neighbors reversed.
The binary valued symbol that is coded with respect to the cor-
responding context is X (¢) & X (¢), where X (¢) is an auxiliary
variable that indicates the sign prediction under a given context.

For the MR pass, we also expect that the magnitude of sample
c exhibit some correlation with the magnitude of its immediate
temporal neighbors. We thus employ the significance informa-
tion of the immediate temporal neighbors, in addition to the sig-
nificance information of the immediate horizontal and vertical
neighbors, to code the magnitude of sample c. Let S denote
the total number of significant temporal, horizontal and vertical
neighbors of sample ¢, with 0 < S < 6. Let o be a variable
that transitions from O to 1 after sample c is found to be signifi-
cant for the for first time; i.e., after the MR pass is first applied
to sample c. The proposed 3-D context assignment for the MR
pass is summarized in Table III.

Note that for each coding pass, the coding engine maintains
a look-up table in order to identify the probability model to be
used by the adaptive arithmetic coder under each context.

B. Weight Assignment Model

The purpose of the weight assignment model is to enable the
encoder to reorder the output bit-stream, so that the code-cubes
that constitute the VOI are included earlier while allowing for
gradual increase in peripheral quality around the VOI, under the
constraint that the VOI is the main focal point. Techniques that
allow gradual increase in peripheral quality around a focal point
have been extensively used to improve image and video coding
algorithms [22]—[25]. In the proposed compression method, we
apply this technique to decode contextual background informa-
tion with peripherally increasing quality around the VOI, which
in turn enhances the visualization of the data at any bit-rate. We
achieve this by considering two main factors: 1) the proximity of
a code-cube to the VOI and 2) the mean energy of a code-cube.
The desired weight assignment for code-cube C'¢; is a function
of the form

Wce; (PCCq‘7BCCi7pCCi) € [07 1] (D
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TABLE 1
PROPOSED 3D CONTEXT ASSIGNMENT FOR THE ZERO CODING (ZC) PASS OF SAMPLE ¢
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TABLE III
PROPOSED 3-D CONTEXT ASSIGNMENT FOR THE MAGNITUDE
REFINEMENT (MR) PASS OF SAMPLE ¢

o S Context
0 0 0
0 {1,2} 1
0 {3,4} 2
0 {5,6} 3
1 X 4

X: don’t care

where P, is a value in the range (0,1] that depends on the
proximity between the center of code-cube C'¢; and the center
of the VOI, B¢, is a value in the range [0,1] that depends on
the mean energy of code-cube C'c;, and pc., is a value in the
range [0,1] that depends on the proportion of wavelet coeffi-
cients of code-cube C¢; that contributes to the VOI. We define
function wee, (Pee,, Bee, s poe; ) by studying an important fea-
ture of 3-D medical images in the spatial and wavelet domains.

In the spatial domain, 3-D medical images usually depict the
anatomy of one or more organs (or structures) over an empty
background. Furthermore, the areas comprised by the depicted
structures typically contain most of the energy of the 3-D image.

In the wavelet domain, the original structures depicted in the
3-D medical image are preserved as edge information within
each sub-band. Following the grouping of wavelet coefficients
into code-cubes, those code-cubes comprising the edge infor-
mation thus tend to contain most of the sub-band energy.

Based on the above observations, we employ the information
about the coordinates of the VOI and the mean energy of a code-
cube to determine if a code-cube constitutes the VOI, the non-
empty background, i.e., a structure depicted in the 3-D medical
image that is not part of the VOI, or the empty background.
The main objective is to assign the largest weight (wg., = 1)
to those code-cubes within the VOI, a smaller weight to those
code-cubes within the non-empty background, and the smallest
weight to those code-cubes within the empty background.

We determine which code-cubes constitute the VOI by using
the VOI coordinate information and the location of the code-
cubes in the spatial domain. The latter is calculated by tracing
back the wavelet coefficients to a set of voxels using the foot-
print of the wavelet kernel used to transform the data. We em-
ploy pce, € [0,1] as a measure of the proportion of wavelet
coefficients of code-cube Ce¢; that contribute to the VOI, with
pce; = 0 for those code-cubes outside the VOI, pc., = 1
for those code-cubes that fully contribute to the VOI, and 0 <
pce; < 1 for those code-cubes with some contribution to the
VOI.

In order to determine which code-cubes constitute the empty
background, we use the information about their mean energy,
which for code-cube C¢; is calculated as follows:

R 1
e = I Z el 2)

where ¢, is the kth sample of C'¢;, and K is the total number of
samples in Cc;.

