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Abstract. 3D ultrasound (US) is increasingly considered as a viable alternative 
imaging modality in computer-assisted orthopaedic surgery (CAOS) applica-
tions. Automatic bone segmentation from US images, however, remains a  
challenge due to speckle noise and various other artifacts inherent to US. In this 
paper, we present intensity invariant three dimensional (3D) local image phase 
features, obtained using 3D Log-Gabor filter banks, for extracting ridge-like fea-
tures similar to those that occur at soft tissue/bone interfaces. Our contributions 
include the novel extension of 2D phase symmetry features to 3D and their use 
in automatic extraction of bone surfaces and fractured fragments in 3D US. We 
validate our technique using phantom, in vitro, and in vivo experiments. Qualita-
tive and quantitative results demonstrate remarkably clear segmentations results 
of bone surfaces with a localization accuracy of better than 0.62mm and mean 
errors in estimating fracture displacements below 0.65mm, which will likely be 
of strong clinical utility.   

Keywords: 3D ultrasound, local phase features, 3D Log-Gabor filters, 3D 
phase symmetry, bone segmentation.  

1   Introduction 

The two most common imaging modalities used in orthopaedic surgery are fluoros-
copy (projection x-rays) and computed tomography (CT). Although both methods 
provide clear images of bone structures, CT normally cannot be performed intraopera-
tively and fluoroscopy typically produces two dimensional images only, which makes 
it difficult for surgeons to assess the 3D shape and position of bones and bone frag-
ments (e.g. during reduction procedures). This is particularly important in complex 
fracture cases involving bones such as the distal radius, responsible for about one 
sixth of all fractures seen in emergency departments in the United States [1], and the 
pelvis [2]. Furthermore, both CT and fluoroscopy use ionizing radiation, which raises 
important safety concerns for both patients and surgeons.   

Ultrasound (US) imaging is non-ionizing, fast, portable, inexpensive and capable 
of real time imaging, but, unfortunately, US images typically contain significant 
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speckle and other artifacts which complicate image interpretation and automatic proc-
essing [3]. If anatomical structures of interest could be visualized and localized with 
sufficient accuracy and clarity, 3D US may in fact become a strong practical alterna-
tive imaging modality for selected applications in orthopaedic surgery, particularly for 
computer-assisted applications where the image can be processed to provide quantita-
tive information on the location of bone structures. 

Manual identification of bone surfaces in 2D US for orthopedic surgery application 
was reported in [4]. Manual processing, however, is time consuming and operator 
dependent, and thus limits clinical practicality. While some studies have shown some 
promise in automatically identifying the bone surface based on intensity and gradient 
information (or a combination of both) these techniques were limited to 2D US, and 
remained sensitive to typical image variability and choice of processing parameters 
[5]. Daanen et al [6] proposed a method where prior knowledge of bone appearance 
was incorporated. However, fractured bone surfaces do not have a continuous smooth 
surface and prior knowledge of fragment shape is mostly unavailable. Other ap-
proaches combined intensity and gradient-based techniques with multimodal registra-
tion of US to preoperative CT [7]. However, preoperative CT requires additional time 
and expense and is not always considered necessary for diagnosis or treatment, so it is 
only available in selected cases.   

Local phase based features have been used in US image analysis, e.g. for localizing 
endocardial border points in echocardiography [8]. In [9], Hacihaliloglu et al pro-
posed using phase features extracted automatically from 2D slices to identify bone 
boundaries in US data. However, 2D methods do not take advantage of correlations 
between adjacent images (i.e., along the axis perpendicular to the scan plane direc-
tion) and are therefore subject to spatial compounding errors as well as errors due to 
beam thickness effects. In this paper, we extend local phase based processing to 3D 
US volumes using 3D Log-Gabor filters. Specifically, we construct a 3D local phase 
symmetry measure which produces strong responses at bone surfaces and suppresses 
responses elsewhere. We quantitatively investigate the accuracy of our technique in 
localizing bone surfaces and assess the technique’s ability to resolve displaced bone 
fragments.  The current study is therefore the first to show that bone surfaces and 
fractures can be accurately localized using local phase features computed directly 
from 3D ultrasound image volumes. 