We expect the value of éc., to be zero for those code-cubes
within the empty background. However, this may not always
be true due to the discrete size of code-cubes and the smearing
effects of the wavelet filter, which may result in some code-
cubes comprising both structure and empty background infor-
mation. The simplest possible method to determine if a code-
cube is part of the empty background is to use a thresholding
approach, where code-cube C'¢; is considered to constitute the
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empty background if the mean energy éc., is below a defined
value. Generally, the use of continuous functions, where no hard
decision is required to determine if a code-cube is part of the
empty background, leads to better results. We, thus, use the fol-
lowing simple continuous, monotonically decreasing function
to determine if code-cube C'¢; in sub-band s is part of the empty
background

2,
BCCizl_—c

gz teoad

€ [0,1] 3

where énax {éce, } is the maximum mean energy ¢, in sub-
S

band s. A value of B¢, close to one means a high proba-
bility that code-cube Cl¢; is part of the empty background, cor-
responding to a low mean energy content, whereas a value of
Bee, close to zero means a low probability that code-cube Cc;
is part of the empty background, corresponding to a high mean
energy content. All values Be,, are calculated during the en-
coding process and are stored as header information.

We now define function wee, (Pce,, Bee;, e, ) to assign
weight we,, to code-cube C'c;. We also employ a continuous,
monotonically decreasing function with a range [0,1] as follows:

Boe,;

<) @)

wee, (Pee,:Bee, s pee,) = pce, +(1 — pee,) e (

where B¢, is as defined in (3), pc.; is the proportion of wavelet
coefficients of code-cube C¢; that contributes to the VOI, and
Pc., is the probability that code-cube C'; is located peripher-
ally close to the VOI and is calculated by

dCci

Pee, =1-

€ (0,1] )
max

where dc., is the radial distance between the center of the VOI

and the center of the region represented by code-cube C'¢; in the

spatial domain, and D, is the maximum radial distance in the

spatial domain between two samples of the 3-D image

Dmax: v$2+y2+22 (6)

where {z,y, 2z} denotes the size of the 3-D image in the spatial
domain. Note that P, may only take values in the range (0, 1],
since 0 < d¢.; < Dmax for code-cubes outside the VOI with a
dimension a > 23. A value of Pc., close to one means a high
probability that code-cube C¢; is located peripherally close to
the VOI, whereas a value of Pc., close to zero means a low
probability that code-cube C¢; is located peripherally close to
the VOL.

We employ the function in (4) as it is one of the simplest func-
tions to provide the desired gradual decrease in weight wce,
that quickly falls off as the probability that code-cube C¥¢; is
part of the empty background increases (i.e., as the value of
Be., increases) and the probability that is located peripher-
ally close to the VOI decreases (i.e., as the value of P¢., de-
creases), but still leads to weights equal to one for those code-
cubes within the VOI (i.e., with a value of pc., equal to one).
Function wee, (Pce, , Boe, s Poe; ) has a simple probabilistic in-
terpretation. The value of weight wc.., corresponds to the prob-
ability of code-cube C'c; being within the VOI and thus con-
taining structure information. For code-cubes that fully con-
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Fig. 4. Weight assignment for code-cube C'¢; according to Be.,, its proba—
bility of being part of the empty background, for various values of Pee,, its
probability of being located peripherally close to the VOL.

tribute to the VOI, this probability is equal to one since the un-
derlying assumption is that all code-cubes within the VOI con-
tain structure information. For code-cubes outside the VOI, this
probability follows a Gaussian distribution with a peak value
of one centered at B¢, = 0 and a decaying rate controlled
by Pc.,. For code-cubes that partially contribute to the VOI,
this probability depends on their proportion of wavelet coeffi-
cients that contribute to the VOI, and a Gaussian distribution
controlled by B¢, and Pc.,. Fig. 4 shows the plot of (4) for
code-cubes outside the VOI for various values of Pc.,. It can
be seen that the value of w¢., slowly decays peripherally around
the center of the VOI for small values of B¢, and large values
of Pc.,, whereas it quickly approaches zero for large values of
Bee, and small values of Pce,.

Note that after the image is coded, the calculation of the
code-cube weights for any VOI requires only the recomputa-
tion of two values for each code-cube, 1) its probability of being
peripherally close to the VOI (i.e., value P¢.,), and 2) its con-
tribution to the VOI (i.e., value pc,). There is no need to re-
compute the code-cube probabilities of being within the empty
background (i.e., values B¢, ), since these probabilities are in-
dependent of the VOI and are calculated only once during the
coding process (values B¢, are stored as header information).

C. Creation of an Optimized Scalable Layered Bit-Stream

The bit-stream of each code-cube C'c; may be independently
truncated to any of a collection of different lengths, due to the
entropy coding process, which is performed using a number of
coding passes. We organize these truncated bit-streams into a
number of quality layers to create a scalable layered bit-stream.
This is done by collecting the incremental contributions from
the various code-cubes into the quality layers such that the code-
cube contributions result in a rate-distortion optimal representa-
tion of the 3-D image, for each quality layer L. The code-cube
incremental contributions into each quality layer are stored as
header information during the coding process.

After the creation of the scalable layered bit-stream, the main
objective is to reorder this bit-stream, so that the code-cubes
that constitute the VOI are included earlier in conjunction with
contextual background information. We achieve this by finding
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the optimal collection of truncated bit-streams that minimizes
the overall distortion of the reconstructed 3-D image at quality
layer L, while attaining VOI decoding capabilities. We incorpo-
rate weight wc,, as calculated in Section II-A, in the optimiza-
tion process to achieve a gradual increase in peripheral quality
around the VOI.

In this work, we employ the mean square error (MSE) to
quantify the distortion of code-cube C¢; at quality layer L

K
ME,, = Z ok — k)’ (7
k:

where ¢y, is the kth sample of Cc;, ¢ is the quantized repre-
sentation of the kth sample of C'c; associated with the truncated
bit-stream at quality layer L, and K is the total number of sam-
ples in C¢;. The MSE is easily calculated by using the infor-
mation about the code-cube contributions into quality layer L
stored as header information during the coding process.

The MSE of code-cube Cc¢; at quality layer L in sub-band
s on a per-voxel basis over the entire 3-D image may then be
calculated as

9s 4s

227‘
Ns Q

—I
MCQ - MCC, MCcl (8)

where () is the total number of image voxels, 7 is the decompo-
sition level to which C'¢; belongs (r = 1 corresponds to the first
decomposition level), gs = Q/ 227 is the number of coefficients
in s, IV, is the number of code-cubes in s (the code-cubes are of
equal size), Méc, is as defined in (7), and g, is a factor used to
compensate for the nonenergy preserving characteristics of the
bi-orthogonal Le Gall 5/3 wavelet filter. Factor g, is a function
of the specific wavelet filters used for reconstruction and is cal-
culated from the filter coefficients [26].

In order to attain a gradual increase in peripheral quality
around the VOI, we define a weighted MSE for code-cube C¢;
over the entire reconstructed 3-D image as follows:

S v 9)
Ce; — (1 +'chi) Ce;

where we., is the weight of C'c; as defined in (4) and M(L;Ci is as
defined in (8). Note that for code-cubes within the VOIL, w¢c., =
L

land M., = (1/ 2)Mcc However, for code-cubes outside the
VOL wee, < 1 and MCC > (1/ 2)MCC The latter translates
into a greater distortion, at quality layer L, for those code-cubes
with a low mean energy content and located peripherally far
from the VOL.

Thus, for a 3-D image coded using a total of I code-cubes,
the overall distortion at quality layer L is

I
= § MCC{'
=1

(10)

The key to attaining VOI decoding capabilities at quality
layer L, is to include only the truncated bit-streams of those
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code-cubes within the VOI. Under this condition, the output
bit-stream at quality layer L is the summation of the truncated
bit-streams of the code-cubes within the VOI

Y= 3" 4,

Cc;eVOI

(1)

where Y is the output bit-stream at quality layer L and yé(, is
the truncated bit-stream of C¢; at quality layer L. The bit-rate
of YL is then the summation of the bit-rates of each y&,.

(12)
where Ry denotes the overall bit-rate of Y and Ryé ~ de-

notes the bit-rate of y&, .
The overall distortion of the reconstructed 3-D image at
quality layer L, assuming the output bit-stream in (11), is thus

S Mew + Y T,

Cec;€VOI Cec; VoI

(13)

where ﬁéﬁ denotes the weighted MSE added to the overall

A L
distortion DL if yécl_ is not included in layer L, and MCcl is
as defined in (9). Using (7)-(9), ﬁéa is calculated by equating
¢, the quantized representation of the kth sample of code-cube
C¢;, to zero.