2   Methods 

In US images, bone surfaces typically appear blurry with non-uniform intensity and 
substantial shadowing beneath the surface. The thickness of the response at the lead-
ing edge ranges from 2-4 mm [3] for a typical transducer. In [3], it was shown that the 
actual bone surface lies between the highest gradient and the highest intensity points 
of this thick response. We propose that it would therefore be more appropriate to use 
a ridge detector, rather than an edge detector, to identify the bone surface location as 
the latter would produce responses on both sides of the band at the bone surface. 
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2.1   3D Local Phase Symmetry Feature 

The purpose of ridge detection is to capture the major axis of symmetry of a feature at 
some specified spatial scale. Signals that have even symmetry about the origin will 
have real (and even) Fourier transforms, while signals that have odd symmetry will 
have imaginary (and odd) Fourier transforms. Signals that are neither perfectly odd 
nor perfectly even will have complex Fourier transforms (i.e. have both real and 
imaginary parts) where the resultant phase values reflects their degree of symmetry. 
Local phase information of a 1D signal can be obtained by convolving the signal with 
a pair of band-pass quadrature filters (an odd filter and an even filter). Using two fil-
ters in quadrature enables the calculation of signal amplitude and phase at a particular 
scale (spatial frequency) at a given spatial location. A good choice of quadrature fil-
ters is the Log-Gabor filter which can be constructed with arbitrary bandwidth. In 
order to obtain simultaneous localization of spatial and frequency information, analy-
sis of the signal must be done over a narrow range (scale) of frequencies at different 
locations in the signal. This can be achieved by constructing a filter bank using a set 
of quadrature filters created from rescalings of the Log-Gabor filter. Each scaling is 
designed to pick out particular frequencies of the signal being analyzed. In [10] 
Kovesi investigated symmetry information by looking at the points where the re-
sponse of the even filter dominates the response of the odd filter taking the difference 
of their absolute values. In this paper we extend this analysis to 3D using 3D Log-
Gabor filters.  

The transfer function (G) of a 3D Log-Gabor filter in the frequency domain (1) is 
constructed as the product of two components: a one dimensional Log Gabor function 
that controls the frequencies to which the filter responds and a rotational symmetric 
angular Gaussian function that controls the orientation selectivity of the filter [11].  
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Here κ determines the bandwidth of the filter in the radial direction and ω0 is the fil-
ter’s center spatial frequency. To achieve constant shape ratio filters, which are filters 
that are geometric scalings of a reference filter, the term κ/ω0 must be kept constant. 
The angle between the direction of the filter, which is determined by the azimuth (φ) 
and elevation (θ ) angles, and the position vector of a given point f in the frequency 
domain is given by α(φi ,θi) = arcos(f.νi /|| f ||). νi= (cosφi cosθi , cosφi sinθi, sinφi ) is a 
unit vector in the filter’s direction. Here σα defines the extent of spreading in the an-
gular direction. To get higher orientation selectivity, the angular function must be-
come narrower. 

The scaling of the radial Log Gabor function is achieved by using different wave-
lengths which are based on multiples of a minimum wavelength, λmin, which is a user-
definable parameter. The relationship between the filter scale m, and the filter center 
frequency ω0 is defined as ω0=2/ λmin×(δ)m-1 where δ=3 is a scaling factor defined for 
computing the center frequencies of successive filters. After investigating convolution 
results of various 1D scanline profiles of a distal radius, scanned in vivo, with a pair 
of quadrature filters at different scales, selecting a single scale (m=1)  with a large 
wavelength (λmin= 25) gave well localized bone surface phase features. A value  
of κ/ω0 =0.25 provided good surface localization in the presence of speckle. For the 
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angular component, we found empirically after some experimentation with models of 
the human distal radius and pelvis that it was possible to get good orientation resolu-
tion while containing an adequate range of frequencies by selecting σα=14.3°. The 
filter bank used in this work uses 15 different (α) 3D filter orientations.  Our local 
phase analysis of a 3D image volume V(x,y,z)  proceeds by convolving the image with 
the 3D Log Gabor filters. Let Me