In order to increase the overall quality of the reconstructed
3-D image at quality layer L, while retaining the VOI decoding
capabilities and allowing for the decoding of contextual back-
ground information, we encode some bit-streams yém ¢ VOI
along with bit-streams y¢, € VOI. For a maximum bit-rate at
quality layer L, some bit-streams yép € VOIin (11) may have
to be discarded in order to accommodate bit-streams y/. ¢
VOI. Due to the resolution scalability features of the output
bit-stream, bit-streams yéq € VOI should be discarded in a
sequential order starting with those comprising the first decom-
position level (i.e., the highest-frequency sub-bands) and ending
with those comprising the last decomposition level (i.e., the
lowest-frequency sub-bands). Hence, the distortion in (13) can
be expressed as follows:

I AL
= ZMCQ(S chc
! =L AL L.
=6 (vée,) [Mc - mcci] +) W, (14

=1

(yéc yCC )]

where 6(y&,..) is 1if y&, is included in layer L (otherwise it is
Z€ero).

In order to attain the optimal overall reconstruction quality of
the 3-D image at quality layer L, we minimize D” in (14) under
two bit-rate constraints

Sk s

§ (Yée,) < By
i=1
Y Ry 6(vbe) < Y, Ry 8(vé.,) (13
CcigVOI CecieVOI
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TABLE 1V
3-D TEST MEDICAL IMAGES AND CORRESPONDING VOI
COORDINATES AND CODE-CUBE SIZES

Dimensions VOI coordinates

o Code-
ize i i
. cube size* | Scaling
Modality {x,y,z}(mm) p(x,y,2) (mm)} m(X,Y,Z] (mm) | axaxa value”
e A
1 MRI ({121‘-15051(5)1322) p(117,249) | m(85,140,12] | 32x32x32 | 3

256,256,100}

p(128,0,0) 1m[128,256,100]

2-MRL | 50.256x256:8) Ioxi6xi6 | 4
3. MRI {(23251221251132)} p(44,31,20) | m[170,159,54] | 32x32x32 | 3
4.CT (532122105’11222;) p(12221,50)+ m[111,212,50] | 32x32x32 | 6
5.CT (]{532’122105’]13?;) p(48.48,0) | m[185,137,30] | 32x32x32 | 5
6.cT | 1480:480.200} | s 3 30 m[353,286,40] | 32x32x32 | 6

(200:512x512:12)

* Defined for the first level of decomposition.

f Used in the GSB method to scale up coefficients associated with the VOI
above background coefficients.

MRI: magnetic resonance imaging. CT: computed tomography. VOI: volume
of interest.

where R,z is the bit-rate of y5,, Ry« is the maximum avail-
able bit-rate at quality layer L, and 6(y&e.,) is 1if y&,, is in-
cluded in layer L (otherwise it is zero). Note that the constraints
in (15) force the bit-rate spent on bit-streams yé(i ¢ VOI to
be less than the bit-rate spent on bit-streams y(, € VOI. This
guarantees that the VOI is decoded at higher quality than the
rest of the 3-D image.

We solve the optimization problem defined in (14), (15) by
finding the points that lie on the lower convex hull of the rate-
distortion plane corresponding to the possible sets of bit-stream
assignments.

III. EXPERIMENTAL RESULTS AND DISCUSSION

We obtained two sets of experimental results. The first set
evaluated the performance of the proposed method for VOI de-
coding at various bit-rates, including lossless reconstruction.
The second set evaluated the effect of code-cube sizes on coding
performance and size of the decoded VOI. We conclude this
section with a discussion on the complexity of the proposed
method.

A. Evaluation of VOI Decoding at Various Bit-Rates

Our test data set consisted of three 8-bit MRI and three 12-bit
CT sequences of various resolutions. We defined a single VOI
comprising clinically relevant information in each of the test
sequences. The characteristics of the 3-D test sequences, the
corresponding VOI coordinates and code-cube sizes used for
entropy coding are summarized in Table IV. Sequence 1 com-
prises MRI slices (sagittal view) of a human spinal cord; Se-
quence 2 comprises MRI slices (axial view) of a human head;
and Sequence 3 comprises MRI slices (sagittal view) of a human
knee. The test CT sequences comprise consecutive slices (axial
view) of the “Visible Male” (Sequences 4 and 5) and “Visible
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Woman” (Sequence 6) data sets maintained by the National Li-
brary of Medicine (NLM) [27]. In this work, the VOI is de-
fined in the spatial domain by two sets of values, p(x, y, z) and
m[X,Y, Z]; where p(z, y, z) denotes the lower-left corner coor-
dinates closest to the coordinate origin and m[X,Y, Z] denotes
the dimensions of the VOI.

We compared the performance of the proposed compression
method to that of 3D-JPEG2000 with VOI coding, using the
MAXSHIFT and GSB methods. 3D-JPEG2000 is the exten-
sion of JPEG2000 for compression of 3-D images [28], [29].
3D-JPEG2000 employs a 3-D discrete wavelet transform across
the slices with the resulting 3-D sub-bands being entropy coded
by first grouping coefficients into smaller 3-D sections called
3-D code-blocks. As mentioned earlier, MAXSHIFT scales up
the coefficients associated with a VOI well above the back-
ground coefficients. At the decoder side, the nonzero VOI and
background coefficients are identified by their magnitude, and
thus, VOI coefficients are completely decoded before any back-
ground coefficients. The GSB method, on the other hand, scales
up the coefficients associated with a VOI by a certain scaling
value. Depending on the scaling value, some of the bits of the
VOI coefficients may be encoded in conjunction with the bits of
the background coefficients. The GSB method requires, how-
ever, the generation of a VOI mask at the encoder and decoder
sides, as well as the coding and transmission of the VOI shape
information, which may increase the computational complexity
and overall bit-rate of the compressed bit-stream [30].

It is important to note that due to the scaling-up process per-
formed by MAXSHIFT, the entropy decoder in 3D-JPEG2000
must be capable of decoding a large number of bit-planes.
Current decoder implementations conforming to the JPEG2000
standard may not be capable to decode such large number of
bit-planes, which renders the MAXSHIFT method not suitable
for lossless reconstruction of 12-bit medical imaging data
with VOI decoding capabilities. In this work, we used the
OpenJPEG implementation of 3D-JPEG2000."

In our proposed compression method, we employed the Le
Gall 5/3 wavelet filter implemented using the lifting step scheme
to decompose the test images with four levels of decomposition
in all three dimensions. We created a layered output bit-stream
whose reconstruction quality progressively improves up to loss-
less reconstruction.

For the case of 3D-JPEG2000, we employed four levels of
decomposition in all three dimensions. We losslessly coded the
resulting 3-D sub-bands using 3-D code-blocks and precincts
to group coefficients describing the same 3-D spatial region
at the same decomposition level. The dimensions of the 3-D
code-blocks and precincts were selected to match the dimen-
sions of the code-cubes employed in our proposed method, as
tabulated in column 4, Table IV. For each test sequence, we cre-
ated a layered output bit-stream whose reconstruction quality
progressively improves up to lossless reconstruction. We em-
ployed the MAXSHIFT method (8-bit sequences) and the GSB
method (8- and 12-bit sequences) to define a VOI according to
the VOI coordinates tabulated in column 3, Table IV.

Thttp://www.openjpeg.org
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Fig. 5. PSNR values (in dB) for the VOI and background (BG) of 8-bit and 12-bit 3-D medical imaging data decoded at various bit-rates after compression using
different methods (see Table IV). (a) Sequence 1, MRI slices (sagittal view) of a human spinal cord. (b) Sequence 2, MRI slices (axial view) of a human head.
(c) Sequence 3, MRI slices (sagittal view) of a human knee. (d) Sequence 4 and (e) Sequence 5, consecutive CT slices (axial view) of the “Visible Male” data set
maintained by the National Library of Medicine (NLM) [27]. (f) Sequence 6, consecutive CT slices (axial view) of the “Visible Woman” data set maintained by

the NLM.

In order to measure the reconstruction quality of the VOI
and background at different bit-rates, we employed the PSNR,
which for a 3-D image of bit-depth m is defined by
2" —1)

vMSE

1 K
_ E A0)2
MSE = K k=1(ck — Ck)

PSNR =20log;,

(16)

where MSE denotes the mean square error, (2™ — 1) is the
maximum voxel value in the 3-D image, K is the total number

of voxels in the area to be evaluated (e.g., the VOI), ¢, and
Cr. are the original and reconstructed values of the kth voxel,
respectively.

In the case of the GSB method, we empirically selected the
scaling value that produces the VOI quality (in terms of the
PSNR) most similar to the VOI quality attained by our proposed
method, while still allowing for decoding of partial background
information at different bit-rates. The selected scaling values for
the test sequences are tabulated in column 5, Table I'V.