rm (ω,φr,θr)=real(G(ω,φr,θr)) and Mo
rm(ω,φr,θr)= 

imag(G(ω,φr,θr)) denote the real (even) and imaginary (odd) parts, respectively, at a 
scale m  and orientation r, and let Ĥ(u,v t) be the Fourier transform of V(x,y,z).  We 
can think of the responses of each quadrature pair of filters as forming a response vec-
tor [erm(x,y,z),orm(x,y,z)]=[F-1(Ĥ(u,v,t)Me

rm(ω,φr,θr)), F
-1(Ĥ(u,v,t) Mo

rm(ω,φr,θr))]. Here 
F-1 denotes the inverse Fourier transform operation. 

Extending Kovesi’s work where 2D phase symmetry was defined as in [10], we 
construct a 3D phase symmetry measure, for different scales (m) and orientations (r):  
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Here ⎣A⎦ = max(A,0), ε is a small number included to avoid division by zero, and T is 
a noise threshold calculated as a specified number (k) of standard deviations (σ) above 
the mean (μ) of the local energy distribution. Based on this, T is defined as: T = μ + 
k× σ and the distribution is expected to be Rayleigh [12]. The response of the smallest 
scale filter is used for the calculation of μ and σ since it has the largest bandwidth and 
will give the strongest noise response. For different US transducers and scales, k can 
be tuned to provide a balance between the detected bone surface and speckle scale. 
The noise threshold parameter k was set to 5. Throughout our experiments the se-
lected filter parameters were not changed.  

2.2   Experimental Setup  

We designed two different experiments to quantitatively evaluate the performance of 
the proposed 3D local phase-based bone segmentation method. The first experiment 
aimed at assessing the localization accuracy of our bone surface detection technique 
and the second at assessing the accuracy of measuring relative displacements between 
bone fragments, as this is a clinically relevant task for which we would like to use 3D 
US imaging.  Acquisition was performed on a GE Voluson 730 Expert ultrasound 
machine (GE Healthcare, Waukesha, WI) with a 3D RSP5-12 probe. This is a mecha-
nized probe where a linear array transducer is swept through an arc range of 20°. The 
reconstructed US volumes were 199×119×50 voxels (lateral×axial×elevational) with 
an isotropic voxel size of 0.19mm. Our algorithm was implemented in MATLAB and 
run on an Intel Pentium 4 PC (3.64 GHz, 2GB of RAM). A human left radius Saw-
bone (Sawbones Inc., Vashon, WA), an in vitro pig leg and in vivo scans of a human 
distal radius were used in the validation experiments. In addition to our two quantita-
tive studies, we also present qualitative results for an in vivo scan of a human distal 
radius and for an ex vivo scan of a porcine tibia and fibula. 
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Experiment 1 Surface Localization: In order to quantify our bone localization accu-
racy, a stylus with a spherical tip was placed at a variety of locations on the surface of 
a bone or bone model.  Two situations were assessed:  (A) a plastic bone model 
(Sawbone) in a water tank, and (B) an ex vivo porcine specimen. 