Fig. 5 plots the PSNR values of the VOI and background of
the 3-D test sequences after decoding at a variety of bit-rates (in
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bits per voxel, bpv). It can be seen that, for all test sequences,
the proposed method achieves higher PSNR values for the VOI
and background than those achieved by the GSB method. Even
though the GSB method allows for decoding of partial back-
ground information in conjunction with the VOI, this partial in-
formation is determined by manually selecting a scaling value
for the background coefficients, which may affect the coding
performance. The proposed method requires no manual selec-
tion of a scaling value, as it employs a weighting model and
an optimization technique to determine the optimal amount of
background information that minimizes the overall distortion of
the image. This is done by reordering the output bit-stream after
compression. As a result, in the peripheral regions of the VOI,
low-frequency code-cubes with large weights have a greater op-
portunity to be included earlier in the output bit-stream. In the
VOI, both low- and high-frequency code-cubes are included ear-
lier in the output bit-stream because of their large weights.

It can also be seen in Fig. 5 that, for 8-bit sequences,
MAXSHIFT achieves higher PSNR values for the VOI than
those achieved by the proposed method, especially at low
bit-rates (e.g., bit-rates lower than 0.40 bpv, Sequences 1 and
3). This is expected, since MAXSHIFT first decodes the VOI
coefficients before decoding any background coefficients. Note
that the apparent high PSNR values achieved by MAXSHIFT
for the background at low bit-rates are due to the smearing ef-
fects of the wavelet filter, which may result in some background
areas surrounding the VOI being decoded in conjunction with
the VOI. Also note that as the bit-rate increases, the quality of
the VOI decoded by the three evaluated methods tends to be
very similar, since more bits are decoded and the reconstruction
quality approaches the lossless case.

Itis important to mention that the plots in Fig. 5(a)—(c) present
different behaviors for the case of the MAXSHIFT method.
This is mainly due to the size of the VOI, which may affect
the number of bits in each bit-plane needed to fully reconstruct
the VOI before the background. For small VOIs, e.g., those
decoded in Sequences 1 and 3, MAXSHIFT achieves higher
PSNR values for the VOI than the proposed method at bit-rates
lower than 0.4 bpv [see Fig. 5(a) and (c)]. In this case, the VOI
does not include a large proportion of significant coefficients
and the number of most significant bit-planes in the VOI and
background are similar. MAXSHIFT is therefore capable of de-
coding the VOI at high qualities at low bit-rates. For larger VOIs,
e.g., that decoded in Sequence 2 (where the VOI comprises half
of the entire volume), the proportion of significant coefficients
in the VOI is larger and, therefore, a larger number of bits is
needed to fully recover the VOI before the background. This
explains the lower PSNR values achieved by MAXSHIFT for
the VOI at bit-rates lower than 0.80 bpv when compared to the
proposed method [see Fig. 5(b)].

Lossless compression ratios and bit-rates for the three eval-
uated methods are tabulated in Table V. The proposed method
achieves compression ratios comparable to those achieved by
MAXSHIFT and the GSB method, with the additional advan-
tage of allowing for decoding any VOI from the same com-
pressed bit-stream.
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TABLE V
LOSSLESS COMPRESSION RATIOS AND BIT-RATES OF 3-D MEDICAL
IMAGES USING VARIOUS COMPRESSION METHODS
Compression method *
Modalit,
. odanty MAXSHIFT Proposed
Size {x,y,z}(mm) GSB method
T, . method method
(slices:pixels per slice:bpv)

compression ratio (bit-rate, bits per voxel)

1. MRI 2.39:1 2.46:1 2.44:1
{240,240,33} (11:512x512:8) (3.34 bpv) (3.25 bpv) (3.27 bpv)

2. MRI 1.98:1 2.02:1 2.00:1
{256,256,100} (100:256x256:8) (4.04 bpv) (3.96 bpv) (4.00 bpv)

3. MRI 4.25:1 4.31:1 4.34:1
(272,272,100} (50:512x512:8) (1.88 bpv) (1.85 bpv) (1.83 bpv)

4.CT N/A 3.25:1 3.22:1
(270,270,120} (120:512x512:12) (4.92 bpv) (4.96 bpv)

5.CT N/A 2.31:1 2.36:1
{270,270,100} (100:512x512:12) (6.92.bpv) (6.77 bpv)

6.CT N/A 2.47:1 2.49:1
{480,480,200} (200:512x512:12) (6.47 bpv) (6.41 bpv)

* A single VOI was defined in each sequence as specified in Table IV.
MRI: magnetic resonance imaging. CT: computed tomography. VOI: volume
of interest.