(A) Sawbone Specimen:  Scans of the Sawbone model were performed inside a wa-
ter tank with the long axis of the bone aligned with the axis of the linear array of the 
mechanized transducer. This alignment produced the clearest depiction of the bone 
surface. Images of the Sawbone were obtained at varying depths (shallow, middle, 
deep) by changing the probe position inside the water tank. Different depths produce 
different US resolutions in the elevation and lateral directions of the linear array. Re-
alignment of the Sawbone was performed at each depth to ensure the bone was 
aligned with the probe’s central slice. To test the accuracy of surface localization at 
different beam orientations relative to the bone surface, as might occur in clinical use, 
we used two different orientations for the phantom – horizontal and inclined at 20∞. 
At each probe position, the US volume acquisition was repeated with a stylus tipped 
with a small spherical bead (3.0 mm in diameter) placed on the bone to provide the 
‘gold standard’ for the true bone location . The bead was placed and scanned at 30 
different locations along the bone surface for each of the 3 depth settings. To ensure 
that the bead was centered in the elevation direction, the position of the stylus was 
adjusted until the clearest surface reflection was obtained. The location of the dot-like 
bright intensity response which is the top of the bead tip, f, and the location of the 
intensity response of the bone surface obtained from the phase algorithm, b, were then 
extracted (Fig. 1a-c). These two measurements, b and f, were obtained in a highly 
automated and repeatable manner using a subpixel edge detection algorithm.  To en-
sure that the images with and without the bead in place were otherwise identical, the 
Sawbone and probe were both fixed for both image acquisitions. The bone surface 
localization error was therefore defined as: error=D (b f), where D is the bead di-
ameter and b and f are expressed in mm.  When the US beam was not perpendicular to 
the bead on the bone surface, the position of the underlying bone surface was com-
pensated for using the geometry calculations shown in Figure 1c. Since mechanized 
3D ultrasound probes use a set of 2D images to reconstruct a volume, the effect of the 
finite beam thickness is incorporated into the volume data via the reconstruction proc-
ess. Compared to a single 2D image, volumetric data provides information about the 
bone response away from a single plane, so the analysis implicitly includes beam 
thickness effects. 

(B) Ex Vivo Porcine Specimen: In order to investigate the effect of a soft tissue in-
terface on our localization accuracy, we conducted an ex vivo experiment on a porcine 
tibia and fibula. First, the soft tissue was removed of the bone and the same spherical 
bead-tipped stylus described above was placed against the bone. The removed soft 
tissue was then overlaid, leaving the bead underneath the tissue and touching the 
bone. Again, a set of 3D scans were obtained with the bead positioned at 30 different 
locations along the bone surface. The error calculation proceeded in the same manner 
described in part (A) above. 
 

Experiment 2 Fracture Misalignment Detection: Identification of fractures  
and proper assessment of fracture reduction is of special importance in orthopaedic 
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surgery. Our second experiment was thus designed to assess the ability of the pro-
posed local phase-based technique to detect small gaps between bone fragments from 
3D US data. First, the Sawbone was broken into two parts and each part was glued to 
the top surface of a metal block.  For tracking purposes, infrared emitting diodes 
(IREDs) were glued onto the surface of one of the metal blocks. This part was tracked 
with an optical tracking system (OPTOTRAK 3020, Northern Digital Inc., Waterloo, 
ON, Canada with 3D localization accuracy of 0.1 mm in the directions parallel to the 
front of the camera) which was used to provide the gold standard displacement meas-
urements. The other block with the second bone fragment was kept fixed. In total, 5 
fixed displacements ranging from 0.8 to 2.2 mm in the vertical (Fig.1 d) and horizon-
tal directions were then introduced. Tests were conducted with either a thick layer of 
ultrasound gel or a 3 cm thick slice of bovine tissue overlaid on the bone model. In 
both cases, the misalignment was tracked with the OPTOTRAK with a total of 10 3D 
US volumes obtained for each misalignment. The displacements along the top edges 
of the fracture boundaries were measured on each 2D slice of the 3D phase volume in 
which they appeared and then averaged. This result was then compared with the 
known applied displacement. 