N/A: not applicable.

Fig. 6 illustrates sample reconstructed slices at 0.6 bpv be-
longing to the VOI of Sequences 1 and 3 (see Table IV). It can
be seen that the GSB and the proposed methods are capable to
decode the VOI while still including partial background infor-
mation, which allows placing the VOI into the context of the
3-D image, in this case the sagittal view of a human spinal
cord (Sequence 1), and a human knee (Sequence 3). The pro-
posed method, however, decodes the background information
peripherally around the VOI according to the mean energy of the
code-cubes, which results in a higher reconstruction quality than
that attained by the GSB method. Note that the VOIs decoded
by the MAXSHIFT and the GSB methods appear to be of dif-
ferent size when compared to the VOI decoded by the proposed
method. Let us remember that the MAXSHIFT and the GSB
methods work on a coefficient-basis and thus, both methods are
able to decode more precisely only those coefficients within the
VOI at higher quality than the background coefficients. In other
words, the granularity of the MAXSHIFT and GSB methods in
representing a VOI in the sub-band domain is one wavelet co-
efficient, as opposed to the proposed method, where the granu-
larity is one code-cube. Therefore, in the proposed method, the
code-cube sizes have a direct impact on the size of the decoded
VOI. This will be further discussed in the next subsection.

B. Evaluation of the Effect of Code-Cube Sizes

In this section, we evaluated the trade-off between the size
of the decoded VOI and coding performance, for various code-
cube sizes. In order to measure how similar the size and location
of the decoded VOI are to the size and location of the desired
VOI, we employ a VOI shape decoding quality defined by a
set of two values, e, (z,y, z) and v,.; where e,(x,y, z) denotes
the absolute value of the difference between the lower left-hand
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MAXSHIFT method

GSB method
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Proposed method

Fig. 6. (a) Slice no. 5 belonging to the VOI of Sequence 1 and (b) slice no. 22 belonging to the VOI of Sequence 3 (see Table IV) reconstructed at 0.6 bpv
after compression using the MAXSHIFT method, the GSB method, and the proposed method. Observed PSNR values were (a) 39.56 dB (VOI) and 24.33 dB
(background) for MAXSHIFT; 32.97 dB (VOI) and 27.90 dB (background) for the GSB method; and 35.07 dB (VOI) and 31.60 dB (background) for the proposed
method; and (b) 39.99 dB (VOI) and 24.16 dB (background) for MAXSHIFT; 34.89 dB (VOI) and 29.25 dB (background) for the GSB method; and 35.31 dB

(VOI) and 31.90 (background) for the proposed method.

corner coordinates of the desired VOI and those of the decoded
VOI, and v,. is a real number defined by

VCQ

_ Cec; €VOI (17)

o Wor
where Vi is the volume size of the region represented by code-
cube C¢; in the spatial domain (the summation of all C¢; € VOI
comprise the decoded VOI), and Vy/o1 is the volume size of the
desired VOI in the spatial domain. A value v,, = 1 means that
the decoded VOI is equal in volume size to the desired VOI, a
value v, > 1 means that the decoded VOI is larger in volume
size than the desired VOI, whereas a value v,, < 1 means that
the decoded VOI is smaller in volume size than the desired VOI.
Let us remember that each code-cube is associated with a
limited spatial region due to the finite footprint of the wavelet
kernel. It is thus expected that small code-cube sizes will result
in higher VOI shape decoding qualities (i.e., e, (z, y, z) values
close to (0,0,0) with v,. values close to 1). However, small code-
cube sizes may also result in reduced coding performance due
to the increased number of independent bit-streams needed to
represent all the code-cubes at each quality layer L.

Fig. 7 plots the VOI shape decoding quality and PSNR values
for the VOI of Sequences 1 and 4 (see Table IV) after decoding
at a variety of bit-rates using different code-cube sizes. Fig. 8
shows sample reconstructed slices at 0.6 bpv of Sequence 1 after
encoding using different code-cube sizes.