 

 

 

   
 

(a) (b) (c) (d) 

Fig. 1. Bone localization accuracy assessment (a-c: experiment 1, d: experiment 2). (a) Central 
slice of an US volume of a Sawbone. Arrow points to the fiducial (bead) attached to the bone. 
(b) Corresponding slice of 3D volume resulting from our proposed local phase processing.  (c) 
For cases where the bead is not aligned with the central slice of the volume, the location of the 
bone surface can be calculated from the geometry of the angle of the plane showing the bead 
(α), the angle of the bone surface (β) and the radius of the bead (r). (d) Central slice of an US 
volume(top) obtained by scanning phantom Sawbone bone fragments after introducing a verti-
cal displacement and corresponding slice from our proposed method (bottom).  
 

3   Results 

Experiment 1 Localization Accuracy: 
(A) Sawbone Specimen:  The processing time was approximately 43s for each 3D 
volume. For both the horizontal and inclined specimens the mean error was calculated 
from the measurements taken at the 30 different bead locations for each depth setting. 
Among the three different depth settings the middle scanning depth resulted in a mean 
error of 0.62mm (SD 0.24mm) and 0.53mm (SD 0.28mm) inside the bone surface 
response on the 3DUS volume for the horizontal and inclined specimens, respectively. 
Compared to the other two depth settings these values were the highest error results 
obtained.  
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(B) Bovine Specimen: For the cadaver experiment the mean localization error was 
0.44mm inside the bone surface response. 

Experiment 2 Fracture Misalignment Detection: The mean errors in estimating 
fracture displacements were -0.65mm and 0.5mm for horizontal and vertical mis-
alignments, respectively, for the fractures imaged through bovine tissue. The error 
results obtained when the gel was used as an imaging medium were −0.5mm and 
0.4mm respectively. 

Qualitative Results: Figure 2 shows a qualitative comparison of local-phase-
processed images of a human distal radius with the original 3D US volume of the 
same bone.  The local phase images are notably clearer than the 3DUS image, and the 
3D version of the local phase images is markedly smoother than the 2D version, 
where each slice is treated independently in the latter.  

 

 
Fig. 2. Qualitative results on in-vivo human distal radius. (a) Area imaged. (b) Captured 3D US 
volume. (c) 2D phase feature image. (d) Proposed 3D phase symmetry image. 

Figure 3 shows other qualitative examples where scans of an intact ex-vivo porcine 
tibia and fibula and fractured distal radius Sawbone were acquired. Note how the lo-
cal phase processed images allow clear visualization of the entire bone surface and of 
the fracture line. 

 

 
 

Fig. 3. Qualitative results obtained from ex vivo porcine tibia fibula specimen and Sawbone 
with soft tissue overlaid. (a) 3D US volume of intact bone. (b) Corresponding 3D phase sym-
metry image. (c) 3D US of a distal radius Sawbone fracture imaged with soft tissue overlaid on 
top. (d) 3D phase of (c) where the detected fracture is shown inside the red rectangle. 

4   Discussion and Conclusions 

In this paper we proposed a novel approach for accurate and fully automatic extraction 
of bone surfaces directly in 3D ultrasound volumes based on local phase symmetry  
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image features that employ 3D Log-Gabor filters. Bone surface localization accuracy 
assessed using bone models and ex vivo porcine specimens showed a maximum mean 
error of 0.44 mm and a low standard deviation across the sampled points of only 0.16 
mm; these errors were relatively independent of the depth of the soft tissue/bone inter-
face and of the inclination of the probe relative to the bone surface. Furthermore, the 3D 
phase method has high localization accuracy even when the US beam is not perfectly 
normal to the bone surface. Horizontal and vertical displacements between model bone 
fragments were also accurately measured with a maximum mean error under 0.65 mm. 
The obtained results are encouraging for using local phase processed images in fracture 
assessment since the average accuracy required for such application is typically in the 
range of 2-4mm [13]. A comparison of in vivo scans of the human distal radius showed 
that a true 3D analysis produced a noticeably smoother image of the bone surface  
than previously reported 2D analysis.  We expect that such 3D processing will be of 
special importance during the assessment of fractures where good accuracy is needed to 
avoid malunions. Furthermore, since there is no need to align the imaging plane with the 
anatomical area of interest, evaluation of the fractured area can likely be performed 
more rapidly. 

We are currently investigating the performance of the method in volumes con-
structed using freehand 2D US and stitched 3D volumes where a larger region of in-
terest can be obtained.  Future work will also focus on establishing the feasibility of 
using the proposed technique for fracture assessment in the emergency department 
and for fracture reduction assessment in orthopaedic trauma applications, particularly 
of distal radius fractures. 

References 

1. Hanel, D.P., Jones, M.D., Trumble, T.E.: Wrist fractures. Orthop. Clin. North. Am. 33(1), 
35–57 (2002) 

2. Coppola, P.T., Coppola, M.: Emergency department evaluation and treatment of pelvic 
fractures. Emergency Medicine Clinics of North America 18(1), 1–27 (2000) 

3. Jain, A.K., Taylor, R.H.: Understanding bone responses in B-mode ultrasound images and 
automatic bone surface extraction using a bayesian probabilistic framework. In: Proc. of 
SPIE Medical Imaging, pp. 131–142 (2004) 

4. Barratt, D.C., Penney, P.G., Chan, S.K., Slomczykowski, M., Carter, T.J., Edwards, P.J., 
Hawkes, D.J.: Self calibrating 3D-ultrasound-based bone registration for minimally inva-
sive orthopaedic surgery. IEEE Transactions on Medical Imaging 25, 312–323 (2006) 

5. Kowal, J., Amstutz, C., Langlotz, F., Talib, H., Ballester, M.G.: Automated bone contour 
detection in ultrasound B-mode images for minimally invasive registration in computer as-
sisted surgery an in vitro evaluation. The International Journal of Medical Robotics and 
Computer Assisted Surgery, 341–348 (2007) 

6. Daanen, V., Tonetti, J., Troccaz, J.: A fully automated method for the delineation of osse-
ous interface in ultrasound images. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MIC-
CAI 2004. LNCS, vol. 3216, pp. 549–557. Springer, Heidelberg (2004) 

7. Amin, D.V., Kanade, T., Digioia, A.M., Jaramaz, B.: Ultrasound registration of the bone 
surface for surgical navigation. Journal of Computer Aided Surgery 8, 1–16 (2003) 

8. Mulet-Parada, M., Noble, J.A.: 2D+T boundary detection in echocardiography. Medical 
Image Analysis 4(1), 21–30 (2000) 



 Bone Segmentation and Fracture Detection in Ultrasound 295 

9. Hacihaliloglu, I., Abugharbieh, R., Hodgson, A.J., Rohling, R.N.: Enhancement of bone 
surface visualization from 3D ultrasound based on local phase information. In: Proc. IEEE 
Ultrasonics Symposium, pp. 21–24 (2006) 

10. Kovesi, P.: Symmetry and Asymmetry from Local Phase, AI 1997. In: Tenth Australian 
Joint Conference on Artificial Intellegence, pp. 185–190 (1997) 

11. Dosil, R., Pardo, X.M., Fernandez-Vidal, X.R.: Data driven synthesis of composite feature 
detectors for 3D image analysis. Journal of Image and Vision Computing, 225–238 (2006) 

12. Kovesi, P.: Image Features From Phase Congruency. Videre: A Journal of Computer Vi-
sion Research (1999) 

13. Phillips, R.: The accuracy of surgical navigation for othopaedic surgery. Current Ortho-
paedics, 180–192 (2007) 


	Bone Segmentation and Fracture Detection in Ultrasound Using 3D Local Phase Features
	Introduction
	Methods
	3D Local Phase Symmetry Feature
	Experimental Setup

	Results
	Discussion and Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