As expected, results in Fig. 7 show that as the code-cube size
is reduced the coding performance decreases, but the VOI shape
decoding quality increases. This can be seen in Fig. 8(b), where
the VOI seems to be larger than in Fig. 8(d)—(f), because the code-
cubes are not small enough for the VOI to be accurately decoded.
Also note the blocky artifacts when employing code-cubes of
8 x 8 x 8 samples, which are the result of the low coding perfor-
mance due to the increased number of independent bit-streams
needed to represent all code-cubes. In this case, code-cubes of
32 x 32 x 32and 64 x 64 x 64 samples (defined for the first de-
composition level) present the best trade-off between VOI shape
decoding quality and coding performance. If the VOI coordinates
are known a priori the entropy coding process, large code-cubes
may be employed for large VOIs or if the whole volume needs
to be decoded; whereas small code-cubes may be employed for
small VOIs or if a high VOI shape decoding quality is required.
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Fig. 7. PSNR (in dB) for the VOI and VOI shape decoding quality values of (a) Sequence 1 and (b) Sequence 4 after decoding at a variety of bit-rates using

different code-cube sizes (see Table IV).

(a)

Original slice

(d
Code-cube size: 32x32x32 samples

(b)
Code-cube size: 128x128x128 samples

(©)
Code-cube size: 64x64x64 samples

©)

Code-cube size: 16x16x16 samples Code-cube size: 8x8x8 samples

Fig. 8. (a) Original slice no. 5 of Sequence 1. The voxels belonging to the desired VOI are delimited by a square area (see Table IV). (b)—(f) Slice no. 5 of
Sequence 1 reconstructed at. 0.6 bpv after coding using various code-cubes sizes with four level of decomposition (code-cube sizes are defined for the first level
of decomposition). The voxels belonging to the decoded VOI are delimited by a square area. (a) Original slice; (b) code-cube size: 128 x 128 x 128 samples; (c)
code-cube size: 64 x 64 x 64 samples; (d) code-cube size: 32 X 32 x 32 samples; (e) code-cube size: 16 x 16 x 16 samples; (f) code-cube size: 8 X 8 x 8 samples.

C. Computational Complexity Considerations

We conclude our performance evaluation with a brief
discussion regarding the complexity of the proposed com-
pression method. Compared to 3D-JPEG2000 with VOI
coding (MAXSHIFT and GSB methods), the proposed method
presents a higher complexity at the encoder side due mainly

to the bit-stream reordering procedure. This augmented com-
plexity is a consequence of the calculation of the code-cube
weights and the layer optimization technique, which needs to
be performed each time a VOI is to be decoded.

It is important to remember that, in the proposed method, the
entropy coding process needs to be performed only once for a
3-D medical image, since the decoding of a VOI simply requires



1820

the reordering of the compressed bit-stream. As mentioned ear-
lier, the calculation of the code-cube weights for a requested
VOI simply requires the recomputation of two values for each
code-cube. Moreover, the MSE required during the layer op-
timization technique is easily calculated from the information
about the code-cube contributions into each quality layer, which
is stored as header information during the coding process.

At the decoder side, the complexity of the proposed method is
very similar of that of the MAXSHIFT method, since there is no
need for the decoder to reorder the bit-stream prior to decoding.
Compared to the GSB method, the decoding complexity of the
proposed method is lower, since the GSB method requires the
generation of a VOI mask prior to decoding.

Finally, it is important to remark that in the proposed method,
all information needed to perform the bit-stream reordering pro-
cedure and layer optimization technique is stored and trans-
mitted as header information. In the case of the test sequences
evaluated in this work, this additional information represents a
mere 0.04%-0.5% of the compressed bit-rate.

IV. CONCLUSION

We presented a novel scalable 3-D medical image compres-
sion method with optimized VOI coding within the framework
of interactive telemedicine applications. The method is based
on a 3-D integer wavelet transform and a modified version of
EBCOT that exploits correlations between wavelet coefficients
in three dimensions and generates a scalable layered bit-stream.
The method employs a bit-stream reordering procedure and
an optimization technique to optimally encode any VOI at
the highest quality possible in conjunction with contextual
background information from a lossy to a lossless representa-
tion. We demonstrated the two main novelties of the method;
namely, the ability to decode any VOI from the compressed
bit-stream without the need to recode the entire 3-D image;
and the ability to enhance the visualization of the data at any
bit-rate by including contextual background information with
peripherally increasing quality around the VOI. We evaluated
the performance of the proposed method on real 8-bit and 12-bit
3-D medical images of various resolutions. We demonstrated
that the proposed method achieves higher reconstruction quali-
ties than those achieved by 3D-JPEG2000 with VOI coding at
a variety of bit-rates. We also demonstrated that the proposed
method attains lossless compression ratios comparable to those
attained by 3D-JPEG2000 with VOI coding. Finally, we studied
the effect on coding performance and VOI decoding capabilities
of the proposed method with different coding parameters.
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